油纸绝缘介质的直流空间电荷特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着我国经济的快速发展,电力消耗增长率连续3年超过14%,输电线路总长度和输送容量均居世界前列。与此同时,我国超高压直流输电工程的设计建设、运行管理水平也得到很大提升。到2020年,中国将建成15个特高压直流输电工程,并成为世界上拥有直流输电工程数量最多、输送线路最长、容量最大的国家。高压直流输电网络的飞速发展不断在提升着对直流电力设备运行安全的要求。油纸混合绝缘介质作为许多关键直流输电设备的主要绝缘材料,其空间电荷特性既影响材料的介电强度,诱发局部放电通道的形成,是制约电介质材料绝缘介电强度的主要因素,又关系着直流输电设备运行稳定性和可靠性。因此,油纸绝缘介质空间电荷特性的研究对提高绝缘材料的物理化学性能及其电气性能,提高直流输电设备运行可靠性,保证整个直流输电网络安全运行都有着十分重要的意义。
     为此,本文在分析借鉴国内外对聚合物材料空间电荷特性研究的基础上,充分考虑油纸绝缘材料的实际运行条件,基于电声脉冲法测量空间电荷的原理,较为系统地研究了油纸混合绝缘材料的直流空间电荷特性。深入分析了不同外加直流电压、不同测试温度、不同绝缘纸层数、不同热老化程度等条件下,油纸介质的空间电荷注入、迁移、汇聚规律;对比分析了不同情况下油纸介质内部注入空间电荷量、电荷迁移运动速率以及空间电荷分布位置等参量的变化规律及影响机制;基于等温衰减电流原理,根据电声脉冲法测得的空间电荷密度衰减特性,计算了油纸介质内部陷阱能级分布;基于从头算分子动力学算法,根据水、酸对绝缘纸纤维素影响机制的模拟结果建立六种纤维素缺陷模型,并根据量子化学的密度泛函理论,采用分子模拟软件(Material Studio)模拟计算了带有化学结构缺陷的纤维素空间电荷陷阱深度。本论文取得的主要研究成果有:
     ①首次得到了在不同外加直流电场、不同测试温度、不同绝缘纸层数、不同热老化程度等多种条件下,油纸介质的空间电荷注入、迁移、汇聚规律,以及上述条件对油纸介质内部空间电荷特性的影响机制。
     在多种不同情况下,油纸介质内部均会发生明显的同极性电荷注入现象;多层油纸介质的层间交界面处易汇聚正电荷,其具体汇聚的部位受温度、热老化程度的影响;油纸介质内部注入空间电荷量、电荷运动速率以及空间电荷分布位置受到外加直流电场、测试温度、油纸老化程度等因素的影响,外加直流电压主要影响注入及汇聚的空间电荷量,而测试温度则影响电荷迁移运动速率及空间电荷分布位置,热老化能够明显加速正电荷的初始注入量、注入深度、局部汇聚量;油纸介质的空间电荷消散过程呈现明显的指数衰减规律。
     ②油纸绝缘介质在不同老化程度下的微区形貌特性研究表明,油纸绝缘纤维表面的粗糙度在热老化后有明显的增大趋势,固体绝缘表面的带电程度增大,纸板聚集电荷的能力提高。
     ③首次得到了油纸混合绝缘介质在加压(去压)过程中总电荷量随时间变化的指数增加(衰减)公式, y =±A - e ( -t/τ)+ B,为实现对油纸介质内部空间电荷特性的预测和模拟奠定了基础。
     ④通过对直流条件下油浸绝缘纸空间电荷的特征量提取和相关机理分析,得到了在不同外界条件下的总电荷量、电荷视在迁移率、陷阱能级分布等重要特征参数的变化规律。研究结果表明,通过电声脉冲法测得油纸介质内部电荷衰减曲线,并获得其衰减时间常数,便可求得其内部陷阱能级分布。
     ⑤采用分子模拟技术,基于从头算分子动力学算法,首次在水、酸对绝缘纸纤维素影响机制模拟结果的基础上,建立了六种缺陷纤维素模型。根据量子化学的密度泛函理论模拟计算了这些带有化学结构缺陷的纤维素空间电荷陷阱深度。提出绝缘纸的改性建议:加强对纤维素葡萄糖单体上2号位、6号位氢键的保护,或者用结合力更强的基团取代这两个位置的氢键,使得绝缘纸老化过程中浅陷阱不易产生,增大深陷阱的数量,从而提高纤维素绝缘纸的电绝缘性能。
Along with the fast development of our domestic economy, the growth rate in electric power consumption is more than 14% in these three years. China will build 15 UHVDC transmission projects and become the country who holds the most UHVDC transmission projects, longest transmission lines, and largest transmitting capacities until 2020. The fast expanding in HVDC networks require higher secured and sTable DC power equipments. As the main insulation material of some key DC power equipments, oil-paper is very important for the operation security. The space charge behaviors of oil-paper will affect its dielectric strength, cause the formation of discharge channels and damage its insulating properties. Therefore, the research on the space charge behaviors of oil-paper is vital important for the operation security of power grid and the improvement on the physical chemical properties and electric performances of insulation materials.
