改性凹凸棒土固载磷钨酸(盐)及其催化酯化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酸催化剂是酯化反应常用催化剂,目前仍有许多反应过程采用液体矿物酸为催化剂,这就存在着腐蚀设备、副产物多、后处理复杂和污染环境等一系列问题。开发环境友好型酸催化剂日益受到重视。本论文以凹凸棒土为原料,研究制备磷钨酸(H3PW12O40, HPW)或其铯盐的载体材料——改性凹凸棒土。采用FTIR、XRD、TGA/SDTA、N2吸附脱附、XPS、FESEM-EDS和TEM等表征方法,比较凹凸棒土改性和固载HPW前后的结构变化,研究其改性和固载机理,并以酯化反应为催化反应模型研究固载HPW的催化活性。
     凹凸棒土的酸处理研究发现,酸处理凹凸棒土的活性度越大,经γ-氨丙基三乙氧基硅烷(KH550)改性后含氮量越高。此外,酸处理的凹凸棒土含有丰富的吸附水、结合水、结构水和结构羟基。在无水甲苯回流体系中进行偶联剂KH550的有机改性,KH550的乙氧基团能够与凹凸棒土的羟基在凹凸棒土结构内水分子的催化作用下直接缩合,实现有效改性,并形成均匀的改性层。
     用硅烷偶联剂KH792和KH550分别对凹凸棒土有机改性(记作KH792-Pa和KH550-Pa)。它们对HPW溶液的吸附过程的研究表明:单层氨基的数目决定HPW的吸附量;在相同吸附条件下,KH792-Pa和KH550-Pa对HPW的平衡吸附量分别达到189 mg·g-1和175 mg·g-1;对HPW的吸附过程符合拟一级动力学方程,化学吸附是吸附过程的速率控制步骤,在吸附过程的前5min,KH792-Pa和KH550-Pa对HPW的吸附率都超过80%;在所研究温度下吸附等温线均满足Langmuir方程。对吸附HPW后固体(分别记作HPW/KH792-Pa和HPW/KH550-Pa)的结构性质进行表征,FTIR和XPS的结果显示HPW阴离子与载体的氨基形成强的离子对,有效地固载在KH792-Pa和KH550-Pa表面;XRD的图谱没有观察到HPW的特征衍射峰,说明HPW是均匀分散的,与Langmuir方程的假设相一致;以DRIFT和NH3-TPD表征酸性质的结果表明HPW/KH792-Pa和HPW/KH550-Pa仍旧保持强的Bronsted酸性和总酸性。
     以KH792-Pa为载体,通过浸渍方法制备不同HPW量的固载催化剂(HPW/KH792-Pa)。活化温度影响催化剂的酸性。在酯化合成乙酸丁酯的反应中,活化温度在160℃时,催化剂活性最强。固载催化剂的催化活性随固载量的增加而增大,在重复使用过程中,20%HPW/KH792-Pa的催化活性最稳定,重复使用6次,丁醇的转化率仍在60%左右。催化乙酸丁酯的反应符合Eley-Rideal机理,丁醇在20%HPW/KH792-Pa活性位点上的吸附过程是整个反应过程的速率控制步骤,反应速率与丁醇浓度在动力学上符合拟一级动力学方程。同样在油酸甲酯的合成反应中,20%HPW/KH792-Pa仍然能够显示强的催化活性和高的重复利用性,合适条件下油酸的转化率可达90%。这些说明凹凸棒土表面经硅氨基改性有助于杂多酸的稳定化。
     研究表明,磷钨酸铯盐酸(CsHPW)固载在活化凹凸棒土时,CsHPW均匀地分布在凹凸棒土的棒晶上,仍然保持体相CsHPW的晶体结构,在油酸甲酯化反应中有强的催化活性和好的重复使用性,克服了CsHPW在极性反应体系中易形成胶体而难以过滤的问题。在合适反应条件下,CsHPW/Pa催化油酸甲酯化的转化率可达73%。
Liquid mineral acids catalysts, such as H2SO4, HCl, HF, H3PO4 and ClSO2OH, are usually applied in esterification reactions, which cause a series of problems as equipment corrosion, byproducts and environmental pollution. Recently, solid acid catalysts have received considerable attention for their enviromental friendly. Based on the status of the heteropolyacid systematic analysis of the application and development, modified palygorskite was selected as supports for the immobilization of heteropolyacid or its salts as acidic catalyst. An extensive study was performed on the mineral characteristics, modification and immobilization mechanism of palygorskite in terms of chemical composition (FTIR spectroscopy), crystalline structure (XRD), thermal properties (TGA/SDTA), N2 adsorption-desorption, the surface composition chemical states (XPS) and morphology (FESEM and TEM) etc.. The catalytic activity of immobilized heteropolyacid (salt) was tested by esterification models.
     The nitrogen content in silylated palygorskite withγ-aminopropyltriethoxysilane (KH550) increased with the increasing of activity-degree of acidic palygoeskite. Furthermore, there were lots of waters and hydroxy groups in the palygorskite, with which the ethoxysilane group of KH550 directly reacted with the surface hydroxyl group of palygorskite in refluxing dry tolune. KH550 modified surface presents more stable and homogeneous surface properties, which facilitates the immobilization of heteropolyacid.
     Palygorskite was modified with different silanes KH792 and KH550. Silylated palygorskite was denoted by KH792-Pa and KH550-Pa, respectively. The results showed that the amount of HPW adsorbed was relayed on the content of monolayer amino group in the supports. KH792-Pa contained larger numbers of adsorption sites (-NH- and -NH2) on its surface and higher nitrogen content (3.02 wt%) than that of KH550-Pa (1.89 wt%), which could trap more amount of HPW. For KH792-Pa and KH550-Pa, the equilibrium adsorption amount of HPW (mg·g-1) was 189 mg·g-1 and 175 mg·g-1, respectively. The adsorption kinetics results demonstrated that the adsorption process of HPW onto silylated-Pa closely followed a pseudo-second-order kinetic model. Equilibrium data were fitted well to the Langmuir adsorption isotherm models at all studied temperatures. The FTIR and XPS characteristic results of HPW/KH792-Pa and HPW/KH550-Pa indicated that heteropolyanion was reacted with NH2 group by chemical reaction;the result of XRD revealed that HPW was finely and effectively distributed on the silylated-palygorskite, which was constent with Langmuir equation. The characteristic of DRIFT and NH3-TPD showed that the Bronsted and total acidity were existed.
     The different loading HPW/KH792-Pa catalysts were prepared by incipient impregnation (abbreviate as HPW/KH792-Pa). The effect of aging temperature on the catalytic activation was studied and 160℃was proved as suitable aging temperature. The reaction of n-butanol with acetic acid was selected a model reaction, the butanol conversion increased with the HPW loading increasing, 20%HPW/KH792-Pa catalyst showed the best stability during reuseablity and around 60% butanol conversion. The reactions following the Eley-Rideal mechanism takes place between n-butanol chemisorbed on the active sites of the catalyst surface. The rate of the esterification reaction was fitted with a first-order nature. Furthermore, 20%HPW/KH792-Pa showed 90% oleic acid conversion in optimum conditions during the esterification of oleic acid with methanol. From the above, the silylated modification for palygorskite was contributed to the stabilization of heteropolyacid.
     Acidic Cs salt of 12-tungstophosphoric acid (Cs2.5H0.5PW12O40, CsHPW) was supported on acid-activated palygorskite, which partly overcome the filtration problems in liquid phase reaction because of the tendency of CsHPW to form milky colloid in polar solutions. CsHPW inside CsHPW/Pa was retained intact Keggin anion and highly and uniformly supported on the fibre of Pa, which performed stable catalytic activity for esterification of oleic acid with methanol. Under optimum conditions the conversion of oleic acid reached 73%.
     Therefore, silylated-Pa should be a suitable candidate for the immobilization of HPW and provide enough encouragement for future exploration.
引文
[1] Ropero-Vega J L, Aldana-Pérez A, Gómez R, et al. Sulfated Titania [TiO2/SO42?]: A very active solid acid catalyst for the esterification of free fatty acids with ethanol [J]. Applied Catalysis A: General, 2010, 379(1-2):24-29.
    [2] Bhorodwaj S K, Pathak M G, Dutta D K. Esterification of Acetic Acid with n-Butanol Using Heteropoly Acid Supported Modified Clay Catalyst [J]. Catalysis Letters, 2009, 133:185-191.
    [3]温朗友,闵恩泽.固体杂多酸催化剂研究新进展[J].石油化工,2000,1:49-55.
