氧化物掺杂SO_4~(2-)/SnO_2固体超强酸上的酯化和酯交换反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SO42-/MxOy型固体超强酸是一类很有应用潜力的新型绿色催化材料,环境友好,不腐蚀反应设备,易分离而且可重复使用,因此,近三十年来受到国内外催化研究者的广泛关注。SO42-/SnO2是具有最强表面酸性的催化剂之一,其酸强度至少与SO42-/ZrO2相当,在某些酸催化反应中SO42-/SnO2表现出比SO42-/ZrO2更好的反应活性。但是,与硫酸氧化锆相比,硫酸氧化锡催化剂的制备比较困难,导致有关SO42-/SnO2的文献报道很少。
     生物柴油作为一种清洁、可再生能源,具有广阔的应用前景。酯化和酯交换反应是制备生物柴油的两种主要方法。酸催化在反应中可以克服碱催化时带来的皂化反应、催化剂中毒问题,而固体超强酸具有强酸性和高活性,成为制备生物柴油催化剂研究的热点。
     采用共沉淀法合成了掺杂少量Fe2O3(0.2-3.0 mol%)的SO42-/SnO2固体超强酸,并用XRD、N2吸附、TG、Raman、DRIFTS、ESR、电位滴定等方法对其结构、织构性质和酸性进行了表征。选择月桂酸与甲醇的酯化和三乙酸甘油酯与甲醇的酯交换为探针反应模拟生物柴油的制备,考察催化剂的酯化和酯交换反应性能。结果表明,SO42-/SnO2催化剂中掺杂少量Fe2O3抑制了四方相SnO2晶粒的长大,从而提高了催化剂的比表面,有助于催化剂稳定更多的表面硫物种,增加了催化剂的酸性位。当Fe2O3添加量低于0.2mol%时,所有Fe都处于SnO2的晶格中,随着Fe2O3掺杂量的增加,形成了聚集态Fe2O3小晶粒。在月桂酸与甲醇的酯化和三乙酸甘油酯与甲醇的酯交换反应中,掺杂少量Fe2O3的催化剂其反应活性明显高于未掺杂的SO42-/SnO2,这与催化剂的酸性位增加有关。添加Fe2O3摩尔分数为1.0%的催化剂具有最高的反应活性,这是因为该催化剂的硫含量和酸性位最多,该催化剂上的酯化反应于60℃反应6 h后月桂酸转化率高达88.9%,酯交换反应于60℃反应8 h后三乙酸甘油酯转化率高达92.1%,在生物柴油的合成中表现出潜在的优越性能。而且,SO42-/SnO2在酯化和酯交换反应中的催化活性明显高于SO42-/ZrO2催化剂。
     同样方法制备了掺杂少量Al2O3(0.5-3.0 mol%)的SO42-/SnO2催化剂,并对其结构、织构性质和酸性进行了表征。实验结果表明,SO42-/SnO2催化剂中掺杂少量Al2O3抑制了SnO2的晶化和四方相SnO2晶粒的长大,提高了催化剂的比表面,有助于催化剂稳定更多的表面硫物种,增加了催化剂的酸性位,催化剂中的铝以六配位状态存在。在月桂酸与甲醇的酯化和三乙酸甘油酯与甲醇的酯交换反应中,掺杂少量Al2O3的催化剂其反应活性明显高于未掺杂的SO42-/SnO2,这与催化剂的酸性位增加有关。添加Al2O3摩尔分数为1.0%的催化剂具有最高的反应活性,这是因为该催化剂的酸性位最多。该催化剂上的酯化反应于60℃反应6 h后月桂酸转化率高达92.7%,酯交换反应于60℃反应8 h后三乙酸甘油酯转化率高达91.1%,在生物柴油的合成中表现出潜在的重要性。催化剂失活主要是由于有机物分子在催化剂表面的沉积,覆盖了一部分的活性位,导致催化剂直接重复使用时活性下降。通过焙烧方法,可以除去催化剂表面吸附的有机物,恢复大部分催化活性。失硫是催化剂失活的次要原因。
     同样方法制备了掺杂少量Ga2O3 (0.5-5.0 mol%)的SO42-/SnO2催化剂,并对其结构、织构性质和酸性进行了表征。和掺杂Al2O3类似,SnO2的衍射峰强度随着Ga2O3的含量增加有所减弱,说明掺杂少量Ga2O3抑制了SnO2的晶化和SnO2晶粒的长大。酸性表征结果显示,加入少量的Ga2O3能够明显增加SO42-/SnO2催化剂的表面酸性位。SO42-/SnO2中掺入少量的Ga2O3也可以明显提高其在月桂酸与甲醇的酯化及三乙酸甘油酯与甲醇的酯交换反应中的催化活性,添加Ga2O3摩尔分数为1.0%的催化剂具有最高的反应活性,于60℃酯化反应6 h后月桂酸转化率高达91.3%,于60℃酯交换反应8 h后三乙酸甘油酯转化率高达89.2%,在生物柴油的合成中表现出潜在的重要性。
The type solid superacids of SO42-/MxOy are recognized as a class of novel catalytic materials which are green and have potential application. They have attracted much attention in recent thirty years, because they are noncorrosive, environmentally friendly, easily seperative and well reusable. The study indicates that SO42-/SnO2 is one of the strongest surface acidic catalysts, or at least the acid strength is as high as that of SO42-/ZrO2, and it could exhibit higher catalytic activities in many acid catalyzing reactions. Howerver, there have been few papers concerning SO42-/SnO2 catalyst for difficulty in preparation, compared with the relative ease of preparation for SO42-/ZrO2. Tin oxide gels were usually obtained as fine particles in conventional method, and a large part of the precipitates were passed through a conventional filter paper, resulting in their diminished yields.
