输变电设备优化检修(OM)若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
输变电设备是组成电力系统的主要元件。在当前电力需求不断增大和电力企业商业化运营的环境下,设备的可利用率和维护成本直接关系到系统运行可靠性、企业效益与市场竞争力。因此需要设备管理部门能够及时掌握设备的运行状态和健康状态,正确地对设备进行故障检测和诊断,通过合理的检修体制预防和消除设备的故障。在全面总结我国电网企业现有检修体制的基础上,借鉴其它工业领域的研究成果,提出了电网企业优化检修(Optimal Maintenance,OM)的思想:逐步减少定期检修,避免重要设备的事后检修,推行状态检修,制订以可靠性为中心的综合检修计划,保证系统的可靠性,降低检修成本。输变电设备优化检修的核心是状态检修,其实现依赖于状态监测技术、状态评估技术、故障诊断技术、检修计划优化技术,企业信息化技术的发展。本文对这几个领域的若干关键技术进行了研究,并着重以电力变压器为例进行了应用。
     对状态监测中的故障检测功能进行了分析。基于非线性系统辨识模型的故障检测方法要求模型本身具有较高的辨识精度,因此提出一种基于差异进化算法(Differential Evolution,DE)和粒子群优化算法(Particle Swarm Optimization,PSO)的新型混合进化算法DEPSO,以及基于DEPSO的径向基函数神经网络(Radial Basis Function Neural Network,RBFNN)模型,并应用于预测SF_6气体绝缘变压器表面温度。该模型用DEPSO算法训练RBFNN隐层中心的数量和位置,并采用递推最小二乘法确定网络输出层的权值。对某变电站SF_6气体绝缘变压器的表面温度预测结果表明:与BP网络、基于进化规划、PSO的RBFNN相比,这种建模方法具有更高的辨识精度。
     输变电设备的状态评估是一个多属性决策问题,需要对其状态进行合理划分,并综合考虑监测资料、工作环境、运行检修记录,建立综合的评估指标体系。以变压器为例,根据状态评估指标具有层次性和模糊不确定性的特点,提出了一种改进的证据推理方法用于评估变压器的状态。证据的初始基本概率赋值通过层次分析法及模糊评估法获取,改进的方法适用于证据间出现高度冲突的情况。实例分析表明了该方法的有效性。指标体系的建立方法和改进的证据推理方法同样适用于输电线路和断路器等输变电设备的状态评估。
     提出一种新颖的多分类多核学习支持向量机变压器故障诊断方法,相对于传统的两分类支持向量机,该方法具备诸多优点。算法针对单一的优化目标函数求解,只需设计一组参数,大大降低了支撑向量机在解决多类问题中模型构造和参数选择的难度;核函数是多个基核函数的组合,提高了分类的精度;将模型分解为两个凸优问题进行求解,问题的复杂度低,求解速度快。诊断实例表明,该方法能保证很高的诊断准确率,具有很好的实用性和推广性。
     从输变电设备检修计划编制的实际需求出发,建立了考虑多种约束条件、以系统全年可靠性指标最优为目标的检修计划优化模型。模型中考虑了设备实际状态对其故障率的转化,以及检修对故障率的影响。针对该模型的特点,提出了一种改进的免疫算法,该算法在上一代最优抗体的基础上,通过一个较小邻域范围和一个较大邻域范围的并行搜索,使得该方法具备较强的局部寻优能力和全局寻优能力,有效提高算法的收敛速度和收敛精度。通过马尔可夫链的分析,证明了本文提出该算法的全局收敛性。最后,通过对标准IEEE RTS96单区域系统进行仿真,证明了本文模型及算法的实用性。
     为了提高输变电设备检修决策信息平台的集成能力及系统的柔性,提出了基于面向服务架构(Services-Oriented Architecture,SOA)的输变电设备优化检修信息系统体系结构。将优化检修系统的服务划分为应用服务、业务服务及业务流程服务,并进行了详细的功能描述及建模。将公用信息模型和模型驱动的思想用于SOA开发,并基于WebServices技术实现。SOA是一种面向动态需求的企业架构模型,它为企业应用提供了一种服务驱动的分布式协同工作新模式。基于SOA的优化检修信息集成框架能适应业务和实现技术的不断变化,极大地实现了软件的重用,降低了集成的复杂性和成本。
Transmission&Distribution Equipments are the main elements which constitute power system. Under the environment that electricity demand is increasing and power utilities have been operated commercially, the availability and maintenance cost of the equipments play important roles on the system operation reliability and the benefit and competitiveness of the utilities. As a result, utilities are required to obtain the health condition of equipments in time. Moreover, they are needed to detect and diagnose failures for the equipments and then prevent or eliminate the failures according to some appropriate inspection and maintenance mechanism. Based on full summarization of the present maintenance mechanisms in power grid and research achievements obtained in other industrial fields, a more reasonable mechanism aimed to optimal maintenance is put forward as below. Utilities should reduce the frequency of periodic maintenance, and avoid applying the breakdown maintenance method on critical elements. The condition based maintenance has a promising future which should be carried out gradually. All of these methods must be coordinated by reliability-centered maintenance scheduling in order to ensure the reliability of the system and the reduction of the maintenance cost. The condition based maintenance is the core of the optimal maintenance. Realization of the optimal maintenance mechanism for Transmission&Distribution Equipments is based on the development of several technologies, such as condition monitoring, condition assessment, fault diagonosis, optimization of maintenance scheduling, and enterprise informationization. Some key problems of these technologies are studied in the dissertation, and mainly applied to the maintenance of power transformers.
     In Chapter 2. the fault detection technology of condition mornitoring is mainly analyzed. Fault detection based on nonlinear system identification demands high identification accuracy, so a novel radial basis function neural network (RBFNN) model based on a hybrid learning algorithm differential evolution and particle swarm optimization (DEPSO) is proposed in this paper to predict the shell temperature for SF6-insulated transformers. The DEPSO automatically adjusts the number and positions of hidden layer RBF centers. The weights of output layer are decided by the recursive least squares algorithm. The proposed DEPSO-RBFNN model is trained and tested based on the field data collected from a SF_6-insulated transformer. The test results indicate that the DEPSO-RBFNN possesses far superior identification precision than BP neural network (BPNN), EP-RBFNN and PSO-RBFNN.