    [4]王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社,1998.
    [5] Misono M. Recent progress in the practical applications of heteropolyacid and perovskite catalysts: Catalytic technology for the sustainable society [J]. Catalysis Today, 2009, 144 (3-4):285-291.
    [6] Kozhevnikov I V. Catalysis for Fine Chemical Syntheses-Catalysis by Polyoxometalates [M]. Vol. 2, John Wiley & Sons, Ltd., Chichester, 2002.
    [7] Misono M. Recent progress in the practical applications of heteropolyacid and perovskite catalysts: Catalytic technology for the sustainable society [J]. Catalysis Today, 2009, 144(3-4): 285-291.
    [8] Kozhevnikov I V. Sustainable heterogeneous acid catalysis by heteropoly acids [J]. Journal of Molecular of Catalysis A: Chemical, 2007, 262:86-92.
    [9] Moffat J B. Metal–Oxygen Clusters: The Surface and Catalytic Properties of Heteropoly Oxometalates [M]. Kluwer, New York, 2001.
    [10] Cavani F. Heteropolycompound-based catalysts: A blend of acid and oxidizing properties [J]. Catalysis Today, 1998, 41(1-3):73-86.
    [11] Izumi Y, Urabe K, Onaka M. Zeolite, Clay and Heteropoly Acid in Organic Reactions [J]. Tokyo: Kodansha/VCH, 1992:99.
    [12]伊万·科热夫尼科夫[著],唐培堏,李祥高,王世荣译.精细化学品的催化合成:多酸化合物及其催化[M].北京:化学工业出版社,2005.
    [13] Baronetti G, Briand L, Sedran U, et al. Heteropolyacid-based catalysis. Dawson acid for MTBE synthesis in gas phase [J]. Applied Catalysis A: General, 1998, 172 (2):265-272.
    [14] Keggin J F. The Structure and Formula of 12-Phosphotungstic Acid [J]. Proceedings of the Royal Society London, 1934, 144:75-100.
    [15] Kozhevnikov I V. Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions [J]. Chemical Reviews, 1998, 98 (1):171-198.
    [16] Mizuno N, Misono M. Heterogeneous Catalysis [J]. Chem. Rev., 1998, 98 (1):199-218.
    [17] Sambeth J, Baronetti G, Thomas H J. A theoretical-experimental study of Wells-Dawson acid: An explanation of their catalytic activity [J]. Journal of Molecular of Catalysis A: Chemical, 2003, 191(1):35-43.
    [18] Okuhara T, Mizuno N, Misono M. Catalytic Chemistry of Heteropoly Compounds [J]. Advances in Catalysis, 1996, 41:113-252.
    [19] Dias A S, Lima S, Pillinger M, et al. Acidic cesium salts of 12-tungstophosphoric acid as catalysts for the dehydration of xylose into furfural [J]. Carbohydrate Research, 2006, 341 (18):2946-2953.
    [20] Narasimharao K, Brown D R, Lee A F, et al. Structure-activity relations in Cs-doped heteropolyacid catalysts for biodiesel production [J]. Journal of Catalysis, 2007, 248(2):226-234.
    [21] Kimura M, Nakato T, Okuhara T. Water-tolerant solid acid catalysis of Cs2.5H0.5PW12O40 for hydrolysis of esters in the presence of excess water [J]. Applied Catalysis A: General, 1997, 165(1-2):227-240.
    [22] Nakato T, Toyoshi Y, Kimura M, et al. Unique catalysis of an acidic salt of heteropoly acid, Cs2.5H0.5PW12O40, consisting of microcrystallites [J]. Catalysis Today, 1999, 52(1):23-28.
    [23] Pope M T. Heteropoly and Isopoly Oxometalates [M]. Berlin: Springer, 1983.
    [24]王秀丽,赵岷等.多酸电化学导论[M].北京:中国环境科学出版社,2006.
    [25] Kholdeeva O A, Maksimchuk N V, Maksimov G M. Polyoxometalate-based heterogeneous catalysts for liquid phase selective oxidations: Comparison of different strategies [J], Catalysis Today, 2010, doi:10.1016/j.cattod.2009.12.016.
    [26] Kozhbnikov I V. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions [J]. Chemical Reviews, 1998, 98(1):171-198.
    [27] Gall R D, Hill C L, Walker J E. Carbon powder and fiber-supported polyoxometalate catalytic materials. Preparation, characterization, and catalytic oxidation of dialkyl Sulfides as mustard (HD) analogues [J]. Chemistry of Materials, 1996, 8(10):2523-2527.
    [28] Kim H, Jung J C, Yeom S H, et al. Immobilization of a heteropolyacid catalyst on the aminopropyl-functionalized mesostructured cellular foam (MCF) silica [J]. Materials Research Bulletin, 2007, 42(12):2132-2142.
    [29] Passoni L C, Luna F J, Wallau M, et al. Heterogenization of H6PMo9V3O40 and palladium acetate in VPI-5 and MCM-41 and their use in the catalytic oxidation of benzene to phenol [J]. Journal of Molecular Catalysis A: Chemical, 1998, 134(1-3):229-235.
    [30] Nowińska K, Kaleta W. Synthesis of Bisphenol-A over heteropoly compounds encapsulated into mesoporous molecular sieves [J]. Applied Catalysis A: General, 2000, 203(1):91-100.
    [31] Kaleta W, Nowińska K. Immobilisation of heteropoly anions in Si-MCM-41 channels by means of chemical bonding to aminosilane groups [J]. Chemical Communications, 2001, 535-536.
    [32] Wu S, Zhang W, Wang J, et al. Preyssler-Structured Tungstophosphoric Acid Catalyst on Functionalized Silica for Esterification of n-Butanol with Acetic Acid [J]. Catalysis Letters, 2008, 123:276-281.
    [33] Wu S, Wang J, Zhang W, et al. Preparation of Keggin and Preyssler Heteropolyacid Catalysts on Amine-modified SBA-15 and Their Catalytic Performances in Esterification of n-Butanol with Acetic Acid [J]. Catalysis Letters, 2008, 125:308-314.
    [34] Sydorchuka V, Zazhigalova V, Khalameidaa S, et al. Deposition of tungsten heteropolycompounds on activated silica surface [J]. Colloids and Surfaces A: Physicochemistry Engineering Aspects, 2009, 341:53-59.
    [35] Li H L, Fu A P, Xu D S, et al. In Situ Silanization Reaction on the Surface of Freshly Prepared Porous Silicon [J]. Langmuir, 2002, 18:3198-3202.
    [36] Li H L, Perkas N, Li Q L, et al. Improved Silanization Modification of a Silica Surface and Its Application to the Preparation of a Silica-Supported Polyoxometalate Catalyst [J]. Langmuir, 2003, 19(24):10409-10413.
    [37] Kim H, Jung J C, Park D R, et al. Preparation of H5PMo10V2O40 catalyst immobilized on nitrogen-containing mesostructured cellular foam carbon (N-MCF-C) and its application to the vapor-phase oxidation of benzyl alcohol [J]. Catalysis Today, 2008, 132:58-62.
    [38] Kyung W L, Kim H, Jung J C, et al. Preparation of H5PMo10V2O40 catalyst immobilized on spherical carbon and its application to the vapor-phase 2-propanol conversion reaction [J]. Korean Journal of Chemical Engineering, 2008, 25(4):710-713.
    [39] Okuhara T, Kimura M, Kawai T, et al. Organic reactions in excess water catalyzed by solid acids [J]. Catalysis Today, 1998, 45(1-4):73-77.
    [40] Rao P M, Landau M V, Wolfson A, et al. Cesium salt of a heteropolyacid in nanotubular channels and on the external surface of SBA-15 crystals: preparation and performance as acidic catalysts [J]. Microporous and Mesoporous Materials, 2005, 80(1-3):43-55.
    [41] Madhusudhan Rao P, Goldberg-Oppenheimer P, Kababya S, et al. Proton enriched high-surface-area cesium salt of phosphotungstic heteropolyacid with enhanced catalytic activity fabricated bynanocasting strategy [J]. Journal of Molecular Catalysis A: Chemical, 2007, 275(1-2):214-227.
    [42] Madhusudhan Rao P, Wolfson A, Kababya S, et al. Immobilization of molecular H3PW12O40 heteropolyacid catalyst in alumina-grafted silica-gel and mesostructured SBA-15 silica matrices [J]. Journal of Catalysis, 2005, 232(1):210-225.
