有机改性凹凸棒土对阴离子的吸附研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凹凸棒土是我国储量丰富、来源广泛、成本低廉的一种无机纳米材料,具有化学稳定性强、吸附能力强的特点。本文对凹凸棒土进行酸活化后再经十八烷基三甲基氯化铵(OTMAC)改性制成有机改性凹凸棒土(SMP),以硫酸根离子为目标离子,考察其最佳改性条件。经实验得出SMP的最佳改性条件为:OTMAC的添加量为35 mmol/100 g,超声时间11 min,频极电流0.6 A,此时SMP对硫酸根离子的吸附量最大,用CHN元素分析可得到其含氮量达到3.01 At %,较未改性前提高1.8 At %。
     采用红外光谱(FTIR)、热重分析(TG/TGA)、比表面积孔径分析、扫描电镜(SEM)、电子能谱(XPS)对改性前后的凹凸棒土进行结构变化分析,结果表明凹凸棒土有机改性后其表面积减少、孔道直径增加。根据扫描电镜图谱(SEM)可看出,凹凸棒土经过改性后细小的纤维状结构明显加粗;FTIR图谱可明显看到OTMAC的C-H伸缩振动,C-N的伸缩振动。综合考虑SMP的结构表征,以及OTMAC和凹凸棒土各自的结构特点,可推断出其作用机理为,凹凸棒土在溶液中表面呈现负电荷,吸引OTMAC的正电荷端,而其长碳链端在外部,同其他的OTMAC分子通过疏水键形成双分子层结构。
     SMP吸附硫酸根离子的最佳工艺条件为:溶液初始pH为4,SMP添加量为0.4 g,时间为60 min,此条件下硫酸根吸附量为3.5 mg/g。通过对SMP吸附SO_4~(2-)的吸附等温线,吸附热力学,吸附动力学的研究,结果发现相较于Dubinin-Radushkevich方程和Langmuir方程,此吸附过程能够更好地符合Fredunlich方程。说明SO_4~(2-)在SMP表面上的吸附是不均匀的;热力学数据得出此吸附是吸热、熵增、自发性反应;此反应的动力学符合二级动力学方程,若将此过程分为三个阶段,每个阶段都符合粒间扩散模型。
     通过对SO_4~(2-)、H_2PO_4~-、NO_3~-离子的吸附能力比较及混合体系竞争吸附试验,研究这三种离子之间的竞争关系。根据SO_4~(2-),H_2PO_4~-,NO_3~-的吸附等温线可知,最大吸附量H_2PO_4~->SO_4~(2-)>NO_3~-,由吸附量推断H_2PO_4~-的吸附较强,SO_4~(2-)和NO_3~-属于弱吸附,二者之间吸附量的差异主要由于含电量的差异。H_2PO_4~-和SO_4~(2-)两两竞争吸附中,H_2PO_4~-对SO_4~(2-)的影响远大于SO_4~(2-)对H_2PO_4~-的影响,说明H_2PO_4~-属于强竞争吸附质;而对于SO_4~(2-)和NO_3~-相比较,SO_4~(2-)属于强吸附竞争离子。
Palygorskite is a kind of low-cost and widely reserved inorganic nano-material which has the characteristics of chemical stability and strong adsorption. An extensive study on the preparation of surfactant (octodecyltrimethylammonium chloride, OTMAC) modified acid-activated palygorskite (SMP) by the method of ultrasound was performed in order to adsorb sulphate ions (SO_4~(2-)). The results showed that the optimum preparation conditions were: OTMAC addition/ acid-activated palygorskite 35 mmol/ 100 g; pH of OTMAC solution 8; reaction time 11 min; electric current 0.6 A. The adsorption amount per gram of SO_4~(2-) was the most under the condition, and its nitrogen content reached 3.01 At % according to CHN element analyzer.