     Transmission&Distribution Equipment condition assessment is a multiple-attribute decision-making (MADM) problem. On the basis of rational partition of condition, a synthetic evaluation index system is needed, which includes condition mornitoring records, working surroundings, operation and maintenance history et al. Considering the fuzziness and uncertainty of condition assessment indices, an improved evidential reasoning (ER) approach to the transformer condition assessment is presented. The initial basic probability assignment of evidence is accessed by means of analytic hierarchy process (AHP) and fuzzy evaluation method. The newly approved method is applied to the case in which high conflict occurs. The results of an example analysis present its effectiveness. The method to build the evaluation index system and the improved evidential reasoning are also suitable when applied to the condition assessment of other Transmission&Distribution Equipments, such as breakers and transmission lines.
     In this thesis, Chapter 4 develops a novel support vector machine (SVM), i.e. multiple kernels learning multicategory support vector machine (MKLM-SVM), for the faults diagnosis in transformers. Unlike traditional SVM that may fail under some various circumstances, the MKLM-SVM method has some good theoretical properties, the MKLM-SVM method is only based on a simple objective function, and the classification results can be directly calculated on the basis of a simple decision function; the MKLM-SVM method can calculate an optimal kernel function on the basis of linear combinations of basic kernels, further boosting the overall performance; the solutions for the MKLM-method can be efficiently calculated by iteratively solving two convex optimization functions with a low computation cost. The test results show that the proposed method has high classification accuracy, which proves its effectiveness and usefulness.
     A new model for Transmission&Distribution Equipments maintenance scheduling which intends to find the most reliable maintenance schedule without violating any restrictions is proposed in this paper. The scheduling problem is solved considering the mapping between the equipment condition and equipment failure rate. A functional relationship between failure rate and maintenance measures has also been developed, which assess the impact of maintenance. An improved immune algorithm is proposed to power system maintenance scheduling optimization problem. In order to realize the parallel global and local search capabilities, this algorithm generates the next population under the guidance of the previous superior antibodies in a small and a large neighborhood respectively. Through analysis of Markov chain, the proposed method is proved to be convergent on whole solution space. The test results on IEEE RTS96 single area system demonstrate that the proposed model and optimization method are effective.
     In order to facilitate information integration and improve flexibility of Transmission&Distribution Equipment Optimal Maintenance Information System (TDE-OMIS), a Service-Oriented Architecture (SOA) based framwork is introduced. The SOA based TDE-OMIS include several kinds of service,such as application services, business services and business process services, which have been functional described and modeled in detail. The Common Information Model (CIM) and the Model-Driven (MD) methodology are introduced into the realization of the SOA based on the Web Services technology. SOA is a dynamic demand-oriented enterprise architecture model, which provides a new kind of service-driven and distributed collaborative operation mode. Service-Oriented optimal maintenance information integration framework can adapt the continuous change of business and technology, so it can reuse the software and reduce the complexity and cost of information integration greatly.
引文
[1]邱仕义.电力设备可靠性维修[M].北京:中国电力出版社,2004年
    [2]孙才新.输变电设备状态在线监测与诊断技术的现状与前景[J].中国电力,200538(2):1-6.
    [3]J.B.Leger,B.Iung,A Ferro de Beca and J.Pinoteau,An innovative approach for new distributed maintenance system:application to hydropower plants of the REMAFEX project,Computers in Industry,1999,38:131-148.
    [4]ESPRIT Project 20874 REMAFEX(REmote MAintenance for Facility EXploitation).Information Package,1997
    [5]K.S.Park.Condition-based predictive maintenance by multiple logistic functions[J].IEEE Transactions on Energy Conversion.1993,42(4):556-558
    [6]E.Lihovd,T.I.Johannessen,C.Steinebach,et al.Intelligent diagnosis and maintenance management[J].Journal of Intelligent Manufacturing.1998,(9):523-537
    [7]A.Grall,L.Dieulle,C.Berenguer,et al.Continuous-time predictive-maintenance scheduling for a deteriorating system[J].IEEE Transactions on Reliability.2002,51(2):141-150
    [8]D.C.Swanson.A general prognostic tracking algorithm for predictive maintenance[C].2001IEEE Proceedings of Aerospace Conference.2001,6:2971-2977
    [9]P.Hafkamp,G.Schutters.Designing and implementing a maintenance management system with an expert support system:methodology,implementation,expert IT-system,achieved cost reductions[C].2001 16th International Conference and Exhibition on Electricity Distribution.Part 1:Contributions.2001,1:40-46
    [10]J.M.Wetzer,G.J.Cliteur,W.R.Rutgers,et al.Diagnostic- and condition assessment-techniques for condition based maintenance[C].2000 Annual Report Conference on Electrical Insulation and Dielectric Phenomena.2000:47-51
    [11]F.Ly,A.K.A.Toguyeni,E.Craye.Indirect predictive monitoring in flexible manufacturing systems[J].Robotics and Computer Integrated Manufacturing.2000(16):321-338
    [12]Task Force.Risk and Probability Applications Subcommittee under IEEE/PES,The present status of maintenance strategies and the impact of maintenance on reliability[J].IEEE Transactions On Power Systems,2001,16(4):638-646.
    [13]H.Sarangaa.J.Knezevic.Reliability prediction for condition-based maintained systems[J].Reliability Engineering and System Safety.2001,(71):219-224
    [14]许婧.王晶.高峰,束洪春.电力设备状态检修技术研究综述[J].电网技术,2000,24(8):48-52.
    [15]黄建华,全零三.变电站高压电气设备状态检修的现状及其发展[J].电力系统自动化,2001,25(16):56-61.
    [16]苏鹏声,王欢.电力系统设备状态监测与故障诊断技术分析[J].电力系统自动化,2003,27(1):61-65.
    [17]王璐,王鹏.电气设备在线监测与状态检修技术[J].现代电力,2002,19(5):40-45.
    [18]杜正旺.实施电网状态检修[J].电力自动化设备,2000,20(5):57-59.
    [19]严璋.电力设备绝缘的状态维修[J].电力设备状态检修和在线监测论文集.江苏省电力公司,江苏省电机工程学会.2001
    [20]潘波,易莉.变压器在线监测与状态检修工作[J].电力设备状态检修和在线监测论文集.江苏省电力公司,江苏省电机工程学会.2001
    [21]杨莉,尚勇,严璋.电力变压器状态检修的国外动态[J].高电压技术,1999,25(3):37-39.
    [22]马辉.实现变压器状态检修的方法[J].高电压技术,200l,27(4):70-84.
    [23]吴立增.变压器状态评估方法的研究[D].华北电力大学.博士论文.北京.2005
    [24]袁泉.电力设备健康状态评估算法的设计与实现[D].华北电力大学.硕士论文.北京.2003
    [25]熊浩.电力变压器绝缘状态综合评估方法研究[D].重庆大学.博士论文.重庆.2006.