    [43] Garade A C, Kshirsagar V S, Mane R B, et al. Acidity tuning of montmorillonite K10 by impregnation with dodecatungstophosphoric acid and hydroxyalkylation of phenol [J]. Applied Clay Science, 2010, 48(1-2):164-170.
    [44] Yadav G D, Bokade V V. Novelties of heteropoly acid supported on clay: etherification of phenethyl alcohol with alkanols [J]. Applied Catalysis A: General 147 (1996) 299-323.
    [45] Yadav G D, Kirthivasan N. Synthesis of bisphenol-A: comparison of efficacy of ion exchange resin catalysts vis-a-vis heteropolyacid supported on clay and kinetic modeling [J]. Applied Catalysis A: General, 1997, 154:29-53.
    [46] Bokade V V, Deshpande S S, Patil R, et al. Toluene Alkylation with Methanol to p-Xylene over Heteropoly Acids Supported by Clay [J]. Journal of Natural Gas Chemistry, 2007, 16:42-45.
    [47] Bokade V V, Yadav G D. Synthesis of Pharmaceutical Intermediates by Toluene Benzylation over Heteropoly Acids on Dif ferent Support [J]. Journal of Natural Gas Chemistry, 2007, 16:186-192.
    [48] Bokade V V, Yadav G D. Heteropolyacid supported on acidic clay: A novel efficient catalyst for alkylation of ethylbenzene with dilute ethanol to diethylbenzene in presence of C8 aromatics [J]. Journal of Molecular Catalysis A: Chemical, 2008, 285(1-2):155-161.
    [49] Nehate M and Bokade V V. Selective N-alkylation of aniline with methanol over a heteropolyacid on montmorillonite K10 [J]. Applied Clay Science, 2009, 44(3-4):255-258.
    [50] Bokade V V, Yadav G D. Synthesis of Bio-Diesel and Bio-Lubricant by Transesterification of Vegetable Oil with Lower and Higher Alcohols over Heteropolyacids Supported by Clay (K-10) [J]. Process Safety and Environmental Protection, 2007, 85(B5):372-377.
    [51] Bokade V V and Yadav G D. Transesterification of Edible and Nonedible Vegetable Oils with Alcohols over Heteropolyacids Supported on Acid-Treated Clay [J]. Industrial Engineering Chemistry Research, 2009, 48(21):9408-9415.
    [52] Yadav G D, Kamble S B. Selectivity engineering in isopropylation of mesitylene with isopropyl alcohol over cesium substituted heteropolyacid supported on K-10 clay [J]. Clean Technologies and Environmental Policy, 2009, 11(4):447-457.
    [53] Yadav G D, Asthana N S, Kamble V S. Cesium-substituted dodecatungstophosphoric acid on K-10 clay for benzoylation of anisole with benzoyl chloride [J]. Journal of Catalysis, 2003, 217:88-99.
    [54] Yadav G D and George G. Single step synthesis of 4-hydroxybenzophenone via esterification and Fries rearrangement: Novelty of cesium substituted heteropolyacid supported on clay [J]. Journal of Molecular Catalysis A: Chemical, 2008, 292(1-2):54-61.
    [55] Yadav G D, Bhagat R D. Clean esterification of mandelic acid over Cs2.5H0.5PW12O40 supported on acid treated clay [J]. Clean Technologies and Environmental Policy, 2005, 7:245-251.
    [56]陈天虎,徐晓春,岳书仓.苏皖凹凸棒石黏土纳米矿物学及地球化学[M].北京:科学出版社,2004.
    [57]郑茂松,王爱勤,詹庚申.凹凸棒石黏土应用研究[M].北京:化学工业出版社,2007.
    [58] Bradley W F. The structural scheme of attapulgite [J]. American mineralogist, 1940, 25(6):405-410.
    [59] Drits V A, Sokolova G V. Structure of palygorskite [J]. Soviet Physics Crystallography, 1971, 16:183-185.
    [60] Haden W L. Attapulgite: its properties and applications [J]. Industrial and Engingeering Chemistry Research, 1967, 59:58-69.
    [61]周杰,刘宁,李云.凹凸棒石粘土的显微结构特征[J].硅酸盐通报,1999,6:50-54.
    [62] E. Galan. Properties and applications of palygorskite-sepiolite clays [J], Clay Minerals, 1996, 31(4):443-453.
    [63]刘元法,黄建花,王兴国.凹凸棒石、膨润土和活性炭吸附油中色素的研究[J].矿物岩石, 2006,26:12-15.
    [64] Boki K, Mori H, Kawlasaki N. Bleaching rapeseed and soybean oils with synthetic adsorbents and attapulgites [J]. Journal of the American Oil Chemists’Society, 1994, 71: 595-601.
    [65] Boki K, Sakamoto N, Minami K. Inhibitory Effect of 1,3-Diglycerides During Adsorption ofβ-Carotene onto Attapulgite and Sepiolite [J]. Journal of the American Oil Chemists’Society, 2001, 78:733-736.
    [66] Zhao D, Zhou J and Liu N. Preparation and characterization of Mingguang palygorskite supported with silver and copper for antibacterial behavior [J]. Applied Clay Science, 2006, 33(3-4):161-170.
    [67] Frost R L, Xi Y and He H. Synthesis, characterization of palygorskite supported zero-valent iron and its application for methylene blue adsorption [J]. Journal of Colloid and Interface Science, 2010, 341(1):153-161.
    [68] Zhang J, Xie S, Ho Y S. Removal of fluoride ions from aqueous solution using modified attapulgite as Adsorbent [J]. Journal of Hazardous Materials, 2009, 165(1-3):218-222.
    [69] Wang Yuhua, Lan Ye, Hu Yuehua. Adsorption mechanisms of Cr (VI) on the modified bauxite tailings [J]. Minerals Engineering, 2008, 21(12-14):913-917.
    [70] Huang J H, Liu Y F, Jin Q Z, et al. Adsorption studies of a water soluble dye, Reactive Red MF-3B, using sonication-surfactantmodified attapulgite clay [J]. Journal of Hazardous Materials, 2007, 143(1-2):541-548.
    [71] Lei Z, Zhang Q, Luo J. Baeyer-Villiger oxidation of ketones with hydrogen peroxide catalyzed by Sn-palygorskite [J]. Tetrahedron Letters, 2005, 46(20):3505-3508.
    [72] Lei Z, Zhang Q, Wang R. Clean and selective Baeyer-Villiger oxidation of ketones with hy-drogen peroxide catalyzed by Sn-palygorskite [J]. Journal of Organic Chemistry, 2006, 691(26):5767-5773.
    [73] Cao J L, Shao G S, Wang Y, et al. CuO catalysts supported on attapulgite clay for low-temperature CO oxidation [J]. Catalysis Communications, 2008, 9(15):2555-2559.
    [74] Miao S, Liu Z and Zhang Z. Ionic Liquid-Assisted Immobilization of Rh on Attapulgite and Its Application in Cyclohexene Hydrogenation [J]. Journal of Physical Chemistry C, 2007, 111(12):2185-2190.
    [75] Zhao D, Zhou J and Liu N. Characterization of the structure and catalytic activity of copper modified palygorskite/TiO2 (Cu2+-PG/TiO2) catalysts [J]. Materials Science and Engineering: A, 2006, 431(1-2):256-262.
    [76] Gabrovska M, Krsti? J, Edreva-Kardjieva R, et al. The influence of the support on the properties of nickel catalysts for edible oil hydrogenation [J]. Applied Catalysis A: General, 2006, 299:73-83.
    [77] Zhang L, Lv F, Zhang W, et al. Photodegradation of methyl orange by attapulgite-SnO2-TiO2 nanocomposites [J], Journal of Hazardous Materials, 2009, 171(1-3):294-300.
    [78] Ma H, Sun K, Li Y, et al. Ultra-chemoselective hydrogenation of chloronitrobenzenes to chloroanilines over HCl-acidified attapulgite-supported platinum catalyst with high activity [J]. Catalysis Communications, 2009, 10(10):1363-1366.
    [79] de Paiva L B, Morales A R, Valenzuela Díaz F R. Organoclays: Properties, preparation and applications [J], Applied Clay Science, 2008, 42(1-2):8-24.
    [80] Huang J H, Liu Y F, Wang X G. Influence of differently modified palygorskites in the immobilization of a lipase [J], Journal of Molecular Catalysis B-Enzymatic, 2008, 55(1-2):49-54.
    [81] Huang J H, Liu Y F, Wang X G. Silanized palygorskite for lipase immobilization [J], Journal of Molecular Catalysis B-Enzymatic, 2009, 57(1-4):10-15.