     So, in this paper, based on the researches of space charge in polymeric materials, a systematic study on DC space charge behaviors of oil-paper insulation using the pulsed electroacoustic (PEA) method are performed by considering the practical operation conditions. The charge injection, movement and aggregation under different conditions such as different DC voltages, test temperatures, paper layers and aging degrees were analyzed. The regular patterns and mechanisms of charge injection amount, space charge mobility and charge distribution were compared. The distribution of trapping level inside oil-paper was calculated by using the PEA test results based on the mechanism of the Isothermal Decay Current. Moreover, using the AB initio molecular dynamics, the influence of water and acids molecules to the degradation of cellulose were simulated. And then, six cellulose defect models were built using Material Studio for the first time, and the trapping level information were acquired bused on the density functional theory of quantum chemistry. The main achievements are as follows,①For the first time, the regular patterns and mechanisms of charge injection, movement and aggregation under different conditions such as different DC voltages, test temperatures, paper layers and aging degrees were realized.
     Homo-charge injection happened in all the test conditions. The positive charges gathered in the interfaces of different layers, but the position for charge gathering was influenced by test temperatures and aging degrees. The test voltage affects the amount of charge injection and gathering, the test temperature affects the charge velocity, and thermal aging accelerates charge injection and gathering. The decay of space charge inside oil-paper presents a exponential rule.
     ②The microstructures topography studies indicates that the surface roughness of insulation paper after thermal aging increased clearly, charged particles in the surface of paper increased, and the ability of charge collection of paper enhanced.
     ③The exponential increase (decrease) equations of total space charge amount changes with time are acquired for the first time, y =±A ? e ( ?t/τ)+ B, which laid a foundation for the prediction and simulation of space charge in the oil-paper insulation.
     ④After the characteristic extraction mechanism analysis, the variation laws of some significant parameters such as total charge amount, charge apparent mobility, trap level were obtained. The research results indicates that, once getting the charge decay curve by PEA and the decay time constant, the trap level distribution in the oil-paper can be acquired.
     ⑤By using the molecular simulation method, six cellulose models with defects based on the simulation results of cellulose degradation which taking the influence of water and acids into consideration, were constructed for the first time. The trapping level information were acquired according to the density functional theory of quantum chemistry. This paper suggests that it is a good method to strengthen the protection on hydrogen bonds in the second and sixth positions of glucose monomer, in order to increase the number of deep traps and enhance the electrical insulation properties of cellulose insulation paper.
引文
[1]国家自然科学基金委员会工程与材料科学部.电器科学与工程学科发展战略研究报告[M].科学出版社, 2006:94-105.
    [2]孟伟.特高压直流输电交流滤波器优化设计[D].华北电力大学, 2007.
    [3]袁清云.我国特高压直流输电发展规划与研究成果[J].电力设备, 2007, 8(3):1-4.
    [4]舒印彪,刘泽洪,高理迎.±800kV 6400MW特高压直流输电工程设计[J].电网技术, 2006, 30(1):1-8.
    [5]彭毅晖.高压直流输电的发展与展望[J].湖南电力, 2007, 27(1):52-54.
    [6]李立浧.特高压直流输电的技术特点与工程应用[J].电力设备, 2006, 7(3):1-4.
    [7]周浩,钟一俊.特高压交、直流输电的适用场合及其技术比较[J].电力自动化设备, 2007, 27(5):6-12.
    [8]刘泽洪,高理迎,余军.士800kV特高压直流输电技术研究[J].电力建设, 2007, 28(10):17-23.
    [9] M. Ieda. Carrier Injeetion, Space Charge and Electrical Breakdown in Insulating Polymers[J]. IEEE Transactions on Electrical Insulation, 1987, 22:261-267.