    [26]袁志坚.电力变压器状态维修决策方法的研究[D].重庆大学.博士论文.重庆.2005.
    [27]董立新.基于Internet的电力设备虚拟医院的电力变压器数据挖掘故障诊断研究[D].上海交通大学.博士论文.上海.2005
    [28]胡文平.基于智能信息融合的电力设备故障诊断新技术研究[D].华中科技大学.博士论文.武汉.2005.
    [29]孙才新,陈伟根,李俭.电气设备油中气体在线监测与故障诊断技术[M].北京:科学技术出版社,2003.
    [30]李俭.大型电力变压器以油中溶解气体为特征量的内部故障诊断模型研究[D].重庆大学.博士论文.重庆.2001
    [31]黄雅罗,黄树红.发电设备状态检修[M].北京:中国电力出版社,2008.
    [32]黄超,黄树红.火电厂状态检修中决策支持系统的研究[J].华中科技大学学报:自然科学版,2002,30(8):59-61.
    [33]G.Bretthauer,T.Gamaleja,E.Handschin,U.Neumann,W.Hoffmann.Integrated maintenance scheduling system for electrical energy systems[J].IEEE Transactions On Power Delivery,1998,13(2):655-660.
    [34]安玲,江秀臣,朱宇,韩振东.陈亚珠.输电线路状态检修软件系统的面向对象设计与实现[J].电力系统自动化,2002(07):66-69.
    [35]许允之,张军国.基于状态维修的变电设备信息管理与决策支持系统[J].电气应用,2005,24(9):87-89.
    [36]许允之.张军国.变电设备管理信息与决策支持系统[J].高电压技术,2005:31(6):85-86.
    [37]江志刚,陈三运.电力设备状态检修决策支持系统[J].华中电力,2001,14(4):61-62
    [38]麻秀范,刘晓明.智能化供电设备状态检修决策支持系统设计[J].东北电力学院学报,2002,22(2):43-46.
    [39]周云波.电力设备状态检修管理系统的建设与实践[J].电力设备,2003,4(6):50-53.
    [40]陈焱涛.水轮机调速系统优化维护理论与实践[D].华中科技大学.博士论文.武汉.2004.
    [41]郭江.基于虚拟现实的智能代理技术及其在电厂维护中的应用[D].华中科技大学.博士论文,武汉,2003.
    [42]郭江,曾洪涛,李朝晖.水电厂维护分布式协同决策支持系统研究[J].中国电机工程学报,2005,25(15):127-132.
    [43]曾洪涛,李朝晖,郭江.基于Community Intelligence水电厂维护协同决策支持系统[J].电力系统及其自动化学报,2005,17(5):22-28.
    [44]傅闯,叶鲁卿,余刃,刘永前,陈木华.基于多智能体和人工神经网络的水电厂预知维护系统的研究[J].中国电机工程学报,2005,25(6):81-87.
    [45]傅闯.基于Multi-Agent的ICMMS建模及其预知维护子系统的研究[D].华中科技大学,博士论文,武汉,2003.
    [46]曲朝阳,沈晶,李佳,聂欣.具有面向服务架构的电力企业资产管理系统模型设计[J].电网技术,2007,31(11):69-73.
    [47]DL/T596-1996,电力设备预防性试验规程[S].电力工业部,1996.
    [48]D.Ascenbrenner,H.G.Kranz,W.R.Rutger,et al.On line PD measurements and diagnosis on power transformers[J].IEEE Trans.On Dielectrics and Electrical Insulatin,2005,12(2):216-222.
    [49]H.G.Kranz.Fundamentals in computer aided PD processing,PD pattern recognition and automated diagnosis in GIS[J].IEEE Trans.On Dielectrics and Electrical Insulatin,2000,7:12-20.
    [50]李岩.变压器在线状态监测系统研究[D].华中科技大学.硕士论文,武汉,2005.
    [51]李福祺,姜磊,林渡.JFY-3型变压器局部放电在线监测系统[J].电工电能新技术,2000(3):69-72.
    [52]高文胜,张凌俊.TH-DMDS型电力设备局部放电监测诊断系统[J].水电能源科学,2006,24(3):82-84.
    [53]刘辉.索南加乐,宋国兵,罗军明.基于变压器顶层油温的动态建模[J].变压器,2002,39f9):5-7.
    [54]W.H.Tang,Q.H.Wu,Z.J.Richardson.Equivalent heat circuit based power transformer thermal model[J],IEE Proc-Electr.Power Appl.,2002,149(2):87-92.
    [55]M.Schafer,K.Feser,Thermal monitoring of large power transformers[C].Electric Power Engineering,1999.PowerTech Budapest 99.International Conference on.1999:98-102.
    [56]IEC354—1991,Loading guide for oil immersed power transforms[S].IEC Publication 1991.
    [57]GB/T15164-1994,油浸式电力变压器负载导则[S].国家技术监督局,1994
    [58]IEEE Standard C57.91-1995,IEEE Guide for loading mineral-oil immersed transformer[S].New York:Institute of Electrical and Electronic Engineers,Inc,1995.
    [59]王红宇,苏鹏声,王祥珩,等.油浸型大型电力变压器表面温度预测模型[J].清华大学学报:自然科学版,2005,45(4):569-573.
    [60]R.Shoureshi,T.Norick,D.Linder.Sensor fusion and complex data analysis for predictive maintenance[C].Processings of the 36th Hawaii International Conference on system sciences,2003,2:63-69.
    [61]唐炬,廖华,张晓星,许中荣.GIS局放超高频在线监测系统研制[J].重庆大学学报:自然科学版,2008,31(1):29-33.
    [62]R.K.Aggarwal,A.T.Johns.An overview of the condition monitoring of overhead lines[J].Electric Power Systems Research,2000,53(1):15-22
    [63]盛戈皥,江秀臣,曾奕,黄成军.架空输电线路运行和故障综合监测评估系统[J].高电压技术,2007,33(8):183-186.
    [64]S.W.Lim,R.A.Shoureshi.Advanced monitoring system for integrity assessment of electric power transmission lines[C].Proceedings of the 2006 American Control Conference Minneapolis,Minnesota,USA,2006:4418-4423.
    [65]M.Youssef,A.A.El-Alayly.Remote monitoring of surface current over insulators[C].Transmission and Distribution Conference and Exposition,2001IEEE/PES.2001(1):113-116.