     As a clean and regenerable energy source, biofuel is of wide application. Esterification and transesterification are the two kinds of major methods to synthesis biodiesel. This method has simple procedure, low dispense and stable product. The main catalysts are concentrated sulfuric acid and alkaline metal hydroxides. Furthermore, solid superacid catalysts in the reaction can overcome the base-catalyzed saponification and the catalyst poisoning problem, and they also have strong acidity and high activity. So it will become good catalysts in biodiesel preparation.
     Sulfated tin oxide catalysts promoted with Fe2O3 (0.2-3.0 mol%) have been successfully prepared via co-condensation method and characterized by isothermal nitrogen adsorption/desorption, powder x-ray diffraction (XRD), thermal gravimetric analysis (TG), Raman spectra, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and ESR spectroscopy. The number of acid sites on the catalysts was measured by means of potentiometric titration of n-butylamine. Triacetin with methanol and lauric acid with methanol were used as the representative compounds for the investigation of the catalytic activity for transesterification and esterification. The results indicate the growth of SnO2 crystallites is inhibited in the presence of small amounts of Fe2O3, further enhance the surface of the catalysts and could stabilize more sulfur species on the surface of SO42-/SnO2. Acidity is also enhanced incomparison with conventional sulfated tin oxide. All irons exist in the tetrahedral SnO2 network when the content of Fe2O3 below 0.2 mol%. But the cluster of iron oxides will be formed increasing with the content of Fe2O3. As a result, the sulfated tin oxides promoted with appropriate amount of Fe2O3 have been manifested higher catalytic activity than conventional sulfated tin oxide in transesterification and esterification. At 1.0 mol% promoter content, the maximum conversion in lauric acid with methanol (6 h) and triacetin with methanol (8 h) reactions were about 88.9% and 92.1%, respectively. Moreover, the catalytic activity of SO42-/SnO2 is apparently higher than that of SO42-/ZrO2.
     A series of Al2O3-doped (0.5-3.0 mol%) sulfated tin oxide catalysts have been prepared by a co-precipitation method. The structures and textural properties of these catalysts were characterized using N2 adsorption, thermogravimetric analysis (TG), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), Raman spectroscopy, and 27Al magic-angle spinning nuclear magnetic resonance (MAS NMR) techniques. The number of acid sites on the catalysts was measured by means of potentiometric titration of n-butylamine. Their catalytic performances for the esterification of lauric acid with methanol and transesterification of triacetin with methanol were also investigated. The results showed that the addition of Al2O3 to sulfated tin oxide inhibite the growth of SnO2 crystallites, enhance the surface of the samples, stabilize more sulfur species on the surface of SO42-/SnO2 and improve the catalytic activity markedly. The SO42-/SnO2 catalyst doped with molar fraction Al2O3 of 1.0 mol% exhibited the highest activity. The lauric acid conversion was 92.7% after the esterification for 6 h and the triacetin conversion was 91.1% after the transesterification for 8 h on this catalyst. The remarkable activities of the Al2O3-doped catalysts are caused by an enhanced number of acid sites. Moreover, catalyst reusability and regeneration were studied in esterification and transesterification using 1.0 mol% Al2O3-SO42-/SnO2. The catalyst was calcinated to regenerate after each reaction. The results showed that the main reason for catalyst deactivation was due to reactant molecules covering the activity of the catalyst acid sites, through washing and calcination approach, the cover molecules could be removed to restore most effective acid sites, so that the catalytic activity was almost restored.
