凹凸棒土吸附四环素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国凹凸棒土矿产资源丰富,凹凸棒土作为工业应用广泛的非金属矿,具有良好的吸附功能。近年来,抗生素污染已渐渐成为人们关注的焦点。本文以凹凸棒土为吸附剂,探索其在治理抗生素方面的应用。
     首先,采用不同方法对凹凸棒土进行改性,结果发现,改性凹凸棒土对四环素的吸附性能大小分别为酸活化土、原土、煅烧土、KH550改性土、十八烷基三甲基氯化铵改性土;对盐酸活化工艺进行优化,得到最优条件:盐酸浓度0.5 mol/L、温度40 oC、固液比为1:8、活化时间1 h。
     其次,研究四环素在凹凸棒土上的吸附过程,结果发现,四环素在凹凸棒土上的吸附更加符合准二级动力学方程模型;初始阶段,四环素在凹凸棒土上的吸附速率是由表面扩散控制的;凹凸棒土对四环素的吸附是一个自发的吸热过程,符合Freundlich方程模型;四环素在凹凸棒土上的解吸附过程具有滞后性。
     再次,研究pH和离子浓度对凹凸棒土吸附四环素的影响,试验结果表明,四环素的单位吸附量随着体系pH的提高而增加,在pH为3.0时达到最大,然后随着pH的增大而降低;四环素的单位吸附量随着体系中离子浓度的增加而减少,并且各种离子的影响效果为Mg~(2+) > Ca~(2+)>K~+>Na~+。
     对已吸附的凹凸棒土进行再生,实验结果表明,采用在加热条件下采用稀碱对凹凸棒土吸附剂进行处理具有良好的再生效果;稀碱再生的优化条件为在NaOH浓度为0.004 mol/L,温度为60 oC,反应时间分别为60 min,再生率为93.5%;采用稀碱处理对凹凸棒土吸附剂进行再生处理具有良好的重复性。对试验得到的凹凸棒土样品进行性能表征,研究其结构变化。实验结果表明,红外光谱、热重分析和XRD的分析表明盐酸处理过程并未根本改变凹凸棒土晶体结构;凹凸棒土经过酸活化后的比表面积和平均孔径略有提高,再生凹土的比表面积明显降低,平均孔径有所下降,吸附饱和土的比表面积急剧降低,平均孔径出现一定程度的下降。最后,我们推测,初始阶段,四环素在凹凸棒土上的吸附是表面吸附的过程,体系中电荷情况影响凹凸棒土的吸附性能。
China has a lot of attapulgite mineral resources, as an industrial widely applied non-metallic mine, attapulgite is good of sorption ability. Recent years, people have been focusing on antibiotic pollution seriously. This paper takes attapulgite as adsorbent, studies the sorption of antibiotic on attapulgite.
     Used different methods to modify attapulgite, it was found from the result: Sorption ability of modified attapulgites is hydrochloric acid modified attapulgite > raw attapulgite > high-fired attapulgite > KH550 modified attapulgite > Octodecyl trimethyl ammonium chloride modified attapulgite; On this basis, optimized hydrochloric acid modification, the optimum conditions are hydrochloric acid concentration 0.5 mol/L, temperature 40 oC, solid-to-liquid ratio 1:8, reaction time 1 hour.
     The result from the study of the mechanism of sorption of tetracycline on attapulgite was: the experimental kinetic data were appropriate to fit the pseudo-second-order kinetics model; the sorption rate of tetracycline on attapulgite was determinated by surface diffusion; the sorption of tetracycline was a spontaneous endothermic process, Freundlich isotherm was more appropriate method to determine the present system; there is a hysteresis in desorption process.
     Changed the pH and ionic concentration of tetracycline solution to research their effect on sorption of tetracycline on attapulgite, it was drawed from the result that the sorbed tetracycline amount increased as the pH increased, and raise to maximum when pH was 3.0, after that, decrease as the pH increased; the sorbed tetracycline amount decrease as the ionic concentration increased, the ionic effect is Mg2+ > Ca2+>K+>Na+.