    [66]C.N.RICHARDS,J.D.RENOWDEN.Development of a Remote Insulator Contamination Monitoring System.IEEE Transactions on Power Delivery,1997,12(1):389-397
    [67]张冠军,王雪,莫娟,严璋.高压绝缘子远程在线检测诊断系统的初步研究[J].高电压技术,2003,29(7):7-9.
    [68]赵汉表,林辉,谢利理,邓正龙.基于高压侧测量的输电线绝缘子泄漏电流在线监测系统[J].电力系统自动化,2004,(22):78-82
    [69]张朋,王龙华.基于C8051F020的高压绝缘子泄漏电流在线监测[J].高电压技术,2005,31(11):13-15.
    [70]蔡伟,李敏,杨颜红.基于遥测技术的绝缘子在线监测系统[J].高电压技术,2002,(07):22-24.
    [71]焦尚彬,刘丁,郑岗,李琦.基于遥测技术的输电线路绝缘子污秽在线监测系统[J].电力系统自动化,2004,28(15):71-75.
    [72]陈涛,何为,刘晓明,熊东.高压输电线路紫外在线检测系统[J].电力系统自动化,2005,(07):88-92.
    [73]何为,陈涛,刘晓明,杨帆,姚德贵,熊东.基于紫外脉冲法的非接触式低值(零值)绝缘子在线监测系统[J].电力系统自动化,2006,(10):69-74.
    [74]刘有为,李光范,高克利,等.制订《电气设备状态维修导则》的原则框架[J].电网技术,2003,27(6):64-67,76.
    [75]钱政,尚勇,杨莉等.电力变压器固体绝缘状况的综合评估模型[J].西安交通大学学报,2000,34(4):5-9,22.
    [76]袁志坚,孙才新,袁张渝,等.变压器健康状态评估的灰色聚类决策方法[J].重庆大学学报,2005,28(3):22-25.
    [77]张金萍,刘国贤,袁泉,等.变电设备健康状态评估系统的设计与实现[J].现代电力,2004,21(4),45-49.
    [78]W.H.Tang,K.Spurgeon,Q.H.Wu,et al.An evidential reasoning approach to transformer condition assessments[J].IEEE Transactions on Power Delivery,2004,19(4):1696-1703.
    [79]谢红玲,律方成.基于信息融合的变压器状态评估方法研究[J].华北电力大学学报,2006,33(2):8-11.
    [80]吴立增.变压器状态评估方法的研究[D].华北电力大学.博士论文,北京,2005.
    [81]熊浩,孙才新,张昀,等.电力变压器运行状态的灰色层次评估模型[J].电力系统自动化,2007,31(7):55-60.
    [82]廖瑞金,王谦,骆思佳,等.基于模糊综合评判的电力变压器运行状态评估模型[J].电力系统自动化,2008,32(3):70-75.
    [83]Q/GDW-169-2008,油浸式变压器(电抗器)状态评价导则[S].国家电网公司,2008.
    [84]高文胜,王猛,谈克雄,等.油纸绝缘中局部放电的典型波形及其频谱特性[J].中国电机工程学报,2002,22(2):1-5.
    [85]罗日成,李卫国,李成榕,等.基于改进PSO算法的变压器局部放电超声定位方法[J].电力系统自动化,2005,29(18):66-69.
    [86]D.Aschenbrenner,H.G.Kranz,W.R.Rutgers,et al.On line PD measurements and diagnosis on power transformers[J].IEEE Transactions on Dielectrics and Electrical Insulatin,2005,12(2):216-222.
    [87]O.Hassan,H.Borsi,E.Gockenbach.Diagnostic of insulation condition of oil impregnated paper insulation systems with return voltage measurements[C].Processings of Annual Report Conference on Electrical Insulation and Dielectric Phenomena,2003,153-156.
    [88]林国梁,蔡金锭,李天友.变压器绝缘介质恢复电压的测量和研究[J].电力设备,2007,8(10):37-40.
    [89]M.Darveniza,T.K.Saha,D.J.T.Hill,et al.Investigations into effective methods for assessing the condition of insulation in aged power transformers[J].IEEE Transactions on Power Delivery,2003,18(1):4-13.
    [90]T.K.Saha,P.Purkait.Investigation of an expert system for the condition assessment of transformer insulation based on dielectric response measurements[J].IEEE Transactions on Power Delivery,2004,19(3):1127-1134.
    [91]姚森敬.欧阳旭东,林春耀.电力变压器绕组变形诊断分析[J].电力系统自动化.2005,29(18):95-98.
    [92]DL/T911-2004,电力变压器绕组变形的频率响应分析法[S].电力行业高压试验技术标委会,2005
    [93]M.Ali,A.M.Emsley,H.Herman,et al.Spectroscopic studies of the ageing of cellulosic paper[J].Polymer,2001,42:2893-2900.
    [94]杨莉,尚勇,周跃峰,严璋.基于概率推理和模糊数学的变压器综合故障诊断模型[J].中国电机工程学报,2000,20(7):19-23.
    [95]孙辉,李卫东,孙启忠.判决树方法用于变压器故障诊断的研究[J].中国电机工程学报,2001,21(2):50-55.
    [96]苏文辉,鞠平.模糊专家系统在电力变压器在线故障诊断中的应用初探[J].电力系统及其自动化学报,2002.14(1):12-14,78.
    [97]莫娟,王雪,董明,等.基于粗糙集理论的电力变压器故障诊断方法[J].中国电机工程学报,2004,24(7):162-167
    [98]朱永利,吴立增,李雪玉.贝叶斯分类器与粗糙集相结合的变压器综合故障诊断[J].中国电机工程学报,2005,25(10):159-165.
    [99]王永强,律方成,李和明.基于粗糙集理论和贝叶斯网络的电力变压器故障诊断方法[J].中国电机工程学报,2006,26(8):137-141.
    [100]王楠,律方成,刘云鹏,等.基于粗糙集理论与模糊Petri网络的油浸电力变压器综合故障诊断[J].中国电机工程学报,2003,23(12):127-132.
    [101]廖瑞金,姚陈果,孙才新,等.多专家合作诊断变压器绝缘故障的黑板型专家系统[J].电工技术学报,2002,17(1):85-90.
    [102]廖瑞金,廖玉祥,杨丽君,等.多神经网络与证据理论融合的变压器故障综合诊断方法研究[J].中国电机工程学报,2006,26(3):119-124.
    [103]李静,涂光瑜.罗毅.基于多数据源的电力变压器分层故障诊断系统设计[J].电力系统自动化,2004,28(23):85-88.
    [104]魏星,舒乃秋,崔鹏程,等.基于改进PSO_BP神经网络和D_S证据理论的大型变压器故障综合诊断[J].电力系统自动化,2006,30(7):46-50.