    [10] A. Minoda, M. Nagao, M. Kosaki. DC Short circuit Treeing Phenomenon and Space Charge Effect in EPR at Cryogenic Temperature. Proceedings of the sth international conference on Properties and applications of dielectric materials. Seoul, Korea, 1997, 426-429.
    [11] C. Gjaerde A. A phenomenological aging model for combined thermal and electrical stress[J]. IEEE Trans. on EI, 1997, 4(6):674-680.
    [12] G. Bahder, T. Garrity. Physical model of electrical aging and breakdown of extruded polymeric insulated power cables[J]. IEEE Trans. on PAS, 1982, 101:1379-1390.
    [13] L. Simoni. A general approach to endurance of electrical insulation under temperature and voltage[J]. IEEE Trans. on EI, 1981, 16(4):277-289.
    [14] N. Shimizu, M. Kosaki, K. Horii. Space charge effect on local electric breakdown of polyethylence at 77K[J]. J Appl. Phys., 1977, 48(6):2191-2195.
    [15] T. Okamoto, M. Ishida, N. Hozμmi. Eielectric breakdown strength affected by the lamellar configuration in XLPE insulation at a semiconducting interface[J]. IEEE Trans. on EI, 1989, 24(4):599-607.
    [16] Y. Tajitsu, R. Hosoya, T. Maruyama. Huge optical rotatory power of uniaxially oriented film of poly-L-Lactic Acid[J]. J Materials Sci Lett., 1999, 18(21):1785-1789.
    [17] Fukμma Masμmi, Maeno T., Fukunaga K. High repetition rate PEA system for insitu spacecharge measurement during breakdown tests[J]. IEEE Trans. on DEI, 2004, 11(1):155-159.
    [18] A. Dakka M., A. Bulinski, S. Bamji. space charge development and breakdown in crosslinked polyrthylence under DC fields[C], conference record of the 2000 IEEE international symposiμm on Electrical insulation, USA, 2000:489-492.
    [19]周远翔,王宁华,王云杉等.固体电介质空间电荷研究进展[J].电工技术学报, 2008, 23(09):16-25.
    [20]尹毅,肖登明,屠德民.空间电荷在评估绝缘聚合物电老化程度中的应用研究[J].中国电机工程学报, 2002, 22(01):44-49.
    [21] M. Ieda, Y. Suzuoki. Space charge and solid insulating materials in Pursuit on space charge control by molecular design[C]. Proceedings of 5th ICPADM, Korea, 1997:16-23.
    [22]李吉晓,张冶文,夏钟福等.空间电荷在聚合物老化和击穿过程中的作用[J].科学通报, 2000, 45(23):2469-2475.
    [23] T. Takada. Acoustic and optical methods for measureing electric charge distributions in dielectrics[C]. CEIDP, Austin: Omnipress, 1999:1-14.
    [24] Matsuoka Shingo, Sunaga Hiromi, Tanaka Ryuichi. Accμmulated Charge Profile in Polyethylene during Fast Electron Irradiations. Nuclear Science[J], IEEE Transactions on DEI, 1976, 23(5):1447-1452.
    [25] Tanaka Toshikatsu, Greenwood Allan. Effects of Charge Injection and Extraction on Tree Initiation in Polyethylene. Power Apparatus and Systems[J], IEEE Transactions on DEI, 1978, PAS-97 (5):1749-1759.
    [26] M. Maeda, A. Tanaka, S. Takahashi, et al. Observation of charge behavior in organic photoconductor using pressure wave propagation method[C]. Proceedings of the 3rd International Conference on Properties and Applications of Dielectric Materials, 1991, Tokyo, 1991:1036-1039.
    [27] T. Tanzawa, Y. Tanaka, T. Tanaka. A Quick Boosting Charge Pμmp Circuit for High Density and Low Voltage Flash Memories[C]. VLSI Circuits, 1994. Digest of Technical Papers., 1994 Symposiμm on , 1994:65-66.
    [28] Li Y., Murata K., Tanaka Y., et al. Space charge distribution measurement in lossy dielectric materials by pulsed electroacoustic method[C]. Proceedings of the 4th International Conference on Properties and Applications of Dielectric Materials, 1994, Brisbane, Qld, 1994:725-728.
    [29] Tanaka Ryuichi, Sunaga Hiromi, Tamura Naoyuki. The Effect of Accμmulated Charge on Depth Dose Profile in Poly(Methylmethacrylate) Irradiated with Fast Electron Beam[J]. Nuclear Science, 1979, 26(4):4670-4675.