     Regenerated the used attapulgite adsorbent with different methods, the result could be found that taking thin alkali to regenerate attapulgite adsorbent under heating condition was a effective way; On this basis, optimized regeneration, the optimum conditions are sodium hydroxide concentration 0.004 mol/L, temperature 60 oC, reaction time 1 hour, regeneration rate 93.5%; with thin alkali theated, attapulgite adsorbent regenaretion had a good repeatability. Analysed the change of the attapulgite structure, the result showed that: FTIR, thermogravimetric analysis and XRD indicated hydrochloric acid modification did not change attapulgite structure radically; the specific surface area and average pore diameter of hydrochloric acid modified attapulgite enlarged slightly, regenerated attapulgite’s specific surface area declined obviously, its average pore diameter reduced a little, the saturated sorbed attapulgite’s specific surface area reduced sharply, its average pore diameter had a certain reduction. At last, we determined that the sorption of tetracycline on attapulgite is a surface sorption process.
引文
1.唐源清.凹凸棒石黏土矿研究现状综述.甘肃冶金,2004,26 (2):83-85.
    2. Bradley W F.The structural scheme of attapulgite [J].American mineralogist,1940,25(6):405-410.
    3. Drits VA,Sokolova GV.Structure of palygoriskite[J].Soviet Physics Crystallography, 1971,16(3):183-185.
    4. Galan E.Properties and applications of,clays Clay Miner,1996,31 (4):443.
    5.潘兆槽,万朴.应用矿物学[M].武汉:武汉工业大学出版社,1993.
    6.易发成,李虎杰,田煦,等.坡缕石的酸活化及其吸附性能研究[J].矿产综合利用,1995,(6):42-44.
    7.祖楠,翁行尚.活性凹凸棒石对阳离子染料脱色作用及其应用研究[J].中国环境科学,1997,17(4):373-376.
    8.黄健花.凹凸棒土的有机改性及其应用[D].江苏无锡.江南大学.2008.
    9.樊凯,王瑛,李绍铭.改性凹凸棒处理污水中有机污染物的研究[J].水资源与水工程学报,2006,17(5):17-20.
    10.付君善,王萍,夏德强,孙钦荣,韩晓燕.凹凸棒原土及盐酸改性凹凸棒对水中Al3+的吸附[J].石化技术与应用,2009,27(1):6-8.
    11.刘云,陈捷,马毅杰.酸化凹凸棒石黏土对废水中Cr6+的吸附及其应用研究[J].非金属矿,2007,30 (4):60-64.
    12.王红艳.硝酸改性凹凸棒石粘土及吸附Cu2+的工艺研究[J].工业用水与废水,2005,4(36):59-61.
    13.陈天虎,王健,庆承松,等.热处理对凹凸棒石结构形貌和表面性质的影响[J].硅酸盐学报,2006,33(11):1406-1410.
    14.董庆洁,邵仕香,李乃暄,等.凹凸棒土复合吸附剂对磷酸根吸附行为的研究[J].硅酸盐通报,2006,(2):19-22.
    15.陈天虎.改性凹凸棒石粘土吸附对比实验研究[J].非金属矿,2000,23:11-12.
    16. Liu P.Hyperbranched aliphatic polyester grafted attapulgite via a melt polycondensation process [J].Applied Clay Science,2007,35:11-16.
    17.黄健花,王兴国,金青哲,刘元法.超声波有机改性凹凸棒土的苯酚吸附性能研究[J].环境污染治理技术与设备,2005,6:25-28.
    18.包军杰,余贵芬,牛牧晨.邻硝基苯酚在有机改性凹凸棒土上的吸附行为[J].环境化学,2007,26:339-342.
    19. S.Sassman,L.Lee,Sorption of three tetracyclines by several soils:assessing the role of pH and cation exchange[J].Environ.Sci.Technol.2005,39:7452-7459.
    20. Colaizzi J.L.,Klink P.R..pH-Partition behavior of tetracyclines[J].Journal of Pharmaceutical Sciences,1969,58(10):1184-1189.
    21. P.Kulshrestha,R.F.Giese Jr.,D.S.Aga,Investigating the molecular interactions of oxytetracycline in clay and organic matter:insights on factors affecting its mobility in soil[J].Environ.Sci.Technol.2004,38:4097-4105.
    22. Hartmann A.Alder A C.Koller T.Identification of fluoroquinolone antibiotics as the main source of human genotoxicity in native hospital wastewater[J].Environmental Toxicology and Chemistry,1998,17(3):377-382.
    23. Batt A L,Bruce I B,Aga D S.Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges[J].Environmental Pollution,2006,142(2):295-302.
    24. Kim S D,Cho J,Kim I S,Vanderford B J,Snyder S A.Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface,dringking,and waste waters[J].Water Research,2007,41(5):1013-1021.