    [105]尚勇.闫春江,严璋,等.基于信息融合的大型油浸电力变压器故障诊断[J].中国电机工程学报,2002,22(7):115-118.
    [106]董明.严璋,杨莉,等.基于证据推理的电力变压器故障诊断策略[J].中国电机工程学报,2006,26(1):106-114.
    [107]C.E.Lin,J.M.Ling,C.L.Huang.An expert system for transformer fault diagnosis and maintenance using dissolved gas analysis[J].IEEE Transactions on Power Delivery,1993,8(1):231-238.
    [108]杨兵,丁辉,罗为民.等.基于知识库的变压器故障诊断专家系统[J].中国电机工程学报,2002.22(10):121-124.
    [109]Z.Y.Wang,Y.L.Liu.P.J.Griffin.A combined ANN and expert system tool for transformer fault diagnosis[J].IEEE Transactions on Power Delivery,1998,13(4):1224-1229.
    [110]廖瑞金,姚陈果.孙才新,等.基于人工智能的电力变压器绝缘故障诊断面向对象知识库[J].电工技术学报,2001,16(6):59-64.
    [111]束洪春.孙向飞.司大军.电力变压器故障诊断专家系统知识库建立和维护的粗糙集方法[J].中国电机工程学报,2002,22(2):31-35.
    [112]王建元.纪延超.模糊Petri网络知识表示方法及其在变压器故障诊断中的应用[J].中国电机工程学报,2003,23(1):121-125.
    [113]李天云,张宇辉,全玉生.基于诊断思维的变压器模糊故障诊断[J].电力系统自动化,1995,19(5):23-28
    [114]Q.L.Su,L.Lai,P.Austin.A fuzzy dissolved gas analysis method for the diagnosis of multiple incipient fault in a transformer[J].IEEE Transactions on Power Systems,2000,15(2):344-348.
    [115]Y.C.Huang,H.T.Yang,C.L.Huang.Developing a new transformer fault diagnosis system through evolutionary fuzzy logic[J].IEEE Transactions on Power Delivery,1997,12(2):761-767
    [116]H.T.Yang,C.C.Liao.Adaptive fuzzy diagnosis system for dissolved gas analysis of power transformers[J].IEEE Transactions on Power Delivery,1999,14(4):1342-1350.
    [117]孙才新,郭俊峰,廖瑞金,等.变压器油中溶解气体分析中的模糊模式多层聚类故障诊断方法的研究[J].中国电机工程学报,2001,21(2):37-41.
    [118]宋斌,于萍,廖冬梅,等.变压器故障诊断中溶解气体的模糊聚类分析[J].高电压技术,2001,27(3):69-71.
    [119]李俭,孙才新,陈伟根,等.灰色聚类与模糊聚类集成诊断变压器内部故障的方法研究[J].中国电机工程学报,2003,23(2):112-115.
    [120]钱政,严璋,罗承沐.范例推理与模糊数学的变压器故障诊断方法[J].高电压技术,2001,27(6):1-5.
    [121]Y.Zhang,X.Ding,Y.Liu et al.An artificial neutral network approach to transformer fault diagnosis[J].IEEE Transactions on Power Delivery,1996,11(4):1836-1841.
    [122]J.L.Guardadao,J.L.Naredo,P.Moreno.A comparative study of neural network efficiency in power transformer diagnosis using dissolved gas analysis[J].IEEE Transactions on Power Delivery,2001,16(4):643-647.
    [123]林俊,张兢,佘致廷,等.基于BP网络的变压器油中溶解气体在线监测[J].电力系统自动化,2001,25(8):56-58.
    [124]章剑光,周浩,盛哗.基于RPROP神经网络算法的主变DGA故障诊断模型[J].电力系统自动化,2004,28(14):63-66.
    [125]章剑光.周浩,项灿芳.基于SuperSAB神经网络算法的主变压器故障诊断模型[J].电工技术学报,2004,19(7):49-52,58.
    [126]周建华.胡敏强.自构形神经网络在变压器故障诊断中的应用电工技术学报[J].电工技术学报,2004,19(9):77-81.
    [127]潘翀 陈伟根 云玉新.等.基于遗传算法进化小波神经网络的电力变压器故障诊断[J].电力系统自动化,2007,31(13):88-92.
    [128]Y.C.Huang,C.M.Huang.Evolving wavelet networks for power transformer condition monitoring[J].IEEE Transactions on Power Delivery,2002.17(2):412-416.
    [129]K.F.Thang,R.K.Aggarwal,A.J.McGrail et al.Analysis of power transformer dissolved gas data using the Self-Organizing Map[J].IEEE Transactions on Power Delivery,2003.18(4):1241-1248.
    [130]董明,孟源源,徐长响,等.基于支持向量机及油中溶解气体分析的大型电力变压器故障诊断模型研究[J].中国电机工程学报,2003,23(7):88-92.
    [131]吕干云,程浩忠,查立新,等.基于多级支持向量机分类器的电力变压器故障识别[J].电力系统及其自动化学报,2005,17(1):19-22,52.
    [132]吴晓辉,刘炯,梁永春,等.支持向量机在电力变压器故障诊断中的应用[J].西安交通大学学报,2007,41(6):722-726.
    [133]江伟,罗毅,涂光瑜.基于多类支持向量机的变压器故障诊断模型[J].水电能源科学,2007,25(1):52-55.
    [134]肖燕彩,陈秀海,朱衡君.遗传支持向量机在电力变压器故障诊断中的应用[J].上海交通大学学报,2007,41(11):1878-1881,1886.
    [135]李天云,王爱凤,程思勇,等.用LS-SVMs分析油浸式变压器故障[J].高电压技术,2008,34(2):346-349.
    [136]董立新,肖登明,李喆.基于油中溶解气体分析数据挖掘的变压器绝缘故障诊断[J].电力系统自动化,2004,28(15):85-89.
    [137]邓宏贵,罗安,曹建,等.关联度分析在变压器故障诊断中的应用[J].电力系统自动化,2005,29(18):73-75.
    [138]宋斌,于萍,罗运柏,等.基于灰关联熵的充油变压器故障诊断方法[J].电力系统自动化,2005,29(18):76-79.
    [139]郑海平,孙才新,李俭,等.诊断电力变压器故障的一种灰色关联度分析模式及方法[J].中国电机工程学报,2001,21(10):106-109.
    [140]吕干云,程浩忠,翟海保,等.基于改进灰色关联分析的变压器故障识别[J].中国电机工程学报,2004,24(101:121-126.