     A series of Ga2O3-doped (0.5-5.0 mol%) sulfated tin oxide catalysts have been prepared in the same method. The structures of these samples were characterized using X-ray powder diffraction (XRD), N2 adsorption, thermogravimetric analysis (TG), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), Raman spectroscopy (Raman). The number of acid sites on the catalysts was measured by means of potentiometric titration of n-butylamine. Be similar with the catalysts doping Al2O3, SnO2 diffraction peak intensity was increased with the content of Ga2O3, mainly because of the presence of Ga2O3 inhibiting SnO2 grain growth. The results showed that adding a small amount of Ga2O3 could significantly increase the catalyst's surface acidity in SO42-/SnO2. And the catalytic activity could be also enhanced remarkablely. Similarly, the 1.0mol% Ga2O3-SO42-/SnO2 catalyst exhibited the highest activity. The lauric acid conversion was 91.3% after the esterification for 6 h, and the triacetin conversion was 89.2% after the transesterification for 8 h on this catalyst.
引文
[1](a)沈文霞,王志斌,李春志等.“固体酸催化剂的制备与应用研究”.宁夏大学学报;(b)徐学兵,油脂化学,中国商业出版社,北京,(1993).
    [2]吴越,工业催化[J],2(1994):3-15,21.
    [3]K. Tanabe, M. Misono, Y. Ono, New Solid Acids and Bases [M], Tokyo:Kodansha, 1989.
    [4]A. Corma, Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions [J], Chem. Rev.,1995,95:559-613.
    [5]M.H. Lin, C.F. Blanford, A. Stein, Synthesis of Ordered Microporous Silicates with Organosulfur Surface Groups and Their Applications as Solid Acid Catalysts [J], Chem. Mater.,1998,10:467-470.
    [6]D. Margolese, J.A. Melero, S.C. Christiansen, Direct syntheses of ordered SBA-15 mesoporous silica containing sulphonic acid groups [J], Chem. Mater.,2000,12: 2448-2459.
    [7]W. M. V. Rhijn, D.E.D. Vos, B.F. Sels, W. D. Bossaert, P. A. Jacobs, Sufonic acid functionalized ordered mesoporous materials as catalysts for condensation and esterification reactions [J], Chem. Commun.,1998:317-318.
    [8]巩雁军,李英,王树国,吴东,孙予罕,邓风,岳勇,苯及苯磺酸基官能化的中孔分子筛的合成及催化应用[J],高等学校化学学报,2000,21:1916-1918.
    [9]袁兴东,沈建,李国辉,周敬来,金知晚,朴尚颜,表面含磺酸基的介孔分子筛催化剂SBA-15-SO3H的制备及其催化性能[J],高等化学学报,2002,23:2332-2335.
    [10]袁兴东,沈建,李国辉,周敬来,金知晚,朴尚颜,表面含磺酸基的介孔分子筛催化剂SBA-15-SO3H的直接合成[J],催化学报,2003,23:83-86.
    [11]I. Dfaz, F. Mohino, J.P. Pariente, Synthesis, characterization and catalytic activity of MCM-41-type mesoporous silica functionalized with sufonic acid [J], Appl. Catal. A:General,2001,205:19-30.
    [12]M. Hino, S. kobayashi, K. Arata, Reactions of butane and isobutene catalyzed by zirconium oxide treated with sulfate ion.Solid superacid catalyst [J], J. Am. Chem. Soc.,1979,101:6439-6441.
    [13]M. Hino, K. Arata, Solid catalysis treated with anions-sythesis of solid superacid catalyst with acid strength of Ho Less-Than-or-Equal-to-16.04 [J], J. Chem. Soc. Chem. Commun.,1980:851-852.
    [14]吴越,取代硫酸、氢氟酸等液体酸催化剂的途径[J],催化进展,1998,10:158-171.
    [15]Y.D. Xia, W.M. Hua, Z. Gao, Benzoylation of toluene with benzoyl chloride on Al-promoted sulfated solid superacids [J], Catal. Lett.,1998,55:101-104.
    [16]C. Venkatesan, A.P. Singh, Condensation of acetophenone to α,β-unsaturated ketone (dypnone) over solid acid catalysts [J], J. Mol. Catal. A:Chemical,2002,181: 179-187.
    [17]G.D. Yadav, J.J. Nair, Sulfated zirconia and its modified versions as promising catalysts for industrial processes [J], Micropor. Mesopor. Mater.,1999,33:1-48.
    [18]G.W. Wang, M. Hattori, K. Tanabe, The enhancement of acid strength and catalytic activity of SnO2 by the addition of sulfate ion [J], Chem. Lett.,1983: 277-280.