    25.张慧敏,章明奎,顾国平.浙北地区畜禽粪便和农田土壤中四环素类抗生素残留[J].生态与农村环境学报,2008,24(3):69-73.
    26.那广水,陈彤,张月梅等.中国北方地区水体中四环素族抗生素残留现状分析[J].中国环境监测,2009,25(6):78-80.
    27. Kummerer K.Drugs in the environment:emission of drugs,diagnostic aids and disinfectants into waste water by hospitals in relation to other Sources-a review [J].Chemosphere,2001,45:957-969.
    28.陈非力,王承交.水溶液中残留四环素的光催化降解的实验研究[J].污染防治技术,1995,8(4):223-226.
    29.武庭碹,周敏,郭宏栋等.四环素在黄土中的吸附行为[J].环境科学学报,2008,2 8 (11):2311-2314.
    30.武庭碹,周敏,万建新,陈慧.膨润土和高岭土对四环素吸附的影响[J].农业环境科学学报,2009,28 (5):914-918.
    31.胡佶,王江涛.四环素在海洋沉积物上的吸附[J].高等学校化学学报,2010,31(2):320-324.
    32.焦少俊,孙兆海,郑寿荣等.四环素在乌栅土中的吸附与解吸[J].农业环境科学学报,2008,27(5):1732-1736
    33. Po-Hsiang Chang, Zhaohui Li, Wei-Teh Jiang, Jiin-Shuh Jean.Adsorption and intercalation of tetracycline by swelling clay minerals[J]. Applied Clay Science,2009 (46):27–36
    34. Po-Hsiang Chang,Zhaohui Li,Tsai-Luen Yu,Sandagdori Munkhbayer,Tzu-Hsing Kuo,Yu-Chiao Hung,Jiin-Shuh Jean,Kao-Hung Lin.Sorptive removal of tetracycline from water by palygorskite.Journal of Hazardous Materials[J].2009, 165, 148–155.
    35. Po-Hsiang Chang,Jiin-Shuh Jean,Wei-Teh Jiang,Zhaohui Li.Mechanism of tetracycline sorption on rectorite[J] . Colloids and Surfaces A :Physicochem.Eng.Aspects,2009,339:94-99.
    36. M.E.Parolo,M.C.Savini, J.M.Vallésa,M.T.Baschini,M. J. Avena.Tetracycline adsorption on montmorillonite : pH and ionic strength effects . Applied Clay Science.2008,40,179–186.
    37.黄健花,刘元法,金青哲,王兴国.加热影响凹凸棒土结构的光谱分析[J].光谱学与光谱分析,2007,27(2):408-410.
    38.孙兆海,毛丽,冯政等.四溴双酚A在潮土中的吸附和解吸[J].环境科学,2008,29(10):2874-2878.
    39.姚超,张国庆,吴凤芹等.硬脂酸钠对凹凸棒土有机表面改性的研究[J].非金属矿,2008,31(6):1-3.
    40.代伟伟,刘义新.安徽明光凹凸棒土盐酸改性前后的矿物学特征及其孔结构[J].矿物学报,2005(4):393-398.
    41. Barrios M S,Gonzales L V F,Rodriguez M A V,et al.Acid activation of a palygorskite with HCl:Development of physico-chemical,textural and surface properties[J].Applied Clay Science,1995,10(3):247-258.
    42. Gonzalez F,Pesquem C,Benito I.Mechanism of acid activation of magnesic palygorskite[J].Clays and Clay Minerals,1989(37):258-262.
    43.宾晓蓓,曹宏,孙新有.活化处理中坡缕石结构变化与性能关系的研究[J].矿物岩石地球化学通报,2005,24 (1):62-66.
    44. Cai Y,Xuea J,Polya D A.A Fourier transform infrared spectroscopic study of Mg-rich, Mg-poor and acid leached palygorskites [J].Spectrochimica Acta Part A,2007,66:282-288.
    45. Huang Y,Ma X,Liang G et al.Adsorption Behavior of Cr(Ⅵ) on Organic Modified Rectorite[J].Chem.Eng.J.,2008,138 (1-3):187-193.
    46.时钧,汪家鼎,余国琮,陈敏恒.化学工程手册[M],18-14.
    47.陈洪钫,刘家祺.化工分离过程[M].北京:化学工业出版社.