    [141]李俭,孙才新,陈伟根,等.基于灰色聚类分析的充油电力变压器绝缘故障诊断的研究[J].电工技术学报,2002,17(4):80-83.
    [142]熊浩,孙才新,廖瑞金,等.基于核可能性聚类算法和油中溶解气体分析的电力变压器故障诊断研究[J].中国电机工程学报,2005,25(20):162-166.
    [143]董明,屈彦明,周孟戈,等.基于组合决策树的油浸式电力变压器故障诊断[J].中国电机工程学报,2005,25(16):35-40.
    [144]熊浩,孙才新,李小虎.基于克隆选择分类算法的电力变压器故障诊断[J].电网技术,2006,30(4):65-68,73.
    [145]梁小冰,王耀龙,黄萍,等.基于DGA的变压器故障诊断多专家融合策略[J].电力系统自动化,2005,29(18):80-84.
    [146]莫娟,严璋,李华,等.基于多种智能方法的变压器故障综合诊断模型[J].电力系统自动化.2005,29(18):85-89.
    [147]曹永刚,周玲,丁晓群,等.基于模糊积分融合技术的变压器故障辨识[J].高电压技术,2006,32(3):54-56.
    [148]陈江波,付锡年.聂德鑫.等.UHV变压器故障监测与诊断的信息决策平台[J].高电压技术,2006,32(12):108-111.
    [149]S.D.J.McArthur.S.M.Strachan,G.Jahn.The design of a multi-agent transformer condition monitoring system[J].IEEE Transactions on Power System,2004,19(4):1845-1851.
    [150]K.Spurgeon,W.H.Tang,Q.H.Wu et al.Dissolved gas analysis using evidential reasoning[J].IEE Proc.-Sci.Meas.Technol.,2005,152(3):110-117.
    [151]周进.基于整数规划的供电系统检修计划优化方法[D].华北电力大学.硕士论文.北京.2004
    [152]张妍.基于遗传—退火算法的供电系统检修计划的研究[D].华北电力大学.硕士论文.北京.2005
    [153]丁晓宇.供电系统检修计划优化[D].浙江大学.硕士论文.杭州.2005
    [154]蒋献伟.基于可靠性的供电设备检修计划优化的研究[D].浙江大学.硕士论文.杭州.2005
    [155]M.K.C.Marwali,S.M.Shahidehpour.Short-Term transmission line maintenance scheduling in a deregulated system[J].IEEE Transactions on Power System,2000,5(3):1117-1124.
    [156]林海华,李卫东.输电线路检修计划的优化算法综述[J].继电器,2005,33(14):87-91.
    [157]M.Y.E.Sharkh,A.A.E.Keib.Maintenance scheduling of generation and transmission systems using fuzzy evolutionary programming[J],IEEE Transactions on Power Systems,2003,18(2):862-866.
    [158]M.K.C.Marwali,S.M.Shahidehpour.Integrated generation and transmission maintenance scheduling with network constraints[J].IEEE Transactions on Power System,1998,13(3):1063-1068.
    [159]M.K.C.Marwali,S.M.Shahidehpour.Long-term Transmission and generation maintenance scheduling with network fuel and emission constraints[J].IEEE Transactions on Power System,1999,14(3):1160-1165.
    [160]丁明,冯永青.发输电设备联合检修安排模型及算法研究[J].中国电机工程学报,2004,24(5):18-23.
    [161]冯永青,吴文传,张伯明等.基于可信性理论的输电网短期线路检修计划[J].中国电机工程学报,2007,27(4):65-71.
    [162]L.Wenyuan,K.Jerry.A reliability-based approach to transmission maintenance planning and its application in BC hydro system[J].IEEE Transactions on Power System,2004,19(1):303-308.
    [163]任震,黄金凤,黄雯莹.安排交直流并联输电线路计划检修的新方法[J].中国电机工程学报,2007,27(4):65-71.电力自动化设备,2004,21(1):19-22.
    [164]魏少岩.徐飞,闵勇.输电线路检修计划模型[J].电力系统自动化,2006,30(17):41-49.
    [165]J.McCailey,T.Van Voorhis,Y.Jiang.Risk-based maintenance allocationand scheduling for bulk transmission system equipment[Z].Power Systems Engineering Research Center.Cornell University.Ithaca,New York:2003.
    [166]J.McCalley.Automated integration of condition monitoring with an optimized maintenance scheduler for circuit breakers and power transformers[Z].Power Systems Engineering Research Center.Cornell University.Ithaca.New York:2006.
    [167]舒隽,张粒子,黄弦超.市场环境下中长期发输电协调检修计划优化[J].电力系统自动化,2007,31(2):27-31.
    [168]R.Billinton,R.Mo.Composite system maintenance coordination in a deregulated environment[J].IEEE Transactions on Power System,2004,19(1):485-492.
    [169]郭基伟,谢敬东,唐国庆.基于异常值分析的变压器在线监测方法[J].电力系统及其自动化学报,2003,15(6):64-66.
    [170]I.J.Kemp.Partial discharge plant-monitoring technology:present and future developments[J].IEE Proceedings-Science,Measurement and Technology,1995,142(1):4-10.
    [171]G.L.Alegi,W Z.Black.Real-time thermal model for an oil-immersed,forced-air cooled transformer[J].IEEE Transaction on Power Delivery,1990,5(2):991-999.
    [172]Q.He,J.Si,D.J.Tylavsky.Prediction of top-oil temperature for transformers using neural network[J].IEEE Transaction on Power Delivery,2001,15(4):1205-1211.
    [173]王红宇,苏鹏声,王祥珩,等.油浸型大型电力变压器表面温度预测模型[J].清华大学学报:自然科学版,2005,45(4):569-573.
    [174]U.Levin,K.S.Narenda.Control of nonlinear dynamical systems using networks—Part Ⅱ:observation,Identification,and control[J].IEEE Transaction.on Neural Networks.1996,7(1):33-42.
    [175]M.O.Efe,O.Kaynak.A comparative study of neural network structures in identification of nonlinear systems.Mechatronics[J].1999,9(4):287-300.
    [176]M.Turkay,K.K Safak.Experimental identification of universal motor dynamics using neural networks[J].Mechatronics.2000,10(12):881-896.
    [177]F.Rivas.Fault detection scheme using neural networks with fuzzy,reprocessing[C].Proceedings of the 14th IFAC.Beijing.1999,379-382.
    [178]A.Mohamed,M.D.A.Mazumder.A neural network approach to fault diagnosis in a distribution system[J].International Journal of Power and Energy System.1999,19(2):129-134
    [179]M.E.Wadie.Identifying the artificial neural network topology for power system prediction applications:A Novel Approach[J].International Journal of Power and Energy System.1999,19(2):151-155.