    [82]张平萍,天然纳米矿物坡缕石在不同条件下的活化与相变[D]:[博士学位论文].杭州:浙江大学,2008.
    [83]吴国华,丁文江,罗吉荣.凹凸棒粘土对消失模涂料触变性的影响[J].上海交通大学学报, 2001,35(3):447-450.
    [84]吴国华,丁文江,罗吉荣.凹凸棒粘土对消失模涂料流变性的影响[J].硅酸盐学报, 2002,30(1):81-85.
    [85]张修华,张伯涛.凹凸棒石粘土印染浆料调制法[P].中国专利,CN88102788.1988-12-07.
    [86] Shi J, Yang X, Wang X, et al. Non-isothermal crystallization kinetics of nylon 6/attapulgite nanocomposites [J]. Polymer Testing, 2010, doi:10.1016/j.polymertesting.2010.03.007.
    [87]金叶玲.凹凸棒石粘土的性能及其在聚氨酯革中的应用[D]:[博士学位论文].南京:南京工业大学,2004.
    [88] Shen L, Lin Y, Du Q. Studies on structure–property relationship of polyamide-6/attapulgite nanocomposites [J]. Composites Science and Technology, 2006, 66(13):2242-2248.
    [89] Wang L, Sheng J. Preparation and properties of polypropylene/org-attapulgite nanocomposites [J]. Polymer, 2005, 46(16):6243-6249.
    [90] Drucker M M, Goldhar J, Ogra P L. The effect of attapulgite and charcoal on enterotoxicity of vibrio cholerae and Escherichia coli enterotoxins in rabbits [J]. Infection, 1977, 5(4):211-213.
    [91] Viseras C, Lopez-Galindo A. Pharmaceutical applications of some Spanish clays (sepiolite, palygorskite, bentonite): some preformulation studies [J]. Applied Clay Science, 1999, 14(1-3):69-82.
    [92] López G, Viseras C, Cerezo P. Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products [J]. Applied Clay Science, 2007, 36(1-3):51-63.
    [93]汤庆国,沈上越,梁金生.磁性凹凸棒石靶向药物载体材料的制备及性能[J].硅酸盐学报, 2006,34(1):93-97.
    [94] J?nchen J, Ackermann D, Weiler E. Calorimetric investigation on zeolites, AlPO4’s and CaCl2 impregnated attapulgite for thermochemical storage of heat [J]. Thermochimica Acta, 2005, 434(1-2):37-41.
    [95]曾永斌,姚超,丁永红等.盐酸掺杂聚苯胺/凹凸棒土纳米导电复合材料的研究[J].非金属矿, 2008,31:53-56.
    [96] Xu J M, Li W, Yin Q F, et al. Direct electron transfer and bioelectrocatalysis of hemoglobin onnano-structural attapulgite clay-modified glassy carbon electrode [J]. Journal of Colloid and Interface Science, 2007, 315(1):170-176.
    [97]仲慧,张莉莉,徐继明等.壳聚糖/凹凸棒土固定联吡啶钌修饰电极的电化学发光行为[J].分析测试学报,2008,27:123-126.
    [98] Gonzalez F, Pesquera C, Blanco C, et al. Structural and textural evolution of Al- and Mg-rich palygorskites, I. Under acid treatment [J]. Applied Clay Science, 1989, 4 (4):373-388.
    [99] Augsburger M S, Pedregosa J C, Strasser E, et al. FITR and Mossbauer investigation of a substituted palygorskite: Silicate with a channel st ructure [J]. Journal of Physics and Chemistry of Solids, 1998, 59(2):175-180.
    [100] Liu Y, Dai W, Wang T, et al. Superficial performance and pore structure of palygorskite treated by hydrochloric acid [J]. Journal of Central South University of Technology, 2006, 13:451-455.
    [101] Ye H, Chen F, Sheng Y. Adsorption of phosphate from aqueous solution onto modified palygorskites [J]. Separation and Purification Technology, 2006, 50(3):283-290.
    [102] Suárez Barrios M, Flores González L V, Vicente Rodríguez M A. Acid activation of a palygorskite with HCl: Development of physico-chemical, textural and surface properties [J]. Applied Clay Science, 1995, 10(3):247-258.
    [103] Cai Y, Xuea J, Polya D A. A Fourier transform infrared spectroscopic study of Mg-rich, Mg-poor and acid leached palygorskites [J]. Spectrochimica Acta Part A, 2007, 66(2):282-288.
    [104] Wu W, Fan Q, Xu J, et al. Sorption-desorption of Th (IV) on attapulgite: Effects of pH, ionic strength and temperature [J]. Applied Radiation and Isotopes, 2007, 65(10):1108-1114.
    [105] Frini-Srasra N, Srasra E. Acid treatment of south Tunisian palygorskite: Removal of Cd (II) from aqueous and phosphoric acid solutions [J]. Desalination, 2010, 250(1):26-34.
    [106] Wang W, Chen H, Wang A. Adsorption characteristics of Cd (II) from aqueous solution onto activated palygorskite [J]. Separation and Purification Technology, 2007, 55(2):157-164.
    [107] Fan Q, Li Z, Zhao H, et al. Adsorption of Pb (II) on palygorskite from aqueous solution: Effects of pH, ionic strength and temperature [J]. Applied Clay Science. 2009, 45(3):111-116.
    [108] Joy B, Ghosh S, Padmaja P. A facile 1, 2 proton migration of chalcone epoxide using acid activated palygorskites [J]. Catalysis Communications, 2005, 6:573-577.
    [109] Ni P, Li J, Suo J. Study on mechanical properties of polyurethane-attapulgite nanocomposites [J]. Journal of Materials Science, 2004, 39:4671-4673.
    [110] Wang L, Sheng J, Wu S. Isothermal crystallization kinetics of polypropylene/ attapulgite nano-composites [J]. Journal of Macromolecular Sciece: B, 2004, 43(5):935-946.
    [111] Wang L, Sheng J. Nonisothermal crystallization kinetics of polypropylene/ attapulgite nano-composites [J]. Journal of Macromolecular Sciece: B, 2005, 44(1):31-42.
    [112] Chen Y, Zhao Y, Zhou Sh, et al. Preparation and characterization of polyacrylamide/palygorskite [J]. Applied Clay Science, 2009, 46(2):148-152.
    [113] Zhao Y, Chen Y, Li M, et al. Adsorption of Hg2+ from aqueous solution onto polyacrylamide/attapulgite [J]. Journal of Hazardous Materials, 2009, 171(1-3):640-646.
    [114] Guerra D L, Silva E M, Airoldi C. Application of modified attapulgites as adsorbents for uranyl uptake from aqueous solution-Thermodynamic approach [J]. Process Safety and Environmental Protection, 2010, 88(1):53-61.
    [115] Guerra D L, Airoldi C, Viana R R. Modification of hectorite by organofunctionalization for use in removing U (VI) from aqueous media: thermodynamic approach [J]. Journal of Environmental Radioactivity, 2010, 101(2):122-133.
    [116] Zhao C, Ji Y, Shao Y, et al. Novel molecularly imprinted polymer prepared by nanoattapulgite as matrix for selective solid-phase extraction of diethylstilbestrol [J]. Journal of Chromatography A, 2009, 1216(44):7546-7552.
    [117] Liu P, Guo J S. Polyacrylamide grafted attapulgite (PAM-ATP) via surface-initiated atom transfer radical polymerization (SI-ATRP) for removal of Hg (II) ion and dyes [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 498:282-283.
    [118] Guerra D L, Viana R R, da Costa L P, et al. Sodium alginate films modified by raw and functionalized attapulgite for use of thorium (IV) adsorption: A thermodynamic approach [J]. Journal of Physics and Chemistry of Solids, 2009, 70 (11):1413-1421.
    [119] Xue A, Zhou S, Zhao Y, et al. Adsorption of reactive dyes from aqueous solution by silylated palygorskite [J]. Applied Clay Science, 2010, 48(4):638-640.
    [120] Fan Q H, Shao D D, Hu J, et al. Comparison of Ni2+ sorption to bare and ACT-graft ATPs: Effect of pH, temperature and foreign ions [J]. Surface Science, 2008, 602(3):778-785.
    [121] Liu Y, Liu P, Su Z, et al. Attapulgite-Fe3O4 magnetic nanoparticles via co-precipitation technique [J]. Applied Surface Science, 2008, 255 (5):2020-2025.
    [122]邹建国,钟秦.用稀土改性凹凸棒图净化柴油机尾气[J].硅酸盐学报,2005,33(8):1028-1031.