    [19]H. Matsuhashi, M. Hino and K. Arata, Synthesis of the solid superacid of SO42-/ SnO2 with acid strength of Ho-less-than-or-equal-to-16.04 [J], Chem. Lett.,1988: 1027-1028.
    [20]H. Matsuhashi, M. Hino, K. Arata, Solid catalyst treated with anion.19. synthesis of the solid superacid catalyst of Tin oxide treated with superacid ion [J], Appl. Catal., 1990,59:205-212.
    [21]K. Arata, H. Nakamura, M. Shouji, Friedel-Crafts acylation of toluene catalyzed by solid superacids [J]., Appl. Catal. A:G,2000,197:213-219.
    [22]H. Matsuhashi, H. Miyazaki, K. Arata, The preparation of solid superacid of sulfated tin oxide with acidity higher than sulfated zirconia [J], Chem. Lett.,2001: 452-453.
    [23]H. Matsuhashi, H. Miyazaki, Y. KawaMura, K. Arata, Preparation of a solid superacid of sulfated tin oxide with acidity higher than that of sulfated zirconia and its applications to aldol condensation and benzoylation [J], Chem. Mater.,2001,13: 3038-3042.
    [24]S. Furata, H. Matsuhashi, K. Arata, Catalytic action of sulfated tin oxide for etherification and esterification in comparison with sulfated zirconia [J], Appl. Catal., 2004,269:187-191.
    [25]高滋,陈建民,SO42-/TiO2和SO42-/Fe2O3固体超强酸研究[J],高等学校化学学报,1994,15:873-877.
    [26]M. Bensitel, O. Saur, J. C. Lavalley, An infrared study of sulfated zirconia [J], Mater. Chem. Phys.,1988,19:147-156.
    [27]K. Arata, M. Hino, Preparation of superacids by metal oxides and their catalytic action [J], Mater. Chem. Phys.,1990,26:213-237.
    [28]L.M. Kustov, V.B. Kazansky, F. Figueras, Investigation of the acidic properties of ZrO2 modified by SO42- anions [J], J. Catal.,1994,150:143-149.
    [29]F. Babou, G. Coudurier, J.C. Vedrine, Acidic properties of sulfated zirconia:An infrared spectroscopic study [J], J. Catal.,1995,151:341-349.
    [30]V. Adeeva, J.W. Dehaan, J. Janchen, Acid sites in sulfated and metal-promoted zirconium dioxide catalysts [J], J. Catal.,1995,151:364-372.
    [31]R.L. White, E.C. Sikabwe, M.A. Coelho, Potential role of penta-coordinated sulfur in the acid site structure of sulfated zirconia [J], J. Catal.,1995,157:755-758.
    [32]T. Yamaguchi, T. Jin, K. Tanabe, Structure of acid sites on sulfur-promoted iron oxide [J], J. Phys. Chem.,1986,90:3148-3152.
    [33]李忠海,戴益民,文松年,聂长明,周丛艺,原子价壳层电子量子拓扑指数与元素电负性的关系[J],化学学报,2005,63:1348-1356,
    [34]王新平,唐新硕,沉淀剂对SO42-/ZrO2-NiO2催化性能的影响[J],石油化工,1996,25(T):20-27.
    [35]王道宏,王延吉,王日杰,负载型超强酸催化剂ZS-SiO2的研究[J],石油学报(石油加工),2003,19(5):98-102.
    [36]Sohn J R, Pac Y, Jo S G. High Catalytic Activity of V205-Zr205 Modified with H2SO4 for Propane Partial Oxidation [J]. Reaction Kinet Catal.,1995, 55(2):325-332.
    [37]J. R. Sohn, H. J. Jang, Characterization of Zirconia-silica Unmodified or Modified with Sulfuic Acid and Acid Catalysis [J]. J. Mol Catal.1991,64(3): 349-360.
    [38]Lopez T. Navarrete J. Gomez R. et al. Preparation of Sol-gel Sulfated ZrO2-SiO2 and Characterization of its surface Acidity [J]. Appl Catal A:Gerneral,1995,125(2): 217-232.
    [39]Wen M Y, Wender L, Tierney J W. Hydroisomerization and Hydrocracking of n-heptane and n-Hexadane on Solid Superacid [J], Energy Fuels.1990,4(4): 372-379.
    [40]C.Y. Hsu, C.R. Heimbuch, C.T. Armes, A highly active solid superacid catalyst for n-butane isomerization:a sulfated oxide containing iron, manganese and zirconium [J], J. Chem. Soc. Chem. Commun.,1992:1645-1646.
    [41]A. Jatia, C. Chang, J. D. MacLeod, ZrO2 promoted with sulfate, iron and manganese:A solid superacid catalyst capable of low-temperature n-butane isomeration [J], Catal. Lett.,1994,25:21-28.