    [180]J.M.F.Calado.A fault detection and diagnosis methodology for chemical process[C].Proceedings of the 14th IFAC.Beijing.1999,539-544.
    [181]K.K.Narenda,K.Parthasarathy.Identification and control of dynamical systems using neural networks[J].IEEE Transaction on Neural Networks,1990,1(1):4-27.
    [182]C.F.Juang.A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms[J].IEEE Transaction on Fuzzy System,2002,10(2):155-170.
    [183]C.S.Tseng,B.S.Chen,H.J.Uang.Fuzzy tracking control design for nonlinear dynamical systems via T-S fuzzy model[J].IEEE Transaction on Fuzzy System,2001,9(3):381-392.
    [184]J.Park,I.W.Sandberg.Universal approximation using radial basis function networks[J].Neural Computation,1990,3(2):246-257.
    [185]S.Tan,J.Hao.J.Vandewalle.Efficient identification of RBF neural net models for nonlinear discrete-time multivariable dynamical systems[J].Neurocomputing,1995.9(1):11-26.
    [186]吴宏晓,侯志俭,刘涌,等.基于免疫聚类径向基函数网络模型的短期负荷预测[J].中国电机工程学报.2005,25(16):53-56.
    [187]M.Clerc.The swarm and the queen:towards a deterministic and adaptive particle swarm optimization[C].Proceedings of the Congress on Evolutionary Computation,1999:1957-1959.
    [188]R.C.Eberhart,Y.Shi.Comparing inertia weights and constriction factors in particle swarm optimization[C].Proceedings of the Congress on Evolutionary Computing,2000,84-88.
    [189]谢晓峰,张文俊,张国瑞,等.差异演化的实验研究[J].控制与决策,2004,19(1):49-52.
    [190]G.A Shafer,Mathematical Theory of Evidence[M].Princeton:Princeton University Press,1976.
    [191]A.Telmoudi,S.Chakhar.Data fusion application from evidential databases as a support for decision making[J].Information and Software Technology,2004,46(8):547-555.
    [192]G.Biswas,M.Oliff,A.Sen.An expert decision support system for production control[J].Decision Support Systems,1988,4:235-248.
    [193]M.Beynon,D.Cosker,D.Marshall,An expert system for multi-criteria decision making using Dempster Shafer theory[J].Expert Systems with Applications.2001,20:357-367.
    [194]朱卫东,任明仑.基于学习与证据理论的专家群体预测系统研究[J].预测,2003,1:61-63,64.
    [195]T.Denoeux Reasoning with imprecise belief structures[J].International Journal of Approximate Reasoning,1999,20:79-111.
    [196]T.Denoeux Modelling vague belief using fuzzy-valued belief structures[J].Fuzzy Sets and Systems,2000.116:167-199.
    [197]T.Denoeux,L.M.Zouhal.Handling possibilistic labels in pattern classification using evidential reasoning[J].Fuzzy Sets and Systems.2001,122(3):409-424.
    [198]E.Binaghi,Gallo L,P.Madella.A neural model for fuzzy Dempster-Shafer classifiers[J].International Journal of Approximate Reasoning,2000,25(2):89-121.
    [199]E.Binaghi P.Madella.Fuzzy,Dempster-Shafer reasoning for rule-based classifiers[J].International Journal of Intelligent Systems,1999,14:559-583.
    [200]E.Lefevre,O.Colot,P,Vannoorenberghe.Belief function combination and conflict management[J].Information Fusion,2002,3(2):149-162.
    [201]R.R.Yager.On the Dempster-Shafer framework and new combination rules[J].Information Science,1989,41(2):93-137.
    [202]李弼程,王波.一种有效的证据理论合成公式[J].数据采集与处理,2002,17(1):33-36.
    [203]郭华伟,旋文康,刘清坤,等.一种新的证据组合规则[J].上海交通大学学报,2006,40(11):1895-1900.
    [204]D.Dubois,H.Prade.Default reasoning and possibility theory[J].Artificial Intelligence,1988,35(2):243-257.
    [205]佘二永,王润生,徐学文.基于预处理模式的D-S证据理论改进方法[J].模式识别与人工智能,2007,20(5):711-715.
    [206]蒲书缙,杨雷,杨莘元,等.一种改进的证据合成规则[J].计算机工程,2006,32(23):7-9.
    [207]何兵,胡文丽.一种分级的DS证据合成策略[J].计算机工程与应用,2004,10:88-90.
    [208]何兵,胡文丽.一种修正的DS证据合成策略[J].航空学报,2003,24(6):559-562.
    [209]K.Murphy.Combing belief functions when evidence conflicts[J].Decision Support System,2000,29:1-9.
    [210]M.Anthony.Probabilistic analysis of learning in artificial neural networks:The PAC Model and its Variants[M].1994,London,UK.
    [211]V.N.Vapnik.Estimation of dependencies based on empirical data[M].1982,NY:Springer-Verlag.
    [212]C.W.Hsu,C,J,Lin.A comparison of methods for multi—class support vector machines[J].IEEE Transactions on Neural Networks,2002,13(2):415-425.
    [213]黄勇.郑春颖,宋忠虎.多类支持向量机算法综述[J].计算技术与自动化,2005,24(4):61-63.
    [214]G.Paul,C.R.Adhami.Multi-class support vector machine classifier applied to hyper spectral data[C].Proceedings of the Thirty-Fourth Southeastern Symposium on System Theory Huntsville,Alabama,2002.
    [215]X.Tian,F.Q.Deng.An improved multi-class SVM algorithm and its application to the credit scoring model[C].Proceedings of the fifth World Congress on Intelligent Control and Automation.Hangzhou,China,2004.
    [216]Y.Lee,Y.Lin,G.Wahba.Multicategory support vector machines:theory and application to the classification of microarray data and satellite radiance data[J].Journal of the American Statistical Association,2004 99(3):67-81.
    [217]A.Zien,C.S.Ong.Multiclass multiple kernel learning[C].Proceedings of the 24 th International Conference on Machine Learning,Corvallis,OR,2007:1191-1198.
    [218]A.Zien,C.S.Ong.Multiclass multiple kernel learning[C].Proceedings of the 24 th International Conference on Machine Learning,Corvallis,OR,2007:1191-1198.
    [219]A.Rakotomamonjy,F.Bach,S.Canu,et al.More efficiency in multiple kernel learning[C].Proceedings of the 24 th International Conference on Machine Learning.Corvallis,OR,2007:775-782.