    [123] Zhao D, Zhou J, Liu N. Surface characteristics and photoactivity of silver-modified palygorskite clays coated with nanosized titanium dioxide particles [J]. Materials Characterization, 2007, 58:249-255.
    [124]赵娣芳,周杰,刘宁.铜改性凹凸棒石/纳米二氧化钛复合粉体的微观结构[J].硅酸盐学报,2006,34(7):792-795.
    [1]陈天虎,徐晓春,岳书仓,凹凸棒石黏土纳米矿物学及地球化学[M],北京:科学出版社,2004.
    [2] Galan E. Properties and applications of palygorskite–sepiolite clays [J], Clay Mineral, 1996, 31(4):443-453.
    [3]álvarez-Ayuso E, García-Sánchez A. Palygorskite as a feasible amendment to stabilize heavy metal polluted soils [J]. Environmental Pollution, 2003, 125 (3):337-344.
    [4]易发成,李虎杰,田煦等.坡缕石的酸活化及其吸附性能研究[J].矿产综合利用, 1995,(6):41-44.
    [5]郑茂松,王爱勤,詹庚申.凹凸棒石黏土应用研究[M].北京:化学工业出版社,2007.
    [6] Fan Qiaohui, Shao Dadong, Lu Yi, et al. Effect of pH, ionic strength, temperature and humic substances on the sorption of Ni (II) to Na-attapulgite [J]. Chemical Engineering Journal, 2009, 150(1):188-195.
    [7] Wang W, Chen H, Wang A. Adsorption characteristics of Cd (II) from aqueous solution onto activated palygorskite [J]. Separation and Purification Technology, 2007, 55(2):157-164.
    [8]彭英春.凹凸棒石表面改性及其在高分子复合材料中的应用[D].北京:中国地质大学, 2007.
    [9] Guerra D L, Viana R R, Airoldi C. Adsorption of mercury cation on chemically modified clay [J]. Materials Research Bulletin, 2009, 44(3):485-491.
    [10] Theeradit P, Nina S, Nipaka S, et al. Preparation and characterization of novel organo-clay minerals for Hg(II) ions adsorption from aqueous solution [J]. Applied Clay Science, 2009, 43(3-4):343-349.
    [11] Avila L R, de Faria E H, Ciuffi K J, et al. New synthesis strategies for effective functionalization of kaolinite and saponite with silylating agents [J]. Journal of Colloid and Interface Science, 2010, 341(1):186-193.
    [12] Huang J H, Wang X G, Jin Q Z, et al. Removal of phenol from aqueous solution by adsorption onto OTMAC-modified attapulgite [J]. Journal of Environental Management, 2007, 84(2): 229-236.
    [13] Huang J H, Liu Y F, Wang X G. Selective adsorption of tannin from flavonoids by organically modified attapulgite clay [J]. Journal of Hazardous Materials, 2008, 160(2-3):382-387.
    [14] Pereira C, Silva A R, Carvalho A P, et al. Vanadyl acetylacetonate anchored onto amine-functionalised clays and catalytic activity in the epoxidation of geraniol [J]. Journal of Molecular Catalysis A: Chemical, 2008, 283(1-2)5-14.
    [15] Guerra D L, Viana R R, da Costa L P, et al. Sodium alginate films modified by raw and functionalized attapulgite for use of thorium (IV) adsorption: A thermodynamic approach [J]. Journal of Physics and Chemistry of Solids, 2009, 70 (11) 1413-1421.
    [16] Barrett E P, Joyner L G, Halenda P P. The determination of pore volume and area distributions in porous substances. I. Computations from Nitrogen Isotherms [J]. Journal of the American Chemical Society, 1951, 73:373-380.
    [17] Myriam M, Suarez M, Martin-Pozas J M. Structural and textural modifications of palygorskite and sepiolite under acid treatment [J]. Clays and clay Minerals, 1998, 46(3):225-231.
    [18]郑自立,罗淑湘,李虎杰等.坡缕石的耐酸碱性研究[J].矿产综合利用,1996,(6):33-37.
    [19] Barrios M S, Flores Gonzhlez L V, Vicente M A, et al. Acid activation of a palygorskite with HCl: Development of physico-chemical, textural and surface properties [J]. Applied Clay Science, 1995, 10 (3):247-258.
    [20]陈天虎,冯有亮,史晓莉.凹凸棒石与酸反应产物和结构演化的研究[J].硅酸盐学报,2003,31(10):959-964.
    [21]郑自立,易发成,李虎杰,等.中国坡缕石[M].北京:地质出版社,1997.
    [22]张成军.实验设计与数据处理[M].北京:化学工业出版社,2009.
    [23] Buseck P R. Minerals and reactions at the atomic scale: transmission electron microscopy [J]. Reviews in Mineralogy, 1992(27):181-229.
    [24] Singer A. Dissolution of Australian paygorskite in dilute acid [J]. Clays and Clay Minerals, 1977, 25(2):126-130.
    [25] Araujo Melo D M, Ruiz J A C, Melo M A F, et al. Preparation and characterization of lanthanum palygorskite clays as acid catalysts [J]. Journal of Alloys and Compounds, 2002, 344(1):352-355.
    [26]刘元法.凹凸棒石油脂脱色机理及其对油脂品质的影响研究[D]:[博士学位论文].无锡:江南大学,2007.
    [27] Ramos M A, Gil M H, Schacht E. Physical and chemical characterisation of some silicas and silica derivatives [J]. Powder Technology, 1998, 99(1):79-85.
    [28] Ferreira L, Ramos M A, Dordick J S. Influence of different silica derivatives in the immobilization and stabilization of a Bacillus licheniformis protease (Subtilisin Carlsberg) [J]. Journal of Molecular Catalysis B: Enzymatic, 2003, 21(4-6):189-199.
    [29] Shaw S Y, Chen Y J, Ou J J. Preparation and characterization of Pseudomonas putida esterase immobilized on magnetic nanoparticles [J]. Enzyme and Microbial Technology, 2006, 39(5):1089-1095.
    [30] Jasper N A, Cheng M M C, Geho D H. Physicochemically modified silicon as a substrate for protein microarrays [J]. Biomaterials, 2007, 28(3):550-558.
    [31] Shen W, He H P, Zhu J X, et al. Grafting of montmorillonite with different functional silanes via two different reaction systems [J]. Journal of Colloid and Interface Science, 2007, 313(1):268-273.
    [32] Wheeler P A, Wang J, Baker J, et al. Synthesis and Characterization of Covalently Functionalized Laponite Clay [J]. Chemistry of Materials, 2005, 17:3012-3018.
    [33] Simon A, Cohen-Bouhacina T, PortéM C, et al. Study of Two Grafting Methods for Obtaining a 3-Aminopropyltriethoxysilane Monolayer on Silica Surface [J]. Journal of Colloid and Interface Science, 2002, 251(2):278-283.
    [34] Kim H, Jung J C, Yeom S H, et al. Immobilization of a heteropolyacid catalyst on the aminopropyl-functionalized mesostructured cellular foam (MCF) silica [J]. Materials Research Bulletin, 2007, 42(12):2132-2142.
    [35] Liu Y, Dai W, Wang T, et al. Superficial performance and pore structure of palygorskite treated by hydrochloric acid [J]. Journal of Central South University of Technology, 2006, 13:451-455.
    [36] Rouquerol F, Rouquerol J and Sing K. Adsorption by Powders & Porous Solids [M]. San Diego: Academic Press, 1999.
    [37] Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J]. Pure and Applied Chemistry, 1985, 57:603-619.
    [38] Frost R L, Locos O B, Ruan H. Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorskites [J]. Vibrational Spectroscopy, 2001, 27:1-13.
    [39] Madejova J. FTIR techniques in clay mineral studies [J]. Vibrational Spectroscopy, 2003, 31:1-10.
    [40]郝青丽,杨绪杰,王瑛.机械研磨影响高岭石结构的光谱研究[J].光谱学与光谱分析,2000,20(3):302-304.
    [41] Xue S Q, Reinholdt M, Pinnavaia T J. Palygorskite as an epoxy polymer reinforcement agent [J]. Polymer, 2006, 47(10):3344-3350.
    [42] Snal M, Sar?kaya Y. Some physicochemical properties of a clay containing smectite and palygorskite [J]. Applied Clay Science, 2009, 44(1-2):161-165.
    [43] Baltar C A M, da Luz A B, Baltar L M, et al. Influence of morphology and surface charge on the suitability of palygorskite as drilling fluid [J]. Applied Clay Science, 2009, 42(3-4):597-600.