    [42]M. A. Coelho, D. E. Resasco, E. C. Sikabwe, Modification of the catalytic properties of sulfated zirconia by addition of metal promoters [J], Catal. Lett.,1995, 32:253-262.
    [43]Y. D. Xia, W. M. Hua, Y. Tang, Z. Gao, A highly active solid superacid catalyst for n-butane isomerization:persulfate modified Al2O3-ZrO2 [J], Chem. Commun., 1999:1899-1900.
    [44]W. M. Hua, Y. D. Xia, Y. H. Yue, Z. Gao, Promoting effect of Al on SO42-/MxOy (M=Zr, Ti, Fe) catalysts [J], J. Catal.,2000,196:104-114.
    [45]曹崇江,陈长林,徐南平,镓掺杂SO42-/ZrO2的制备及其对正戊烷异构化反应的催化性能[J],催化学报,2003,24:447-451,
    [46]J. A. Moreno and G. Poncelet, Isomerization of n-Butane over Sulfated Al-and Ga-Promoted Zirconium Oxide Catalysts. Influence of Promoter and Preparation Method [J], J. Catal.,2001,203:453-465.
    [47]H. Matsuhashi, H. Miyazaki, K. Arata, The preparation of solid superacid of sulfated tin oxide with acidity higher than sulfated zirconia, Chem. Lett.,2001,452.
    [48]H. Matsuhashi, H. Miyazaki, Y. Kawamura, H. Nakamura, K. Arata. Preparation of a Solid Superacid of Sulfated Tin Oxide with Acidity Higher Than That of Sulfated Zirconia and Its Applications to Aldol Condensation and Benzoylation, Chem. Master. 2001,13:3038.
    [49]H. G. Yu, H. J. Fang, H. L. Zhang, B. J. Li, F. Deng, Acidity of sulfated tin oxide and sulfated zirconia:A view from solid-state NMR spectroscopy, Catal. Comm.,10 (2009) 920-924.
    [50]A. S. Kheder, E. A. El-Sharkway, S. A. El-Hakam, A. I. Ahmed, Surface characterization and catalytic activity of sulfated tin oxide catalyst. Catal. Comm.,9 (2008) 769-777.
    [51]X. Cui, H. Z. Ma, B. Wang, H. W. Chen, Direct oxidation of n-heptane to ester over modified sulfated SnO2 catalysts under mild conditions. J. Haza. Mater., 147(2007):800-825.
    [52]A. S. Kheder, A. L. Ahmed. Selective nitration of phenol over nanosized tungsten oxide supported on sulfated SnO2 as a solid acid catalyst. Appl Catal A:General 354 (2009):153-160.
    [53]Lotero Edgar, Goodwin James G, David A. Bruce, The Catalysis of Biodiesel Synthesis [J], J. Catal.,2006,19:41-83.
    [54]郭卫军,闵恩泽,发展我国生物柴油的初探[J],石油学报:石油加工,19(2003)1-6.
    [55]高静,马丽,李伟杰,王丽华,周丽亚,复合固定化脂肪酶催化麻疯树油生产生物柴油[J],化工学报,60(2009)750-755.
    [56]陈颖,孙雪,李金莲,邹万礼,李佳,张亚文,固体超强酸催化制备生物柴油研究进展[J],化工进展,28(2009)383-389.
    [57]韩明汉,陈和,王金福,金涌,生物柴油制备技术的研究进展[J],石油化工,35(2006)1119-1124.
    [58]李泳,张兆霞,以贝壳粉为载体的固体碱生物柴油催化剂的制备及其应用研究[J],化学与生物工程,26(2009)39-41.
    [59]Vicente Gemma, Martinez Mercedes, Aracil Jose, Integrated biodiesel production: A comparison of different homogeneous catalysts systems [J], Bioresource Technology,92 (2004) 2972-3051.
    [60]A. K. Tiwari, A. Kumar, H. Rahemanl, Biodiesel Production from Jatropha oil with High Free Fatty Acids:an Optimized Processl Biomass and Bioenergy [J],31 (2007) 569-575.
    [61]A. Kumar, S. Sharmal, An Evaluation of Multipurpose Oil Seed Crop for Industrial Uses:A Review, Industrial Crops and Products [J],28 (2008) 1210.
    [62]M. K. Modi, J. R. C. Reddy, B. V. S. K. Rao, R. B. N. Prasad, Lipase-mediated Conversion of Vegetable Oils into Biodiesel using Ethyl Acetate as Acyl Acceptor [J], Bioresource Technology,98 (2007) 1260-1264.