     In this paper, we adopted a series of characterization analysis methods, such as Fourier Transform Infrared Spectrophotometer (FTIR), Thermo gravimetric Analysis, N2-adsorption/desorption, Scanning Electron Microscope (SEM), X Ray Electron Spectrum (XPS), to analyze the structure of natural, acid-activated palygorskite and SMP. The specific surface area of SMP decreased while the average pore diameter increased, for the reason that OTMAC was too large to enter the hole of SMP, so OTMAC molecules covered on the surface and reduced its surface area. From SEM image we can see that the fibrous group got larger after modification; FTIR spectra showed that C-H stretches and C-N stretches which belong to OTMAC exist in SMP. All the analysis results showed that OTMAC had successfully grafted onto acid-activated palygorskite. Based on the molecular characteristic of OTMAC and palygorskite, the modification mechanism was that interaction between negatively charged palygorskite and positive charged end of OTMAC, and then, another OTMAC connected to it and formed bilayer structure through hydrophobic bond.
     The optimum adsorption conditions were received by factorial test: pH of SO_4~(2-) solution 4; SMP addition 0.4 g; adsorption time 60 min. SO_4~(2-) adsorption amount could reach 3.5 mg/g.
     The adsorption capacity of SO_4~(2-) onto SMP was investigated through adsorption isotherm equations. Compared to Dubinin-Radushkevich and Langmuir equation, the adsorption process was fit to Freundlich isotherm more, which indicated that adsorption took place at heterogeneous sites. The thermodynamics data showed that the process was an endothermic, entropy increase and spontaneous reaction. Results of kinetic experiments showed that this reaction was best described by second-order pseudo kinetics model. It was also fitted to inter-particle diffusion model when it divided to three parts.
     The competition adsorption effect was investigated by contrast among SO_4~(2-), NO_3~- and H_2PO_4~- adsorption capacity and hybrid solution system of SO_4~(2-)/NO_3~- and H_2PO_4~-/SO_4~(2-). The single adsorption isotherms showed the orders of adsorption capacity were as follows: H_2PO_4~->SO_4~(2-)>NO_3~-. SO_4~(2-) and NO_3~- adsorption onto SMP was weak while H_2PO_4~- was strong from the magnitude of adsorption capacity. The difference between SO_4~(2-) and NO_3~- was due to their electric charge. The hybrid system adsorption also illustrated the competition of anions in the order of H_2PO_4~->SO_4~(2-)>NO_3~-.
引文
1邢昌,周杰,朱海青.凹凸棒土粘土干燥剂的制备与性能研究[J].中国非金属矿工业导刊,2005,46(2):28-30
    2陈天虎,徐晓春,岳书仓.苏皖凹凸棒土黏土纳米矿物学及地球化学[M].北京:科学出版社,2004.5-7
    3代伟伟.环境矿物-凹凸棒土粘土的吸附性能研究[D]:[硕士学位论文].合肥:中国科学技术大学环境科学专业,2006
    4胡涛,钱运华,金叶玲,等.凹凸棒土的应用研究[J].中国矿业,2005,14(8):73-76
    5 Bradley W F.The structure scheme of attapulgite. American Mineralogist,1940,25(6):405-410
    6周济元,崔炳芳.国外凹凸棒土粘土的若干情况[J].资源调查与环境,2004,25(4):248-259