    48. Reichenberg D . Properties of ion exchange resins in . relation to their structures.Ⅲ.kinetics of exchange [J].Journal of the American Chemical Society, 1953,75:589-597.
    49.林玉锁.Langmuir,Temkin和Freundlich方程应用于土壤吸附锌的比较[J].土壤, 1994,(5):269-272.
    50. Boyd G E,Adamson A W,Myers L S J.The Exchange Adsorption of Ions from Aqueous Solutions by Organic ZeolitesП.Kinetics [J].Journal of the American Chemical Society, 1947,69(11):2836-2848.
    51. Jianhua Huang,Yuanfa Liu,Xingguo Wang.Selective adsorption of tannin from flavonoids by organically modified attapulgite clay [J].J.Hazard.Mater.2008,160:382-387.
    52. X . Xu , X . Li , Sorption and desorption of antibiotic tetracycline on marine sediments.Chemosphere.2010,78,430–436
    53. Oepen V B,K?rdel W,Klein W.Sorption of nonpolar and polar compounds to soils: processes,measurement and experience with the applicability of the modified OECD-guideline[J].Chemosphere,1991,22:285-304.
    54. A.Pusino,M.V.Pinna,C.Gessa,Azimsulfuron sorption–desorption on soil.Journal Agriculture Food Chemistry,2004,52,3462–3466.
    55. Kim D S.Adsorption characteristics of Fe(III) and Fe(III)–NTA complex on granular activated carbon [J].Journal of Hazardous Materials,2004,106B:67-84.
    56. Porubcan L S,Serna C,White J L,Hem S L.Mechanism of adsorption of clindamycin and tetracycline by montmorillonite[J].Journal of pharmaceutical sciences,1978,67(8):1081-1087.
    57.王丽,袁建军.改性凹凸棒土对钾、钙、镁离子交换作用的研究[J].中国矿业,2008, 17(1):84-88.
    58.谭科艳,刘晓端,黄园英,陈燕芳.固定配比的钠化膨润土与土壤在不同pH条件下对重金属离子的吸附效果研究[J].岩矿测试,2008,l29(4):411-413.
    59.孔泳,王志良,倪珺华,孙涛,陈智栋.凹凸棒土应用于重金属离子吸附剂的研究[J].分析测试学报,2010,29(12):1224-1227.
    60. Figueroa R A,Leonard A,MacKay A A.Modeling tetracycline antibiotic sorption to clays[J].Environ Sci Technol,2004,38 (2):476-483.
    61. Golden D C , Dixon J B . Low - temperature alteration of palygorskite to smectite[J].Clays and Clay Minerals,1990,38:401-408.
    62. Augsburger M S,Strasser E,et al.FTIR and Mossbauer investigation of a substituted palygorskite:Slicate with a Channel Structure [J].Journal of Physics and Chemistry of Solids,1998,59(2):175-180.
    63.刘元法.凹凸棒石油脂脱色机理及其对油脂品质的影响研究[D].江苏无锡.江南大学.2007.
    64. Melo Araújo D M,Ruiz J A C,Melo M A F.Preparation and characterization of terbium palygorskite clay as acid catalyst [J].Microporous and Mesoporous Material,2000,38:345-349.
    65.张磊.新型凹凸棒粘土催化剂的开发与研究[D].甘肃兰州.兰州理工大学.2009:18-19.
    66. B.B.Sithole,R.D.Guy,Models for tetracycline in aquatic environment.1.Inter-action with bentonite clay systems,Water Air Soil Pollut.32 (1987) 303–314.
    67.王红艳,张艳,周守勇,等.硫酸改性凹凸棒粘土的性能表征及吸附Pb2+工艺研究[J].淮阴师范学院学报:自然科学版,2005,4(1):47-50.
    68.顾惕人.表面化学[M].北京:科学出版社,1999.
    69. Sing K S W,Everett D H,Haul R A W.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J].Pure and Applied Chemistry,1985,57:603-619.
    70.张婧.凹凸棒土处理含铅废水与高氟水的吸附热力学及机理研究[D].北京.北京大学.2008.
    71. Hua Chen,Hanjin Luo,Yuecun Lan,Tingting Dong,Bingjie Hua,Yiping Wang.Removalof tetracycline from aqueous solutions using polyvinylpyrrolidone (PVP - K30) modified nanoscale zero valent iron[J].Journal of Hazardous Materials,2011,192:44-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700