    [63]Xunhua Mo, Edgar Lotero, Changqing Lu, Yijun Liu, James G. Goodwin, A Novel Sulfonated Carbon Composite Solid Acid Catalyst for Biodiesel Synthesis [J], Catal. Lett.,123 (2008) 1-6.
    [64]Edgar Lotero, Yijun Liu, Dora E. Lopez, Kaewta Suwannakarn, David A. Bruce, and James G. Goodwin, Synthesis of Biodiesel via Acid Catalysis [J], Ind. Eng. Chem. Res.,2005,44,5353-5363.
    [65]J. Jitputti, B. Kitiyanan, P. Rangsunvigit, K. Bunyakiat, L. Attanatho, P. Jenvanitpanjakul, Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts [J], Chemical Engineering Journal,116 (2006) 61-66.
    [66]Y. Liu, E. Lotero, J. G. Goodwin Jr., C. Lu, Transesterification of triacetin using solid Br(?)nsted bases [J], J. Catal.,246 (2007) 428-433.
    [67]Dora E. Lopez, James G. Goodwin Jr., David A. Bruce, Edgar Lotero, Transesterification of triacetin with methanol on solid acid and base catalysts [J], Appl. Catal. A:G.,295 (2005) 97-105.
    [68]Dora E. Lopez, James G. Goodwin Jr., David A. Bruce, Transesterification of triacetin with methanol on Nafion(?) acid resins [J], J. Catal.,245 (2007) 381-391.
    [69]Xiao-Rong Chen, Yi-Hsu Ju, Chung-Yuan Mou, Direct Synthesis of Mesoporous Sulfated Silica-Zirconia Catalysts with High Catalytic Activity for Biodiesel via Esterification [J], J. Phys. Chem. C,111 (2007) 18731-18737.
    [70]J. Ni, F.C. Meunier, Esterification of free fatty acids in sunflower oil over solid acid catalysts using batch and fixed bed-reactors [J], Appl. Catal. A:G.,333 (2007) 122-130.
    [71]Michael A. Jackson a, Isa K. Mbaraka, Brent H. Shanks, Esterification of oleic acid in supercritical carbon dioxide catalyzed by functionalized mesoporous silica and an immobilized lipase [J], Appl. Catal. A:G.,310 (2006) 48-53.
    [72]S. Furuta, H. Matsuhashi, K. Arata, Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure [J], Catal. Comm., 5 (2004) 721-723.
    [73]J. Jitputti, B. Kitiyanan, P. Rangsunvigit, K. Bunyakiat, L. Attanatho, P. Jenvanitpanjakul, Transesterification of crude palm kemel oil and crude coconut oil by different solid catalysts [J]. Chem. Engineering Journal,2006 116 (1):61-66.
    [74]P. B. Xiang, Q. Shu, J. F. Wang, G. R. Wang, M. H. Han, Biodiesel production from waste oil feedstock by solid acid catalysis [J]. Process Safety and Environmental Protection,20085(3):236-241.
    [1]G. Cid, R. Pecchi, Potentiometric Method for Determining the Number and Relative Strength of Acid Sites in Colored Catalysts [J], Appl. Catal.,14 (1985)15-21.
    [2]P. Sharma, S. Vyas, A. Patel, Heteropolyacid supported onto neutral alumina: Characterization and esterification of 1° and 2° alcohol [J], J. Mol. Catal. A,214 (2004)281-286.
    [3]E. A. El-Sharkawy, A. S. Khder, S. A. El-Hakam, A. I. Ahmed, Surface Characterization and Catalytic Activity of Sulfated Tin Oxide Catalyst [J], Catal. Comm.,9 (2008)769-777.
    [1]K. Nakajima, M. Hara, Environmentally Benign Production of Chemicals and Energy Using a Carbon-Based Strong Solid Acid [J], J. Am. Ceram. Soci.,90 (2007) 3725.
    [2]D. E. Lopez, J. G. Goodwin Jr., D. A. Bruce, E. Lotero, Transesterification of Triacetin with Methanol on Solid Acid and Base Catalysts [J], Appl. Catal. A:Gen., 295 (2005) 97.
    [3]D. E. Lopez, J. G. Goodwin Jr., D. A. Bruce, Transesterification of Triacetin with Methanol on Nafion Acid Resins [J], J. Catal.,245 (2007) 381-391.
    [4]K. Suwannakarn, E. Lotero, J. G. Goodwin Jr., C. Lu, Stability of Sulfated Zirconia and the Nature of the Catalytically Active Species in the Trasesterification of Triglycerides [J], J. Catal.,255 (2008) 279.
    [5]X. Chen, Y. Ju, C. Mou, Direct Synthesis of Mesoporous Sulfated Silica-Zirconia Catalysts with High Catalytic Activity for Biodiesel via Esterification [J], J. Phys. Chem. C,111(2007)18731.