    [44] Turhan Y, Turan P, Do?an M, et al. Characterization and Adsorption Properties of Chemically Modified Sepiolite [J]. Industrial and Engineering Chemistry Research, 2008, 47:1883-1895.
    [45] Cao E, Bryant R, Williams D J A. Electrochemical Properties of Na-Attapulgite [J]. Journal of Colloid and Interface Science, 1996, 179(1):143-150.
    [46] Zhao D, Zhou J, Liu N. Surface characteristics and photoactivity of silver-modified palygorskite clays coated with nanosized titanium dioxide particles [J]. Materials Characterization, 2007, 58:249-255.
    [47]徐柏森,杨静.实用电镜技术[M].南京:东南大学出版社,2008.
    [1] Heravi M M, Derikvand F, Bamoharram F F. Highly efficient, four-component one-pot synthesis of tetrasubstituted imidazoles using Keggin-type heteropolyacids as green and reusable catalysts [J]. Journal of Molecular Catalysis A: Chemical, 2007, 263(1-2):112-114.
    [2] Leng Y, Wang J, Zhu D R, et al. Sulfonated organic heteropolyacid salts: Recyclable green solid catalysts for esterifications [J]. Journal of Molecular Catalysis A: Chemical, 2009, 313(1-2):1-6.
    [3] Tarlani A, Abedini M, Nemati A, et al. Immobilization of Keggin and Preyssler tungsten heteropolyacids on various functionalized silica [J]. Journal of Colloid and Interface Science, 2006, 303(1):32-38.
    [4] Rocchiccioli-Deltcheff C, Fournier M, Franck R, et al. Vibrational investigations of polyoxometalates. 2. Evidence for anion-anion interactions in molybdenum (VI) and tungsten (VI) compounds related to the Keggin structure [J]. Inorganic Chemistry, 1983, 22(2):207-216.
    [5] Wang G J, Liu G Q, Xu M X, et al. Ti-MCM-41 supported phosphotungstic acid: An effective and environmentally benign catalyst for epoxidation of styrene [J]. Applied Surface Science, 2008, 255(5):2632-2640.
    [6]王幸宜.催化剂表征[M].上海:华东理工大学出版社,2008.
    [7] Wu S, Wang J, Zhang W, et al. Preparation of Keggin and Preyssler Heteropolyacid Catalysts on Amine-modified SBA-15 and Their Catalytic Performances in Esterification of n-Butanol with Acetic Acid [J]. Catalysis Letters, 2008, 125(3-4):308-314.
    [8] Kumar G S, Vishnuvarthan M, Palanichamy M, et al. SBA-15 supported HPW: Effective catalytic performance in the alkylation of phenol [J]. Journal of Molecular Catalysis A: Chemical, 2006, 260(1-2):49-55.
    [9] Shanmugapriya K, Palanichamy M, Arabindoo B, et al. A novel route to produce thymol by vapor phase reaction of m-cresol with isopropyl acetate over Al-MCM-41 molecular sieves [J]. Journal of Catalysis, 2004, 224(2):347-357.
    [10] Kozhevnikov I V, Sinnema A, Jansen R J J, et al. 17O NMR determination of proton sites in solid heteropoly acid H3PW12O40 31P, 29Si and 17O NMR, FT-IR and XRD study of H3PW12O40 and H4SiW12O40 supported on carbon [J]. Catalysis Letters, 1994, 27(1-2):187-197.
    [11] Pope M T. in“Heteropoly and Isopoly Oxometalates.”Berlin: Springer, 1983.
    [12] Kyle J H. Kinetics of the base decomposition of dodecatungstophosphate (3-) in weakly alkaline solutions [J]. Journal of Chemistry Society Dalton Transactions, 1983:2609-2612.
    [13] Pizzio L R, Cáceres C V, Blanco M N, Adsorption of Tungstophosphoric or Tungstosilicic Acids from Ethanol-Water Solutions on Carbon [J]. Journal of Colloid and Interface Science, 1997, 190(2):318-326.
    [14] Pizzio L R, Cáceres C V, Blanco M N. Acid catalysts prepared by impregnation of tungstophosphoric acid solutions on different supports [J]. Applied Catalysis A: General, 1998, 167(2):283-294.
    [15] Chimienti M E, Pizzio L R, Cáceres C V, et al. Tungstophosphoric and tungstosilicic acids on carbon as acidic catalysts [J]. Applied Catalysis A: General, 2001, 208(1-2):7-19.
    [16] Romanelli G, Vázquez P, Pizzio L, et al. Phenol tetrahydropyranylation catalyzed by silica-alumina supported heteropolyacids with Keggin structure [J]. Applied Catalysis A: General, 2004, 261(2):163-170.
    [17] Zeynep O, Timur D. Activated carbon–tungstophosphoric acid catalysts for the synthesis of tert-amyl ethyl ether (TAEE) [J]. Chemical Engineering Journal, 2008, 138(1-3):548-555.
    [18] Pizzio L R, Vázquez P G, Cáceres C V, et al. Supported Keggin type heteropolycompounds for ecofriendly reactions [J]. Applied Catalysis A: General, 2003, 256 (1-2):125-139.
    [19] G?k ?, ?zcan A S, ?zcan A. Adsorption behavior of a textile dye of Reactive Blue 19 from aqueous solutions onto modified bentonite [J]. Applied surface science, 2010, 256(17):5439-5443.
    [20] Lagergren S. About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens [J]. Handlingar, 1898, 24:1-39.
    [21] Li N, Bai R B and Liu C K. Enhanced and Selective Adsorption of Mercury Ions on Chitosan Beads Grafted with Polyacrylamide via Surface-Initiated Atom Transfer Radical Polymerization [J]. Langmuir, 2005, 21(25):11780-11787.
    [22] Guerra D L, Pinto A A, Viana R R, et al. Modification of magadiite surface by organofunctionalization for application in removing As (V) from aqueous media: Kinetic and thermodynamic [J]. Applied surface science, 2009, 256(3):702-709.
    [23] Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum [J]. Journal of theAmerican Chemical Society, 1918, 40:1361-1403.
    [24] Weber W and DiGiano F. Process Dynamics in Environmental Systems [M], 1st ed., New York: John Wiley and Sons, Inc., 1996.
    [25] Freundlich H M F. Uber die adsorption in lasungen [J]. Zeitschrift für Physikalische Chemie, 1906, 57:385-470.
    [26] Simon A, Cohen-Bouhacina T, PortéM C, et al. Study of Two Grafting Methods for Obtaining a 3-Aminopropyltriethoxysilane Monolayer on Silica Surface [J]. Journal of Colloid and Interface Science, 2002, 251(2):278-283.
    [27] Zhang Z Y, Zhang Z B, Fernández Y, et al. Adsorption isotherms and kinetics of methylene blue on a low-cost adsorbent recovered from a spent catalyst of vinyl acetate synthesis [J]. Applied surface science, 2010, 256(8):2569-2576.
    [28] Adebowale K O , Unuabonah E I, Olu-Owolabi B I. Kinetic and thermodynamic aspects of the adsorption of Pb~(2+) and Cd~(2+) ions on tripolyphosphate-modified kaolinite clay [J]. Chemical Engineering Journal, 2008, 136(2-3):99-107.
    [29] Alkaram U F, Mukhlis A A, Al-Dujaili A H, The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite [J]. Journal of Hazardous Materials, 2009, 169(1-3):324-332.
    [30] Fan Q H, Shao D D, Hu J, et al. Comparison of Ni2+ sorption to bear and ACT-graft attapulgites: Effect of pH, temperature and foreign ions [J]. Surface Science, 2008, 602(3):778-785.
    [31] Yang S, Li J, Lu Y, et al. Sorption of Ni (II) on GMZ bentonite: Effects of pH, ionic strength, foreign ions, humic acid and temperature [J]. Applied Radiation and Isotopes, 2009, 67(9):1600-1608.
    [32] Ijagbemi C O, Baek M H, Kim D S. Adsorptive performance of un-calcined sodium exchanged and acid modified montmorillonite for Ni2+ removal: Equilibrium, kinetics, thermodynamics and regeneration studies [J]. Journal of Hazardous Materials, 2010, 174(1-3):746-755.
    [33] Adhikari R and Singh M V. Sorption characteristics of lead and cadmium in some soils of India [J]. Geoderma, 2003, 114(1-2):81-92.
    [34] El-Nahhal I M and El-Ashgar N M. A review on polysiloxane-immobilized ligand systems: Synthesis, characterization and applications [J]. Journal of Organometallic Chemistry, 2007, 692(14):2861-2886.