    [30] N. Hozumi, J. Tanaka, A. S. de Reggi, et al. Space charge induced in stressed polyethylene[C]. IEEE Conference on Electrical Insulation and Dielectric Phenomena, 1989, Annual Report, Leesburg, VA , 1989:253-258.
    [31] Y. Tanaka, T. Takada, C. Shinoda, et al. Temperature dependence of space charge distribution in XLPE cable[C]. IEEE Conference on Electrical Insulation and Dielectric Phenomena, 1994, Annual Report, Arlington, TX , 1994:334-339.
    [32] W. Xinsheng, N. Yoshimura, K. Murata, et al. The influence of morphology and structure on space charge distribution in polyolefin materials[C]. International Symposiμm on Electrical Insulating Materials, 1995, Tokyo, 1995:227-230.
    [33] G. Mazzanti, G. C. Montanari. Quantities extracted from space-charge measurements as markers for insulation aging[J]. IEEE Transactions on DEI, 2003, 10(2):198-203.
    [34] G. C. Montanari. Dielectric Material Properties Investigated Through Space Charge Measurement[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(1):56-64.
    [35] L. A. Dissado, G. Mazzanti, G. C. Montanari. A New Thermo-Electrical Life Model Based on Space-Charge Trapping[C]. conference Record of the 1996 IEEE International Symposiμm on Electrical Insulation, Montreal, Quebec, Canada, 1996:642-645.
    [36] L. A. Dissado. The Incorporation of Space Charge Degradation in the Life Model for Electrical Insulating Materials[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1995, 2(6):1147-1158.
    [37] L. A. Dissado, G. Mazzanti, G. C. Montanari. The Role of Trapped Space Charges in the Electrical Aging of Insulating Materials[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1997, 4(5):496-506.
    [38] A. See, L. A. Dissado, J. C. Fothergill. Electric field requirements for charge packet generation and movement in XLPE[C]. 2001 IEEE 7th International Conference on Solid Dielectrics, Eindhoven, the Netherlands, 2001:232-235.
    [39] G. Chen, M. A. Brown, A. E. Davies. Investigation of space charge formation at polymer interface using laser induced pressure pulse technique[C]. 9th International Symposiμm on Electrets(ISE 9), Shanghai, 1996:285-290.
    [40] G. Chen, M. A. Brown, A. E. Davies. Space charge formation in gamma-irradiated low-density polyethylene[C]. 9th International Symposiμm on Electrets(ISE 9), 1996: 195-200.
    [41] G. Chen, H. M. Banford, A. E. Davies. Influence of radiation environments on space charge formation inγ-irradiated LDPE[C]. Proceedings of 1998 International Symposiμm onElectrical Insulating Materials, 1998, Toyohashi, 113-116.
    [42] G. Chen, A. E. Davies, Xi B. Charge formation and decay inγ-irradiated low-density polyethylene[C]. Proceedings of the 6th International Conference on Properties and Applications of Dielectric Materials, xi'an, 2000:443-446.
    [43] M. Fu, G. Chen, A. E. Davies, et al. A modified PEA space charge measuring system for power cables[C]. Proceedings of the 6th International Conference on Properties and Applications of Dielectric Materials, xi'an, 2000:104-107.
    [44] Y Gao L., Y Guo W., M Tu D. Interfacial microstructure and withstand voltage of polyethylence for power cable[J]. IEEE Trans. on DEI, 2003, 10(2):233-239.
    [45] L Hanley T., P Burford R., J Fleming R. a general review of polymeric insulation for use in HVDC cables[J]. IEEE Electr. Insul. Mag., 2003, 19(1):13-24.
    [46] Sch Kwang S. Effects of constituents of XLPE on formation of space charge[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(6):1077-1081.
    [47] K Terashima, H Suzuki, M Hara. Research and development of±250 kV DC XLPE[J], IEEE Transactions on Power Delivery, 1998, 13(1):7-12.
    [48] K Terashima. Electric Field Criteria for Charge Packet Formation and Movement in XLPE[J]. IEEE Transactions on Power Delivery, 1999, 15(4):21-26.
    [49] Sch K. S. Charge Behavior in Polyethylene-Ionomer Blends[J], IEEE Transactions on Dielectrics and Electrical Insulation, 1996, 3(2):153-159.