    [6]S. Furuta, H. Matasuhashi, K. Arata, Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure [J], Catal. Comm., 5(2004)721.
    [7]H. Matsuhashi, H. Miyazaki, Y. Kawamura, H. Nakamura, K. Arata, Preparation of a Solid Superacid of Sulfated Tin Oxide with Activity Higher Than That of Sulfated Zirconia and Its Applications to Aldol Condensation and Benzoylation [J], Chem. Mater,13 (2001) 3038-3042.
    [8]S. Furuta, H. Matsuhashi, K. Arata, Catalytic action of sulfated tin oxide for etherification and esterification in comparison with sulfated zirconia [J], Appl. Catal. A:Gen.,269(2004) 187.
    [9]Y. Du, S. Liu, Y. Ji, Y. Zhang, S. Wei, F. Liu, F. S. Xiao, Synthesis of Sulfated Silica-Doped Tin Oxides and Their High Activities in Transesterification [J], Catal. Lett.,124(2008)133-138.
    [10]H. Matsuhashi, H. Miyazaki, K. Arata, The preparation of solid superacid of sulfated tin oxide with acidity higher than sulfated zirconia, Chem. Lett.,2001,452.
    [11]N. Essayem, V. Martin, A. Riondel, J. C. Vedrine, Esterification of acrylic acid with but-1-ene over sulfated Fe-and Mn-promoted zirconia [J], Appl. Catal. A:Gen., 326(2007) 74.
    [12]H. Saja, C. S. Deepa, K. S. Rani, S. Sugunan, Liquid phase benzoylation of arenes over iron promoted sulphated zirconia [J], Appl. Catal. A:Gen.,230(2002) 233-243.
    [13]T. Loften, N. S. Gnep, M. Guisner, E. A. Blekkan, Iron and manganese promoted sulfated zirconia:acidic properties and n-butane isomerization activity [J], Catal. Today,100(2005)397-401.
    [14]X. Cui, Hongzhu Ma, B. Wang, H. Chen, Direct Oxidation of n-Heptane to Ester over Modified Sulfated SnO2 Catalysts under Mild Conditons [J], J. Hazardous Materials,147 (2007) 800-805.
    [15]Y. Du, S. Liu, Y. Zhang, C. Yin, Y. Di, F. S. Xiao, Mesostructured sulfated tin oxide and its high catalytic activity in esterification and Friedel-Crafts acylation [J], Catal. Lett.,108(2006)155.
    [16]P. Salas, J.G. Hernhndez, J.A. Montoya, J. Navarrete, J. Salmones, Effect of tin content on silica mixed oxides:sulfated and unsulfated catalysts, J. Mol. Catal. A: Chem.,123 (1997) 149-154.
    [17]Tetsuhiko Kobayashi, Nolven Guilhaume, Jun Miki, Naoyuki Kitamura, Masatake Haruta, Oxidation of methane to formaldehyde over Fe/SiO, and Sn-W mixed oxides [J], Catal. Today,32 (1996) 171-175.
    [18]Xiaoxin Zou, Guodong Li, Mingyi Guo, Xinhao Li, Dapeng Liu, Juan Sun and Jiesheng Chen, Heterometal Alkoxides as Precursors for the Preparation of Porous Fe- and Mn-TiO2 Photocatalysts with High Efficiencies [J], Chem. Eur. J.,14 (2008) 11123-11131.
    [19]R. S. Xera, M. Nofzb, M. Feista, G. Scholza, Fe3+-assisted formation of a-Al2O3, starting from sol-gel precursors [J], Journal of Solid State Chemistry,179 (2006) 652-664.
    [20]Ruby Cid and Gina Pecchi, Potentiometric Method for Determining the Number and Relative Strength of Acid Sites in Colored Catalysts [J], Appl. Catal.,14(1985) 15-21.
    [21]P. Sharma, S. Vyas, A. Patel, Heteropolyacid Supported onto Neutral Alumina: Characterization and Esterification of 1° and 2° alcohol [J], J. Mol. Catal. A,2004, 214:281
    [22]E. A. El-Sharkawy, A. S. Khder, A. I. Ahmed, Structural Characterization and Catalytic Activity of Molybdenum Oxide Supported Zirconia Catalysts[J], Micropor. Mesopor. Mater.,2007,102:128-137
    [1]Z. Gao, Y.D. Xia, W.M. Hua, New catalyst of SO42-/Al2O3-ZrO2 for n-butane isomerization [J], Top. Catal.,1998,6:101-106.