    [220]F.Bach,G.Lanckriet,M.Jordan.Multiple kernel learning,conic duality,and the smo algorithm.Proceedings of the 21st International Conference on Machine Learning,2004:41-48.
    [221]S.Sonnenburg,G.R(a|¨)tsch,C.Sch(a|¨)fer,et al.Large scale multiple kernel learning[J].The Journal of Machine Learning Research,2006,7:1531-1565.
    [222]G.Lanckriet,T.D.Bie,N.Cristianin,et al.A statistical framework for genomic data fusion[J].Bioinformatics,2004,20:2626-2635.
    [223]D.Y.Yeung,H.Chang,G.Dai.Learning the kernel matrix by maximizing a KFD-based class separability criterion[J].Pattern Recognition,2007,40:2021-2028.
    [224]O.Chapelle,V.Vapnik,O.Bousquet,and S.Mukherjee.Choosing multiple parameters for support vector machines[J].Machine Learning,2002,46:131-159.
    [225]R.M.Bucci,R.V.Rebbapragada,A.J.McElroy,et al.Failure prediction of underground distribution feeder cables[J].IEEE Transactions On Power delivery,1994,9(10):1943-1955.
    [226]D.T.Radmer,P.A.Kuntz,R.D.Christie,et al.Predicting vegetation-related failure rates for overhead distribution feeders[J].IEEE Transactions On Power delivery,2002,17(10):1170-1175.
    [227]S.Gupta,A.Pahwa,R.E.Brown,et al.A fuzzy model for overhead distribution feeders failure rates[C].Proceedings of the 34th Annu.North Amer.Power Symp.,2002,60-63.
    [228]R.E.Brown,G.Frimpong,H.L.Willis.Failure rate modeling using equipment inspection data[J].IEEE Transactions on Power System,2004,19(2):872-887.
    [229]L.Bertling,R.Allan,R.Erikssono A reliability-centered asset maintenance method for assessing the impact of maintenance in power distribution system[J].IEEE Transactions on Power System,2005,20(1):75-82.
    [230]李涛.计算机免疫学[M].北京:电子工业出版社,2004.
    [231]L.N.De Castro,F.J.Von Zuben.Learning and optimization using clonal selection algorithm[J].IEEE Transactions on Evolutionary Computation,2002,6(3):239-251.
    [232]曹先彬,刘克胜,王熙法.基于免疫遗传算法的装箱问题求解[J].小型微型计算机系统,2000,21(4):361-363.
    [233]李海峰,王海风,陈珩.免疫系统建模及其在电力系统电压调节中的应用[J].电力系统自动化,2001,25(23):17-23.
    [234]尤勇,盛万兴,王孙安.基于人工免疫网络的短期负荷预测模型[J].中国电机工程学报,2003,23(3):26-29.
    [235]黄弦超,舒隽,张粒子,等.免疫禁忌混合智能优化算法在配电网检修优化中的应用[J].中国电机工程学报,2004,24(11):97-100.
    [236]作兴全.李士勇.一类自适应免疫进化[J].控制与决策,2004,19(3):252-256.
    [237]张四海,曹先彬,王煦法.基于免疫识别的免疫算法[J].电子学报,2002,30(12):1840-1844.
    [238]王磊,潘进,焦李成.免疫算法[J].电子学报,2000,28(7):74-78.
    [239]王凌.智能优化算法及其应用[M].北京:清华大学出版社,2001.
    [240]史慧杰,葛斐,丁明,等.输电网络运行风险的在线评估[J].电网技术,2005,29(6):43-48.
    [241]Reliability test system task force of the application of probability methods subcommittee.The IEEE reliability test system-1996[J].IEEE Transactions on Power System,1999,14(3):1010-1020.
    [242]冯永青.基于广义奔德斯分解法的电力市场发输电检修计划[D].合肥工业大学.硕士论文,合肥,2002.
    [243]Thomas Erl(著),王满红,陈荣华(译).SOA概念、技术与设计[M].北京:机械工业出版社.2007.
    [244]Draft IEC 61970:Energy Management System Application Program Interface (EMS-API)-Part 301 Ed.1:Common information model(CIM) base Revision 10[S].IEC Draft 2006.
    [245]Draft IEC 61968:System interface for distribution management-Part 1:Interface architecture and general requirements[S].IEC Draft 2005.
    [246]张明宝,夏安邦.模型驱动方法在MARP中的应用[J].计算机集成制造系统-CIMS,2004,10(2):133-138.
    [247]顾峥峰,蔡勇.基于MDA的Web服务开发与集成[J].计算机应用,2003,23(5):142-144.
    [248]徐罡,黄涛,刘绍华,等.分布式应用集成核心技术研究综述[J].计算机学报,2005,28(4):433-444.
    [249]曲朝阳,沈晶,李佳,等.具有面向服务架构的电力企业资产管理系统模型设计[J].电网技术,2007,31(11):69-73,87.
    [250]饶元.面向服务体系结构的企业资源计划系统应用模型与集成策略[J].计算机集成制造系统-CIMS,2006,12(10):1570-1576.
    [251]Draft IEC 61970:Energy Management System Application Program Interface EMS-API- Part 402 Ed.1:Component interface specification(CIS)-Common services Revision 9[S].IEC Draft 2006.
    [252]Draft IEC 61970:Energy Management System Application Program Interface EMS-API-Part 403 Ed.1:Component Interface Specification(CIS)-Generic data access Revision 9[S].IEC Draft 2006.
    [253]Draft IEC 61970:Energy Management System Application Program Interface EMS-API-Part 404:Component Interface Specification(CIS)-High speed data access.Revision 6[S].IEC Draft 2006.
    [254]Draft IEC 61970:Energy Management System Application Program Interface EMS-API-Part 405:Component Interface Specification(CIS)-Generic eventing and subscription Revision 2[S].IEC Draft 2006.
    [255]Draft IEC 61970:Energy Management System Application Program Interface EMS-API-Part 407:Component Interface Specification(CIS)-Time series data access Revision 2[S].IEC Draft 2006.
    [256]黄海潮.基于UML的电力企业业务建模[D].浙江大学.硕士论文.杭州,2004.
    [257]王夕宁,刘岩,罗燕京,等.一种Web服务模型的动态行为转换方法研究实现[J].计算机工程与应用,2006,28(4):37-41.
    [258]S.R.K.Yeddanapudi,Y.Li,J.D.McCalley,et al.Risk-based allocation of distribution system maintenance resource[J].IEEE Transactions on Power System,2008,23(2):287-295.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700