    [50] Sch K. S., G Yoon H., R Lee C. Space charge behavior of acrylic monomer-grafted polyethylene[J], IEEE Transactions on Dielectrics and Electrical, 1999, 6(3):282-287.
    [51] Fukuyama Tatsuya. A Study on the Hetero Space Charges in XLPE Inslation, Proceedings of the IEEE International Conference on Properties and Applications of Dielectric Materials, 2000:51.
    [52] Sch Kwang S. Effects of Constituents of XLPE on the Formation of Space Charge[J], IEEE Transactions on Dielectrics and Electrical Insulation, 1995, 2(3):460-468.
    [53]邓桃.聚合物绝缘空间电荷测量系统的研究[D].西南交通大学, 2007.
    [54]张维国,王坤,刘岩等.纳米无机杂化聚酰亚胺薄膜的热激电流谱特性[J].哈尔滨理工大学学报, 2004, 13(01):40-42.
    [55]李忠华,尹毅,朱军等.聚合物绝缘电热联合老化的陷阱理论和实验验证[J].中国电机工程学报, 1999, 14(02):70-74.
    [56]刘付德,杨百屯,屠德民等.固体电介质的电老化与击穿新理论和实验[J].物理学报, 1992, 21(02):333-341.
    [57]杨百屯,屠德民,刘耀南.离子空间电荷形成的动力学过程[J].西安交通大学学报, 1991,22(01):89-96.
    [58]刘付德,杨百屯,屠德民等.高电场下固体电介质中陷阱捕获电子动力学[J].应用科学学报, 1991, 15(04):302-308.
    [59]刘荣生,屠德民,刘子玉.利用电声脉冲方法测量固体介质中空间电荷的原理[J].电工技术学报, 1990, 34(01):13-20.
    [60]王霞,何华琴,屠德民等.茂金属聚乙烯与低密度聚乙烯共混的结晶形态和空间电荷效应[J].电工技术学报, 2006,(04):35-40.
    [61]屠德民.从工程电介质进展看前沿课题[J].电工技术学报, 2005, 26(01):8-15.
    [62]吴超一,钟力生,王霞等.脉冲电声法空间电荷测量波形恢复的数据处理[J].中国电机工程学报, 2005, 18(16):137-140.
    [63]崔明硕,马军,屠德民.共混改善聚乙烯空间电荷分布的研究[J].绝缘材料, 2005, 17(06):39-43.
    [64]何华琴,王霞,吴超一等.加聚酰亚胺薄膜阻挡层的聚乙烯中空间电荷分布特性的研究[J].绝缘材料, 2005, 14(05):36-39.
    [65]刘晓东,郑晓泉,屠德民等.交联工艺对交联聚乙烯中空间电荷的影响[J].绝缘材料, 2005, 24(05):23-27.
    [66]方亮,付海金,吕亮等.等离子表面处理聚乙烯中空间电荷分布[J].中国电机工程学报, 2003, 21(08):152-155.
    [67]吕亮,方亮,王霞等.硅橡胶中空间电荷的形成机理[J].中国电机工程学报, 2003, 22(07):139-144.
    [68]尹毅,肖登明,屠德民.空间电荷在评估绝缘聚合物电老化程度中的应用研究[J].中国电机工程学报, 2002, 25(01):44-49.
    [69]王霞,屠德民,尹毅等.固体介质中空间电荷畸变电场分布的有限元分析.高电压技术[J], 2001, 28(05):51-53.
    [70]尹毅,韩社教,屠德民.固体绝缘中空间电荷测量装置的研制和应用[J].中国电机工程学报, 2000, 16(08):2-6.
    [71]尹毅,屠德民,李明等.用等温电流法研究自由基清除剂的作用机理——聚合物电老化陷阱理论的实验验证[J].中国电机工程学报, 2000, 14(03):14-16.
    [72]党智敏,亢婕,尹毅等.聚乙烯的吸水性能及其对空间电荷分布的影响[J].高电压技术, 2000, 13(05):9-10.
    [73]尹毅,屠德民,霍振宇等.氯化聚乙烯共混对聚乙烯的空间电荷效应的影响[J].电工技术学报, 2000, 24(04):52-57.
    [74]李明,尹毅,屠德民.以BaTiO_3作为填料改善聚乙烯的空间电荷效应[J].西安交通大学学报, 2000, 25(01):84-87.