    [2]W.M. Hua, Y.D. Xia, Y.H. Yue, Z. Gao, Promoting effect of Al on SO42-/MxOy (M=Zr, Ti, Fe) catalysts [J], J. Catal.,2000,196:104-114.
    [3]W.M. Hua, A. Goeppert, J. Sommer, H/D exchange and isomerization of small alkanes over unpromoted and Al2O3-promoted SO42-/ZrO2 catalysts [J], J. Catal.,2001, 197:406-413.
    [4]M. Haouas, S. Walspurger, J. Sommer, Regioselective H/D isotope exchange and skeletal rearrangement reactions of propane over strong solid acids [J], J. Catal.,2003, 215:122-128.
    [5]R. Olindo, A. Goeppert, D. Habermacher, New methods for quantitative determination of Br(?)nsted acid sites on solid acids:Applicability and limits for Al2O3-promoted SO42-/ZrO2 catalysts [J], J. Catal.,2001,197:344-349.
    [6]P. Canton, R. Olindo, F. Pinna, Alumina-promoted sulfated zirconia system: Structure and microstructure characterization [J], Chem. Mater.,2001,13:1634-1641.
    [7]M. Haouas, S. Walspurger, F. Taulelle, The initial stages of solid acid-catalyzed reactions of adsorbed propane. A mechanistic study by in situ MAS NMR [J], J. Am. Chem. Soc.,2004,126:599-606.
    [8]J.A. Moreno, G. Poncelet, Isomerization of n-butane over sulfated Al- and Ga-promoted zirconium oxide catalysts. Influence of promoter and preparation method [J], J. Catal.,2001,203:453-465.
    [9]J. Ni, F. C. Meunier, Esterification of free fatty acids in sunflower oil over solid acid catalysts using batch and fixed bed-reactors [J], Appl. Catal. A:G,333 (2007) 122-130.
    [10]D. E. Lopez, James G. Goodwin Jr., D. A. Bruce, S. Furuta, Esterification and transesterification using modified-zirconia catalysts [J], Applied Catalysis A:General, 339 (2008) 76-83.
    [11]X. Mo, D. E. Lopez, K. Suwannakarn, Y. Liu, E. Lotero, J. G. Goodwin Jr., C. Lu, Activation and deactivation characteristics of sulfonated carbon catalysts [J], J. Catal., 254 (2008)332-338.
    [12]Y. Liu, E. Lotero, J. G Goodwin Jr., Effect of Carbon Chain Length on Esterification of Carboxylic Acids with Methanol Using Acid Catalysis [J], J. Catal., 243(2006)221-228.
    [13]A. Bouaine, N. Brihi, G. Schmerber, Structural, optical, and magnetic properties of Co-doped SnO2 powders synthesized by the coprecipitation technique [J], J. Phy. Chem. C,2007,111:2924-2928.
    [14]M. Signoretto, S. Melada, F. Pinna, C. Morterro, Ga2O3-promoted sulfated zirconia systems:Morphological, structural and redox properties [J], Micropor. Mesopor. Mater.,2005,81:19-29.
    [15]R. Gutierrez-Baez, J. A. Toledo-Antonio, M. A. Cortes-Jacome, P. J. Sebastian, A. Vazquez, Effects of the SO4 groups on the textural properties and local order deformation of SnO2 rutile structure, Langmuir,20(2004)4265.
    [1]J. A. Moreno and G. Poncelet, Isomerization of n-Butane over Sulfated Al- and Ga-Promoted Zirconium Oxide Catalysts. Influence of Promoter and Preparation Method [J], J. Catal.,203 (2001) 453-465.
    [2]V. Parvulescu, S. Company, V. I. Parvulescuy, P. Grange and G. Poncelet, Reaction of Hexane, Cyclohexane, and Methylcyclopentane over Gallium-, Indium-, and Thallium-Promoted Sulfated Zirconia Catalysts [J], J. Catal.,180 (1998) 66-84.
    [3]P. Salas, J.G. Hernhndez, J.A. Montoya, J. Navarrete, J. Salmones, Effect of tin content on silica mixed oxides:sulfated and unsulfated catalysts, J. Mol. Catal. A: Chem.,123 (1997) 149-154.
    [4]X. Cui, Hongzhu Ma, B. Wang, H. Chen, Direct Oxidation of n-Heptane to Ester over Modified Sulfated SnO2 Catalysts under Mild Conditons [J], J. Hazardous Materials,147 (2007) 800-805.
    [5]Y. Du, S. Liu, Y. Zhang, C. Yin, Y. Di, F. S. Xiao, Mesostructured sulfated tin oxide and its high catalytic activity in esterification and Friedel-Crafts acylation [J], Catal. Lett.,108(2006)155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700