    [35] Li H L, Perkas N, Li Q L, et al. Improved Silanization Modification of a Silica Surface and Its Application to the Preparation of a Silica-Supported Polyoxometalate Catalyst [J]. Langmuir, 2003, 19(24):10409-10413.
    [36] El-Nahhal I M, Chehimi M M, Cordier C, et al. XPS, NMR and FTIR structural characterization of polysiloxane-immobilized amine ligand systems [J]. Journal of Non-Crystalline Solids, 2000, 275(1-2):142-146.
    [37] Akhtar M S, Cheralathan K K, Chun J M, et al. Composite electrolyte of heteropolyacid (HPA) and polyethylene oxide (PEO) for solid-state dye-sensitized solar cell [J]. Electrochimica Acta, 2008, 53(22):6623-6628.
    [38] Qu L Y, Lu R Q, Peng J, et al. H3PW11MoO40·2H2O protonated polyaniline-synthesis, characterization and catalytic conversion of isopropanol [J]. Synthetic Metals, 1997, 84(1-3):135-136.
    [1] Caetano C S, Fonseca I M, Ramos A M, et al. Esterification of free fatty acids with methanol using heteropolyacids immobilized on silica [J]. Catalysis Communications, 2008, 9(10):1996-1999.
    [2] Marchetti J M, Errazu A F. Comparison of different heterogeneous catalysts and different alcohols for the esterification reaction of oleic acid [J]. Fuel, 2008, 87(15-16):3477-3480.
    [3] Keskin A. Biodiesel Production from Free Fatty Acids Obtained with Neutralization of the Crude Glycerin [J]. Energy Sources, Part A, 2009, 31:17-24.
    [4] Shahidi, F. (Eds.). Bailey’s Industrial Oil and Fat Products, Canada: John Wiley & Sons, 2005
    [5] Vieville C, Mouloungui Z, Gaset A. Esterification of oleic acid by methanol catalyzed by p-toluenesulfonic acid and the cation-exchange resins K2411 and K1481 in supercritical carbon dioxide [J]. Industrial & Engineering Chemistry Research, 1993, 32(9):2065-2068.
    [6] Suppalakpanya K, Ratanawilai S B, Tongurai C. Production of ethyl ester from esterified crude palm oil by microwave with dry washing by bleaching earth [J]. Applied Energy, 2010, 87(7):2356-2359.
    [7] Caetano C S, Fonseca I M, Ramos A M, et al. Esterification of free fatty acids with methanol using heteropolyacids immobilized on silica [J]. Catalysis Communications, 2008, 9(10):1996-1999.
    [8] Kulkarni M G, Gopinath R, Meher L C, et al. Solid acid catalyzed biodiesel production by simultaneous esterification and transesterification [J]. Green Chemistry, 2006, 8:1056-1062.
    [9] Morin P, Hamad B, Sapaly G, et al. Transesterification of rapeseed oil with ethanol I. Catalysis with homogeneous Keggin heteropolyacids [J]. Applied Catalysis A: General, 2007, 330:69-76.
    [10] Cao F H, Chen Y, Zhai F Y, et al. Biodiesel production from high acid value waste frying oil catalyzed by superacid heteropolyacid. Biotechnology and Bioengineering, 2008, 101:93-100.
    [11] Bokade V V, Yadav G D. Transesterification of edible and nonedible vegetable oils with alcohols over heteropolyacids supported on acid-treated clay [J]. Industrial and Engineering Chemistry Research, 2009, 48(21):9408-9415.
    [12] Hernández-Cortez J G, Martinez L, Soto L, et al. Liquid phase alkylation of benzene with dec-1-ene catalyzed on supported 12-tungstophosphoric acid [J]. Catalysis Today, 2010, 150(3-4):346-352.
    [13] Okuhara T. Microporous heteropoly compounds and their shape selective catalysis [J]. Applied Catalysis A: General, 2003, 256 (1-2):213-224.
    [14] Madhusudhan Rao P, Goldberg-Oppenheimer P, Kababya S, et al. Proton enriched high-surface-area cesium salt of phosphotungstic heteropolyacid with enhanced catalytic activity fabricated by nanocasting strategy [J]. Journal of Molecular Catalysis A: Chemical, 2007, 275(1-2):214-227.
    [15] Dias A S, Lima S, Pillinger M, et al. Acidic cesium salts of 12-tungstophosphoric acid as catalysts for the dehydration of xylose into furfural [J]. Carbohydrate Research, 2006, 341(18):2946-2953.
    [16] Pesaresi L, Brown D R, Lee A F, et al. Cs-doped H4SiW12O40 catalysts for biodiesel applications [J]. Applied Catalysis A: General, 2009, 360(1):50-58.
    [17] Rao P M, Landau M V, Wolfson A, et al. Cesium salt of a heteropolyacid in nanotubular channels and on the external surface of SBA-15 crystals: preparation and performance as acidic catalysts [J]. Microporous and Mesoporous Materials, 2005, 80(1-3):43-55.
    [18] Yadav G D, Kamble S B. Selectivity engineering in isopropylation of mesitylene with isopropyl alcohol over cesium substituted heteropolyacid supported on K-10 clay [J]. Clean Technologies and Environmental Policy, 2009, 11:447-457.
    [19] Bhorodwaj S K, Pathak M G, Dutta D K. Esterification of acetic acid with n-butanol using heteropoly acid supported modified clay catalyst [J]. Catalysis Letters, 2009, 133:185-191.
    [20] Nehate M, Bokade V V. Selective N-alkylation of aniline with methanol over a heteropolyacid on montmorillonite K10 [J]. Applied Clay Science, 2009, 44(3-4):255-258.
    [21] Yadav G D, Asthana N S, Kamble V S. Friedel-Crafts benzoylation of p-xylene over clay supported catalysts: novelty of cesium substituted dodecatungstophosphoric acid on K-10 clay [J]. Applied Catalysis A: General, 2003, 240(1-2):53-69.
    [22] Yadav G D, Asthana N S. Selective decomposition of cumene hydroperoxide into phenol and acetone by a novel cesium substituted heteropolyacid on clay [J]. Applied Catalysis A: General, 2003, 244(2):341-357.
    [23] Yadav G D, George G. Single step synthesis of 4-hydroxybenzophenone via esterification and Fries rearrangement: Novelty of cesium substituted heteropolyacid supported on clay [J]. Journal of Molecular Catalysis A: Chemical, 2008, 292(1-2):54-61.
    [24] Zieba A, Matachowski L, Gurgul J, et al. Transesterification reaction of triglycerides in the presence of Ag-doped H3PW12O40 [J]. Journal of Molecular Catalysis A: Chemical, 2010, 316(1-2):30-44.
    [25] Okuhara T, Watanabe H, Nishimura T, et al. Microstructure of cesium hydrogen salts of 12-tungstophosphoric acid relevant to novel acid catalysis [J]. Chemistry of Materials, 2000, 12(8):2230-2238.
    [26] Volkova G G, Plyasova L M, Salanov A N, et al. Heterogeneous catalysts for Halide-Free carbonylation of dimethyl ether [J]. Catalysi Letters, 2002, 80:175-179.
    [27] Dias J A, Caliman E, Dias S C L. Effects of cesium ion exchange on acidity of 12-tungstophosphoric acid [J]. Microporous and Mesoporous Materials, 2004, 76(1-3):221-232.
    [28] Marchetti J M, Errazu A F. Comparison of different heterogeneous catalysts and different alcohols for the esterification reaction of oleic acid [J]. Fuel, 2008, 87(15-16):3477-3480.
    [29] Okuhara T, Mizuno N, Misono M. Catalytic Chemistry of Heteropoly Compounds [J]. Advances inCatalysis, 1996, 41:113-252.
    [30] Melero J A, Iglesias J, Morales G. Heterogeneous acid catalysts for biodiesel production: current status and future challenges [J]. Green Chemistry, 2009, 11:1285-1308.
    [1] Jermy B R, Pandurangan A. A highly efficient catalyst for the esterification of acetic acid using n-butyl alcohol [J]. Journal of Molecular Catalysis A: Chemical, 2005, 237(1-2):146-154.
    [2] Vieville C, Mouloungui Z, Gaset A. Esterification of oleic acid by methanol catalyzed by p-toluenesulfonic acid and the cation-exchange resins K2411 and K1481 in supercritical carbon dioxide [J]. Industrial & Engineering Chemistry Research, 1993, 32(9): 2065-2068.
    [3] Kozhevnikov I V. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions [J]. Chemical Review, 1998, 98(1):171-198.