    7 Haden W L,Schwint I A.Attapulgite: its properties and applications. Industrial and Engineering Chemistry Research,1967,9(9):58-69
    8黄健花.凹凸棒土的有机改性及其应用[D]:[博士学位论文].无锡:江南大学粮食油脂及植物蛋白工程专业,2008
    9 Drits V A,Sokolova G V.Structure of palygoskite.Soviet Physics Crystallography,1971,16: 183-185
    10唐源清.凹凸棒土粘土矿研究现状综述[J].甘肃冶金,2004,26(2):579,983
    11郑茂松,王爱勤,詹庚申.凹凸棒土黏土应用研究[M].北京:化学工业出版社,32-36
    12吕牧远.凹凸棒土粘土开发利用现状及发展方向[J].甘肃科技,2008,24(21):78-79,7
    13罗平,邹建国,刘燕燕.凹凸棒土在环境保护中的应用[J].江西科学2010,28(4):466-469,494
    14马玉恒,方卫民,马小杰.凹凸棒土研究与应用进展[J].材料导报,2006,20(9):43-46
    15詹庚申,郑茂松.美国凹凸棒土粘土开发应用浅议[J].非金属矿,2005,28(2):36-39
    16陈丽特,肖宝钧,沈钟.凹凸棒土的油品脱色研究[J].化学世界,1989(2):23-25
    17冯启明.利用凹凸棒土粘土生产干燥剂的试验研究[J].矿产保护及利用,1995,5(3):27-29
    18裘祖楠,姚振淮,漆德瑶.用凹凸棒土净化污染河水的研究[J].上海环境科学,1993,12(10):14-16
    19 Potgieter J H,Potgieter S S,Vermaak P D.Kalibantonga.Heavy metals removal from solution by palygorskite clay. Minerals Engineering. 2006,19(5):463-470
    20 Huang J,Wang X,Jin Q,Liu Y,Wang Y.Removal of phenol from aqueous solution by adsorption onto OTMAC-modified attapulgite.Journal of Environmental Management.2007,84(2):229-236
    21黄健花,王兴国,金青哲,等.超声波改性OTMAC-凹凸棒土吸附苯酚[J].水处理37技术,2005,31(9):61-64
    22张国生,陈天虎,范文元.凹凸棒土复合分子筛净化气体的研究[J].环境工程,1994,12(4):24-28
    23张修华.凹凸棒土粘土对大肠杆菌、杂菌群的吸附性能试验[J].地质实验室,1990,6(3):177-178
    24红玮,王贺,童春晖.具有药物前景的天然矿物-凹凸棒土[J].药物进展,2005,29(1):41-43
    25固旭,蒋金龙,刘晓勤.凹凸棒土黏土催化剂的研究进展[J].现代化工,2010,30(5):25-28
    26胡显峰.会宁凹凸棒土粘土的改性及对废水中镍的处理研究[D]:硕士学位论文.兰州:兰州理工大学石油化工学院,2011
    27石莹,陈天虎,张先龙,等.凹凸棒土粘土催化裂解生物质焦油[J].太阳能学报,2010,31(9):1092-1096
    28 Joy B,Ghosh S,Padmaja P,etc.A facile 1,2 proton migration of chalcone epoxide using acid activated palygorskites.Catalysis Communications,2005,6(9): 573-577
    29钱运华,陈静,金叶玲,等.凹土负载Ti(SO4)2催化合成丁酸正丁酯[J].非金属矿,2008,31(2):41-43
    30王建荣,刘斌,何康.纳米载银凹凸棒的一种新型制备方法及其载银机理研究[J].硅酸盐通报,2008,27(5):1036-1039
    31朱海青,周杰,赵娣芳,等.凹凸棒土载铜抗菌剂的研制及其抗菌性能[J].中国非金属矿工业导刊,2005,4(48):23-26
    32 Huang J,Liu Y,Wang X.Influence of differently modified palygorskites in the immobilization of a lipase.Journal of Molecular Catalysis B: Enzymatic,2008,55(1-2):49-54
    33徐庆,王斌,缪利杰.凹凸棒土改性及应用状况的研究[J].甘肃石油和化工,2008(3):1-4
    34 Cai Y, Xuea J, Polya D A.A Fourier transform infrared spectroscopic study of Mg-rich, Mg-poor and acid leached palygorskites.Spectrochimica Acta Part A, 2007,66:282-288
    35 Liu Y, Dai W, Wang T,etc.Superficial performance and pore structure of palygorskite treated by hydrochloric acid.Journal of central south university,2006,13(4):451-455
    36刘元法.凹凸棒土油脂脱色机理及其对油脂品质的影响研究[D]:[博士学位论文].无锡:江南大学食品学院,2007
    37 Srasra N F,Srasra E.Acid treatment of south Tunisian Palygorskite: Removal of Cd (II) from aqueous and phosphoric acid solutions.Desalination,2010,250(1):26-34
    38史经略,王传荣.酸改性凹凸棒土对红葡萄酒澄清工艺优化[J].食品科学,2011,32(4):42-48
    39 Joy B,Ghosh S,Padmaja P.A facile 1,2 proton migration of chalcone epoxide using acid activated palygorskites.Catalysis Communications,2005,6(9):573-577