    [75]王云杉,周远翔,王宁华等.聚乙烯表面形貌对其空间电荷特性的影响[J].绝缘材料, 2008, 41(04):42-45.
    [76]周远翔,孙清华,王宁华等.空间电荷对低密度聚乙烯电气击穿特性的影响[J].高电压技术, 2008, 34(03):26-31.
    [77]周远翔,王云杉,王宁华等.形态对聚乙烯中空间电荷包运动特性的影响[J].高电压技术, 2008, 34(11):34-39.
    [78]周远翔,王云杉,王宁华等.聚乙烯微观形态及表面形貌对其空间电荷包特性的影响[J].高电压技术, 2009, 35(01):19-24.
    [79]卢毅,周远翔,梁曦东等.直流复合绝缘子芯棒材料中空间电荷特性研究[J].绝缘材料, 2007, 40(02):44-47.
    [80]郑飞虎,张冶文,肖春.应力对诱发空间电荷击穿的作用[J].电工技术学报, 2006, 21(02):31-34.
    [81]郑飞虎,张冶文,肖春.聚合物电介质的击穿与空间电荷的关系[J].材料科学与工程学报, 2006, 24(02):316-320.
    [82]肖春,张冶文,宫斌等.聚乙烯中的微量水份对其空间电荷分布的影响[J].四川大学学报(自然科学版), 2005, (S1):368-372.
    [83]周凯,吴广宁,刘君等.基于电声脉冲法的空间电荷直接测量仪的研制[J].仪器仪表学报, 2008, 29(10):2110-2115.
    [84] Morshuis Peter, Jeroense Marc. Space charge in HVDC cable insulation[C]. IEEE Annual Report-Conference on Electrical Insulation and Dielectric, Phenomena, Minneapolis, 1997:28-32.
    [85] Morshuis Peter, Jeroense Marc. Space charge measurements on impregnated paper a review of the PEAmethod and a discussion of results[J]. IEEE Trans on Electrical Insulation, 1997, 13(3):26-35.
    [86] Liu Rongsheng, Jaksts Albert. Moisture and space charge in oil-impregnated pressboard under HVDC[C]. IEEE International Conference on Condution and Breakdown in Solid Dielectrics, Sweden, 1998:17-22.
    [87] Liu Rongsheng, Tornkvist Christer, Nsson Kenneth. Space charge distribution in composite oil cellulose insulation. IEEE International Conference on Dielectric Liquids, ICDL 2005:316-321.
    [88] Mazzanti G., Montanari G. C. Quantities extracted from space-charge measurements as markers for insulation aging[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2003, 10(2):198-203.
    [89] Ciobanu R. C., Pfeiffer W., Schreiner C. Charge packet evolution in paper-oil insulation andderived Technological Considerations[C]. Proceedings of the 7th Intemational Conference on Properties and Applications of Dielectric Materials, Nagoya, 2003:695-698.
    [90] Ciobanu R., Prisecaru I., Aradoaei S. PEA measurements upon cellulose materials submitted to gamma radiation[C]. International Conference on Solid Dielectrics, France, 2004.
    [91]王云杉,周远翔,李光范等.油纸绝缘介质的空间电荷积聚与消散特性[J].高电压技术, 2008, 25(05):873-877.
    [92] Maeno T. Calibration of the pulsed electroacoustic method for measuring space charge density Trans. IEE Japan 119-A,1114–19.
    [93] R. C. Ciobanu, W. Pfeiffer, C. Schreiner. Charge packet evolution in paper-oil insulation and derived technological considerations. Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials, 2003, Vol. 2, pp. 695-698.
    [94] G. Chen, Y. L. Chong, M. Fu. Calibration of the pulsed electroacoustic technique in the presence of trapped charge. Measurement Science and Technology, 2006, Vol. 17, No. 7, pp. 1974-1980.
    [95] G. Chen, Y. Tanaka, T. Takada and L. Zhong,“Effect of polyethylene interface on space charge formation”, IEEE Trans. Dielectr. Electr. Insul., Vol. 11, pp. 113-121, 2005.
    [96]王霞,成霞,陈少卿等.纳米ZnO/低密度聚乙烯复合材料的介电特性[J].中国电机工程学报, 2008, 28(19):26-30.
    [97]成霞,陈少卿,王霞等.纳米ZnO对聚乙烯电老化过程中空间电荷及击穿特性的影响[J].绝缘材料, 2008, 41(01):15-19.