    [4] Okuhara T. New catalytic functions of heteropoly compounds as solid acids [J]. Catalysis Today, 2002, 73(1-2):167-176.
    [5] Kim H, Jung J C, Kim P, et al. Preparation of H3PMo12O40 catalyst immobilized on surface modified mesostructured cellular foam (SM-MCF) silica and its application to the ethanol conversion reaction [J]. Journal of Molecular Catalysis A: Chemical, 2006, 259(1-2):150-155.
    [6] Bokade V V, Yadav G D. Transesterification of Edible and Nonedible Vegetable Oils with Alcohols over Heteropolyacids Supported on Acid-Treated Clay [J]. Industrial Engineering Chemistry Research, 2009, 48(21):9408-9415.
    [7] Garade A C, Kshirsagar V S, Mane R B, et al. Acidity tuning of montmorillonite K10 by impregnation with dodecatungstophosphoric acid and hydroxyalkylation of phenol [J]. Applied Clay Science, 2010, 48(1-2):164-170.
    [8] Villabrille P, Romanelli G, Vázquez P, et al. Vanadium-substituted Keggin heteropolycompounds as catalysts for ecofriendly liquid phase oxidation of 2,6-dimethylphenol to 2, 6-dimethyl-1,4-benzoquinone [J]. Applied Catalysis A: General, 2004, 270(1-2):101-111.
    [9] Pizzio L R, Vázquez P G, Cáceres C V, et al. Supported Keggin type heteropolycompounds for ecofriendly reactions [J]. Applied Catalysis A: General, 2004, 256(1-2):125-139.
    [10] dos Santos E L, Gomes Jr W A, Ribeirob N M, et al. Ecofriendly ketalization of isatin using heteropolycompounds as catalysts [J]. Journal of Molecular Catalysis A: Chemical, 2008, 295(1-2):18-23.
    [11] Vázquez P G, Blanco M N and Cáceres C V. Catalysts based on supported 12-molybdophosphoric acid [J]. Catalsis Letters, 1999, 60:205-215.
    [12]甄开吉,王国甲,毕颖丽,等.催化作用基础(第三版)[M].北京:科学出版社.2005.
    [13] Tarlani A, Abedini M, Nemati A, et al. Immobilization of Keggin and Preyssler tungsten heteropolyacids on various functionalized silica [J]. Journal of Colloid and Interface Science, 2006, 303(1):32-38.
    [14] Vásquez P, Pizzio L, Cáceres C, et al. Silica-supported heteropolyacids as catalysts in alcohol dehydration reactions [J]. Journal of Molecular Catalysis A: Chemical, 2000, 161(1-2):223-232.
    [15] Romanelli G, Vázquez P, Pizzio L, et al. Phenol tetrahydropyranylation catalyzed by silica-alumina supported heteropolyacids with Keggin structure [J]. Applied Catalysis A: General, 2004, 261 (2):163-170.
    [16] Ghosh A K, Moffat J B. Acidity of heteropoly compounds [J]. Journal of Catalysis, 1986, 101(2):238-245.
    [17] Devassy B M, Halligudi S B. Effect of calcination temperature on the catalytic activity of zirconia-supported heteropoly acids [J]. Journal of Molecular Catalysis A: Chemical, 2006, 253(1-2):8-15.
    [18] Kozhevnikov I V. Friedel-Crafts acylation and related reactions catalysed by heteropoly acids [J]. Applied Catalysis A: General, 2003, 256(1-2):3-18.
    [19] Li W, Li L, Wang Z, et al. 12-tungstophosphoric heteropolyacid anions encapsulated in chemically modified mesoporous silica FSM-16 and its electrocatalytic reduction for nitrite [J]. Materials Letters, 2001, 49(3-4):228-234.
    [20] Kim H, Jung J C, Yeom S H, et al. Immobilization of a heteropolyacid catalyst on the aminopropyl-functionalized mesostructured cellular foam (MCF) silica [J]. Materials Research Bulletin, 2007, 42(12):2132-2142.
    [21] Jeremy B R, Pandurangan A. A highly efficient catalyst for the esterification of acetic acid using n-butyl alcohol [J]. Journal of Molecular Catalysis A: Chemical, 2005, 237(1-2):146-154.
    [22] Kirumakki S R, Nagaraju N, Narayanan S. A comparative esterification of benzyl alcohol with acetic acid over zeolites Hβ, HY and HZSM5 [J]. Applied Catalysis A: General, 2004, 273(1-2):1-9.
    [23] Das J, Parida K M. Heteropoly acid intercalated Zn/Al HTlc as efficient catalyst for esterification of acetic acid using n-butanol [J]. Journal of Molecular Catalysis A: Chemical, 2007, 264(1-2):248-254.
    [24] Leng Y, Wang J, Zhu D R, et al. Sulfonated organic heteropolyacid salts: Recyclable green solid catalysts for esterifications [J]. Journal of Molecular Catalysis A: Chemical, 2009, 313(1-2):1-6.
    [25] Bardin B B. Characterization and Reactivity of Heteropolyacid Catalysts [D]: [博士学位论文]. Ann Arbor: University of Virginia, 2000.
    [26] Dash S S, Parida K M. Esterification of acetic acid with n-butanol over manganese nodule leached residue [J]. Journal of Molecular Catalysis A: Chemical, 2007, 266:88-92.
    [27] Bhorodwaj S K, Pathak M G, Dutta D K. Esterification of Acetic Acid with n-Butanol Using Heteropoly Acid Supported Modified Clay Catalyst [J]. Catalysis Letters, 2009, 133:185-191.
    [28] Namba S, Wakashima Y, Shimizu T, et al. Catalysis by Acids and Bases [M]. Amsterdam: Elsevier, 1989.
    [29] Parida K M, Mallick S. Silicotungstic acid supported zirconia: An effective catalyst for esterification reaction [J]. Journal of Molecular Catalysis A: Chemical, 2007, 275:77-83.
    [30] Mallik S, Dash S S, Parida K M, et al. Synthesis, characterization, and catalytic activity of phosphomolybdic acid supported on hydrous zirconia [J]. Journal of Colloid and Interface Science, 2006, 300:237-243.
    [31] Boyd G E, Adamson A W, Myers L S J. The Exchange Adsorption of Ions from Aqueous Solutions by Organic ZeolitesП. Kineticsl [J]. Journal of the American Chemical Society, 1947, 69(11):2836-2848.
    [32] Fazaeli R, Aliyan H. Clay (KSF and K10)-supported heteropoly acids: Friendly, efficient, reusable and heterogeneous catalysts for high yield synthesis of 1,5-benzodiazepine derivatives both in solution and under solvent-free conditions [J]. Applied Catalysis A: General, 2007, 331:78-83.
    [33] Wu S S, Liu P, Leng Y, et al. Heteropolyacids Anchored on Amino-Functionalized MCM-41 via Condensation as Reusable Catalysts for Esterification [J]. Catalysis Letters, 2009, 132:500-505.
    [34] Zhang L X, Jin Q Z, Shan L, et al. H3PW12O40 immobilized on silylated palygorskite and catalytic activity in esterification reactions [J]. Applied Clay Science, 2010, 47(3-4):229-234.
    [35] Marchetti J M and Errazu A F. Esterification of free fatty acids using sulfuric acid as catalyst in the presence of triglycerides [J]. Biomass and Bioenergy, 2008, 32(9):892-895.
    [36] Juan J C, Zhang J, Yarmo M A. Structure and reactivity of silica-supported zirconium sulfate for esterification of fatty acid under solvent-free condition [J]. Applied Catalysis A: General, 2007, 332(2):209-215.
    [37] Melero J A, Iglesias J, Morales G. Heterogeneous acid catalysts for biodiesel production: current status and future challenges [J]. Green Chemistry, 2009, 11:1285-1308.
    [38] Kirumakki S R, Nagaraju N, Chary K V R. Esterification of alcohols with acetic acid over zeolites H?, HY and HZSM5 [J]. Applied Catalysis A: General, 2006, 299:185-192.
    [39] Jermy B R, Pandurangan A. Catalytic application of Al-MCM-41 in the esterification of acetic acid with various alcohols [J]. Applied Catalysis A: General, 2005, 288:25-33.
    [40] Carmo Jr A C, de Souza L K C, da Costa C E F, et al. Production of biodiesel by esterification of palmitic acid over mesoporous aluminosilicate Al-MCM-41 [J]. Fuel, 2009, 88:461-468.
    [41] Tanaka K, Yoshikawa R, Ying C, et al. Application of zeolite membranes to esterification reactions [J]. Catalysis Today, 2001, 67:121-125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700