    40张智宏,张少瑜,刘雪东,等.不同活化条件对凹凸棒黏土结构和特性的影响[J].精细化工,2010,(8):733-737
    41张俊,袁霄梅,曹建新.改性凹凸棒土去除废水中磷酸根的研究[J].中国非金属矿工业导刊,2010,86(6):41-43
    42 Wang W,Chen H,Wang A.Adsorption characteristics of Cd(II) from aqueous solution onto activated palygorskite.Separation and purification technology,2007,55(2):157-164
    43申华,杨卫东,石中亮.凹凸棒土粘土吸附剂处理含镍(II)废水的研究[J].辽宁化工,2005,34(5):187-189
    44黄健花,王兴国,金青哲.超声处理凹凸棒土的有机改性研究[J].中国油脂,2005,30(2):28-30
    45彭书传,魏凤玉,周元祥等.有机凹凸棒粘土吸附水中苯酚的试验[J].城市环境与城市生态,1999,12(2):14-16
    46姚超,张国庆,吴风芹.硬脂酸钠对凹凸棒土有机表面改性的研究[J].非金属矿,2008,31(6):1-3
    47张丽霞.改性凹凸棒土固载磷钨酸(盐)及其催化酯化研究[D]:[博士学位论文].无锡:江南大学食品学院,2010
    48 Shen L,Lin Y,Du Q.Studies on structure–property relationship of polyamide-6/attapulgite nanocomposites.Composites Science and Technology,2006,66:2242-2248
    49 Shen L,Lin Y,Du Q.Preparation and rheology of polyamide-6/attapulgite nanocomposites and studies on their percolated structure.Polymer,2005,46(15):5758-5766
    50 Qiu J H,Feng H X.Preparation and properties of PAn/ATTP/PE conductive composites.Transactions of Nonferrous Metals Society of China (English Edition),2006,16,supplement2(0):s444-s448
    51栾兆坤,马钢平,赵春禄.改性凹凸棒氧化膜吸附剂的除氟性能[J].大连铁道学院学报,1998,19(2):27-31
    52顾秋香,苏庆平,刘丽,等.吸附法脱除水中硫酸根技术进展[J].无机盐工业,2008,40(10):5-7
    53 World Health Organization.Guidelines for Drinking Water Quality, 3th[M].Geneva,1996: 184-186
    54 Peavy H S,Rowe D R.Tchobanoglous G. Environmental Engineering,5th[M].New York: McGrwa-Hill, 1985: 115-134
    55祝清生.卤水中硫酸根的去除方法[J].氯碱工业,2004,(12):10,37
    56王广兴,郭连才.控制硫酸根含量的有效方法[J].中国氯碱,2006,(1):6-7
    57袁建华.盐水脱SO42-新技术总结[J].氯碱工业,2002,(2):10-13
    58张理源.聚间苯二胺的合成及其吸附硫酸根离子的特性研究[D]:[硕士学位论文].中南大学,2011
    59徐亚同.废水中氮磷的处理[M].上海:华东师范大学出版社,1996.10-12
    60周爱红,赵璇,王建龙.利用可生物降解聚合物去除饮用水源水中硝酸盐[J].清华大学学报(自然科学版),2006,46(3):32-35
    61夏凤毅.氮的污染及生物脱氮技术研究进展[J].温州师范学院学报(自然科学版),2003,24(5):16-20
    62干方群,周健民,王火焰,等.不同粘土矿物对磷污染水体的吸附净化性能比较[J].生态环境,2008,17(3):914-917
    63徐媛媛,范雪荣,王强.凹凸棒土粘土对水溶性染料的吸附脱色研究[J].印染,2006,32(18):11-13
    64 Huang J,Wang X,Jin Q, etc.Removal of phenol from aqueous solution by adsorption onto OTMAC-modified attapulgite.Journal of Environmental Management,2007,84(2):229-236
    65惠天凯,裘祖楠,汪学才.改性凹凸棒土对水溶液中苯的吸附研究[J].上海环境科学,2000,(7):317-318
    66范桥辉.放射性核素Eu(III)、Th(IV)和重金属离子Pb(II)、Ni(II)在凹凸棒土上吸附研究[D]:[硕士学位论文].兰州:兰州大学,2008
    67 Ye H,Chen F,Sheng Y,etc.Adsorption of phosphate from aqueous solution onto modified palygorskite.Separation and Purification Technology,2006,50(3):283-290
    68杨慧,宁海丽,裴亮.凹凸棒土的氨氮吸附性能研究[J].环境工程学报,2011,5(2):343-346
    69仇立干,王茂元.改性凹凸棒土对磷酸根吸附性能的研究[J].化学研究与应用,2010,22(8):1009-1014
    70 Sarkar B,Xi Y,Megharaj M, etc.Orange II adsorption on palygorskites modified with alkyl trimethylammonium and dialkyl dimethylammonium bromide-An isothermal and kinetic study.Applied clay science,2011,51(3):370-374
    71国家环保总局.水和废水检测分析方法(第四版)[M].北京:中国环境科学出版社,2002
    72 Neaman A,Singer.A.Rheological properties of aqueous suspensions of palygorskite, Soil Science Society of America Journal,2000,64(1)427-436