    [98]陈少卿,成霞,王霞等.聚合物中空间电荷的研究[J].绝缘材料, 2007, 40(04):36-40.
    [99] M. Fu, G. Chen, L. A. Dissado and J. C. Fothergill. Influence of thermal treatment and residues on space charge accμmulation in XLPE for DC power cable application, IEEE Trans. Dielectr. Electr. Insul., Vol. 14, pp. 53-64, 2007.
    [100] G. Mazzanti, G. C. Montanari, J. M. Alison. A Space-charge Based Method for the Estimation of Apparent Mobility and Trap Depth as Markers for Insulation Degradation-theoretical Basis and Experimental Validation[J].IEEE Trans. on DEI, 2003, 10(2):187-197.
    [101]国标GB/T 1408-2006,绝缘材料电气强度试验方法第1部分:工频下试验[S].
    [102]国标GB/T 1548-2004,纸浆粘度的测定法[S].
    [103]国标GB7600-1987,运行中变压器油水分含量测定法(库仑法) [S].
    [104]国标GB462-2003,纸与纸板水分测定方法[S].
    [105] Rui-Jin Liao, Chao Tang, Li-Jun Yang, Stanislaw Grzybowski. Thermal aging micro-scale analysis of power transformer pressboard [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(5): 1281-1287.
    [106] Yoshiharu Nishiyama, Paul Langan, Henri Chanzy. Crystal Structure and Hydrogen-Bonding System in Cellulose 1βfrom Synchrotron X-ray and Neutron Fiber Diffraction [J]. American Chemical Society, 2002, 124(31): 9074-9082.
    [107]徐铭,徐旭.影响变压器油流带电度的因素及处理[J].甘肃科技, 2007, 23(5):119-120.
    [108]赵阳德.大型变压器的油流带电分析及预防[J].山东电力技术, 1997, 2(24):44-47.
    [109]王菊芬,孟浩龙.变压器油流带电现象[J].高电压技术, 2008, 34(5):878-882.
    [110] J. K. Saha, M. Darreniza, D. J. T. Hill. Investigating the effects of oxidation and thermal degradation on electrical and chemical properties of power transformers insulation[J]. IEEE Transactions on Power Delivery, 1999, 14(4):1359-1367.
    [111]杨丽君,廖瑞金,孙会刚,等.油纸绝缘热老化特性及生成物的对比分析[J],中国电机工程学报, 2008, 28(22):53-58.
    [112]廖瑞金,冯运,杨丽君,等.油纸绝缘老化特征产物生成速率研究[J],中国电机工程学报, 2008, 28(10):142-147.
    [113]刘玉仙.油纸绝缘变压器中水分的聚积及其对热老化寿命的影响[J].变压器, 2004, 41(2):8-13.
    [114]路宝民,原丽.牵引变压器绝缘老化特性研究[J].变压器, 1997, 34(6):19-23.
    [115] I. Fofana, V. Wasserberg, H. Borsi, E. Gockenbach. Challenge of mixed insulating liquids for use in high-voltage transformer[J]. IEEE Electrical Insulation Magazine, 2002, 18(4): 5-16.
    [116] Anurag Joshi, Sunil Kμmar. Variation of dielectric strength of an insulation paper with thermal aging[J]. NDT & E international, 2005, 38(6):459-461.
    [117] T. K. Saha, M. Darveniza, D. J. T. Hill, G. Yeung. Investigating the effects of oxidation and thermal degradation on electrical and chemical properties of power transformers insulation[J]. IEEE Transactions on Power Delivery, 1999, 14(6):1359-1367.
    [118] IEEE Guide for the Statistical Analysis of Electrical Insulation Breakdown Data. IEC 62539, 2007.
    [119]刘玉仙.变压器油纸绝缘的含湿分析及其对运行安全的影响[J].变压器, 2002, 39(5): 1-5.
    [120] Tapan K. Saha, Prithwiraj Purkait, Frank Müller. Deriving an Equivalent Circuit of Transformers Insulation for Understanding the Dielectric Response Measurements[J], IEEE Transactions on Power Delivery, 2005, 20(1):118-125.
    [121] M. S. Khalil. International Research and Development Trends and Problems of HVDC Cables with Polymeric Insulation[J]. IEEE EI Magazine,1997, 13(6):35-47.
    [122] Zhu Y., Yoon H. G., Suh K. S.. Electrical Properties of Silane Crosslinked Polyethylene in Comparison with DCP Crosslinked Polyethylene[J]. IEEE Trans. on DEI, 1999, 6(2):164-168.
    [123] Salah Khalil M, Cherfi A, Toureille A, et al. Additive and Electrode Material on Space Charge Formation in Polyethylene[J]. IEEE Trans. on DEI,1996, 3(6):743-746.
    [124] Kwang S. suh, Ho Gyu Yoon, Chang Ryong Lee, et al. Space Charge Behavior of Acrylic Monomer-Grafted Polyethylene[J]. IEEE Trans. on DEI, 1999, 6(3):282-287.
    [125] G. C. Montanari. The Electrical Degradation Threshold of Polyethylene Investigated by Space Charge and Conduction Current Measurements[J]. IEEE Trans. on DEI, 2000, 7(3):309-314.
    [126] J. M. Alison. A high field pulsed electro-acoustic apparatus for space charge and external circuit current measurement within solid insulators[J], Meas. Sci. Technol., Vol. 9, pp. 1737-1750,1998.
    [127] G. C. Montanari, D. Fabiani. Evaluation of dc Insulation Performance Based on Space-Charge Measurements and Accelerated Life Tests[J]. IEEE Trans. on DEI, 2000, 7(3):322-328.
    [128] T. Mizutani, H. Semi, J. Tomioka, K. Kaneko, T. Mori, M. Ishioka. Space charge behaviors in lowdensity Polyethylene[C], IEEE ISE 10, pp. 4346, Delphi, Greece, Septembex 1999.
    [129]宫斌,张冶文,郑飞虎,肖春,吴长顺.无机粉末掺杂对低密度聚乙烯中空间电荷分布及陷阱能级的影响[J],材料科学与工程学报, 2006, Vol. 24, No.1, 108-113.
    [130]王霞.电声脉冲法测量聚合物绝缘表面陷阱能级分布[J],中国电机工程学报, 2009, 29(1):127-132.
    [131] Simmons J G, Tom M C. [J]. Phys Rev B, 1973, 7:3706.
    [132]钱人元,周淑琴,金祥凤,等.α-酞菁铜蒸发膜中陷断的研究--等温衰减电流谱[J],应用科学学报, 1987, 1(5):35-37.
    [133]周淑琴,毛兵,金样凤.酞菁铜薄膜的高斯分布陷阱[J].自然杂志, 1988, No. 11, 877-889.
    [134] X. F., Mao B., Zhou S. Q., et al.高分子聚合物反式聚苯乙炔(trans-PPA) [J], Stat Sol, 1989,116:709.
    [135]陈钢进,肖慧明,夏钟福.电晕充电多孔PTFE/PP复合驻极体过滤材料的电荷存储特性[J],物理学报, 2006, 55(5):2464-2469.
    [136] Zhang Yewen, Yang Baitun, Tu Demin, et al. Measuring distribution of carrier trap energy state density at interface of dielectric with step pressure wave method[C]. IEEE CEIDP’89, USA, 1989.
    [137] Teyssedre G, Laurent C. Charge Transport Modcling in Insulating Polymers l From Molecular to Macroscopic scale[J]. IEEE Trans on DEI, 2005, 12(5):l857-875.
    [138] Ceresoli D., Tosatti E., Scandolo S., et a1. Trapping of Excitons by Chemical Defects in Polyethylene[J]. Journal of Chemical Physics, 2004, 121(13):6478-6484.
    [139] Meunier M., Quirke N.. Molecular Modeling of Electron Trapping in Polymer lnsulators[J].Journal of Chemical Physics, 2000, 113(1):l369-376.
    [140] Fabre J. and Pichon A.. Deteriorating Processes and Products of Paper in Oil Applicationn to Transformers[J], CIGRE, 1860, Paper No. 137.
    [141] L. E. Lundgaard, W. Hansen, D. Linhjell, and T. J. Painter, Aging of oil-impregnated paper in power rransformers[J], IEEE Transactions on Power Delivery, vol. 19, 2004, pp. 230-239.
    [142] Serra S., Tosatti E., 1ar1ori S., et al. Interchain States and the Negative Electron Affinity of Polyethylene. Annual Report Conference on Electrical Insulation and Dielectric Phenomena,1998(1):l9-22.
    [143] Anta J. A., Mareelli G., Meunier M., et al. Models of Electron Trapping and Transpo rt in Polyethylene: Current-Voltage Characteristics[J], Journal of Applied Physics, 2002, 92 (2):1002-1008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700