    73 Liu Y, Dai W, Wang T, etc.Superficial performance and pore structure of palygorskite treated by hydrochloric acid.Journal of Central South University of Technology,2006,13(4):451-455
    74 Rouquerol F,Rouquerol J,Sing K.Adsorption by powder & Porous Solids[M]. San Diego: Academic Press, 1999.139-142
    75 Suarez M,Garcia-Romero E.FTIR spectroscopic study of palygorskite: Influence of the composition of the octahedral sheet.Applied Clay Science,2006,31(1-2):154-163
    76 Cai Y,Xue J,Polya D A.A Fourier transform infrared spectroscopic study of Mg-rich, Mg-poor and acid leached palygorskites.Spetrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2007,66(2):282-288
    77 Zhang L,Jin Q,Huang J,etc.Modification of palygorskite surface by organofunctionalization for application in immobilization of H3PW12O40.Applied Surface Science,2010,256(20):5911-5917
    78 Anirudhan T S,Ramachandran M.Adsorptive removal of tannin from aqueous solutions by cationic surfactant-modified bentonite clay.Journal of Colloid and Interface Science,2006,299(1):116-124
    79 Veronika V,Daniel L,Pinto C,etc.Dynamic and controlled rate thermal analysis ofattapulgite.Journal of Thermal Analysis and Calorimetry,2008,92(2):589-594
    80 Frost R L.Ding Z.Controlled rate thermal analysis and differential scanning calorimetry of sepiolites and palygorskites.Thermochimica Acta,2003,397(1-2):119-128
    81徐柏森,杨静.实用电镜技术[M].南京:东南大学出版社,2008:365-369
    82 Chen H,Zhao J.Adsorption study for removal of congo red anionic dye using organo-attapulgite.Adsorption,2009,15(4):381-389
    83 Gupta V K,Mittal A,Gajbe V,etc.Adsorption kinetics and column operations for the removal and recovery of malachite green from wastewater using bottom ash.Separation and Purification Technology,2004,40(1):87-96
    84赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005,1-174
    85王重,史作清.酚醛型吸附树脂吸附VB12的热力学研究[J].功能高分子学报,2003,16(1):1-5
    86 Ghosh D,Bhattacharyya K G.Adsorption of ethylene blue on kaolinite.Applied clay science,2002,20(6):295-300.
    87赵学庄.化学反应动力学原理[M].北京:高等教育出版社,1984.1-117,277-339
    88 Lagergren S.About the theory of so-called adsorption of soluble substances.Kungliga Svenska Vetenskapsakademiens Handlingar,1898,24(4):1-39
    89 Weber W J,Morriss J C.Kinetics of adsorption on carbon from solution.Jounal of Sanitary Engineering Division.1963,(89):31-60
    90 Saeid A.Kinetic models of sorption: a theoretical analysis.Journal of Colloid and Interface Science,2004,276(1):47-52
    91 Ho Y S,McKay G.Pseudo-second order model for sorption processes.Process Biochemistry,1999,34(5):451-465
    92汪嘉源.改性凹凸棒土粘土吸附低浓度磷的性能和机理研究[D]:[硕士学位论文].合肥:合肥工业大学环境工程学院,2010
    93刘静霞,王中来.L-酪氨酸和L-苯丙氨酸双组份吸附平衡研究[J].福州大学学报(自然科学版).2007,35(4):620-624
    94翁丽娟,杨学富.苯酚与对氯酚竞争吸附数学模型研究[J].应用化学,2001,18(12):1019-1021
    95李冬梅,王海增,王立秋,等.焙烧水滑石吸附脱除水中硫酸根离子的研究[J].矿物学报,2007,27(2):109-114

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700