滑动表面微循环仿生润滑效应及局域失效机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当工程中的滑动摩擦副表面间的间隙为恒定时,不满足动压润滑充要条件中的收敛楔要求;其润滑状态取决于表面织构分布即Abbott支撑面积曲线;为此,论文基于仿生原理,结合水生物表面特征,设计了类仿生网格结构表面,以微循环动压峰补偿恒间隙无宏观动压润滑的不足,并以此揭示微循环润滑效应及其局域失效机理;研究得到国家自然科学基金的资助。
     本文构建和采用飞秒激光和数控加工制备出具有不同结构形态的网格织构表面,并基于其形貌特征进行了数学表征。
     为了研究仿生网格织构的微动压润滑效应,文中采用可视化方法对不同网格织构表面进行了摩擦学试验,测量了其油膜厚度、摩擦系数及润滑液流动特性,并基于理论分析和有限元法,揭示了其微循环效应。研究表明:文中构建的的仿生网格织构可在其菱形单元交点处形成微动压力峰,此峰能够有效地改善接触处的润滑性能;以此为基础,推导了工况参数与仿生网格织构表面的互作用机理和形成动压润滑的工况范围。
     针对仿生网格织构局域表面的润滑不连续现象,研究了网格织构菱形单元的微弹流润滑效应;并将材料本构特征耦合进Hertz理论中,推导出了描述摩擦表面接触变形模型及微循环表面弹流润滑模型,揭示了表面形貌与润滑性之间的相互作用规律;在此基础上,论文以仿生胞体自润滑材料为典型例,探讨了材料特性对局域变形的影响。研究表明,在微循环润滑中,材料性能与表面形貌的相耦合,是揭示其弹流润滑效应的有效方法,研究为滑动表面网格织构设计和材料设计提供了理论依据。
     为了揭示微循环润滑过程中的局域失效机理,论文探讨了微弹性区的变形和热失稳问题。基于网格织构菱形单元表面的粗糙分形特征,分析了摩擦热分布形态对表面粗糙度及速度的响应,运用热控制方程和有限单元法研究了工况参数对局域接触力及其失效的影响,揭示了局域接触区的失效形态及与工况参数(特别是高速和高载荷)的相互联系规律;研究为极端工况条件下的摩擦表面失效分析提供了理论基础。
     为了进一步改善网格织构形态对润滑的影响,对网格织构几何参数进行了优化设计。本文采用无量纲宽A,无量纲深度比Γ和夹角θ的结构特征表征形式,建立了可表征上述参数网格织构单元体的润滑理论模型,分析了网格形态参数对其润滑的影响。结果表明:具有微循环网格形态的滑动表面可有效地改善其摩擦系数,其几何参数对润滑的影响呈现互耦合机制;该研究可为滑动表面微循环网格织构优化设计提供理论基础。
The gap between the engineering sliding surface and the smooth surface is constant, which may not form the wedge shape to meet the sufficient and necessary condition for sliding surface generate the hyrodynamic lubrication. And its lubrication state depends on the surface texture distribution such as Abbott support area curve. Therefore, the biomimetic grid-textured surface is designed based on the bionic principle and its geometry parameters affected on the lubrication characteristic is investigated. The micro lubrication pressure is used to compensate for the macro lubrication without hydrodynamic phenomena. The results reveal that micro circulation lubrication in local area and its failure mechanism. The research project has been supported financially by National Natural Science Foundation and National Ministry of Education Doctoral Foundation of China.
     The research designed various grid-textured surfaces and the microfabrication technique was taken as the research object to fabricate the surface in this dissertation. The mathmatic model was used to represent its topography.
     In order to research the miro-hydrodynamic lubrication effects of the bionic grid surface. The flow visualization hydrodynamic lubrication experiment was carried out for each of various different geometry parameter of grid textured. The film thickness and friction coefficient and lubricant flow characteristic were tested. Then a simulation model is developed to analyze the mirco-circulation phenomenon. It reveals that the grid-textured surface helps build up micro-pressure at the intersection points of each rhombus cell. The pressure peaks help improve the lubrication of frictional pairs. It deduces that the mutual effect between the working condition and bionic grid textured surface and the hydrodynamic lubrication form condition.
     A phenomenon of a local failure mechanism for grid texture surface's micro-hydrodynamic elastic lubrication is caused by the lubrication discontinuous of the bionic grid surface. The Hertz theory and material relationship were used to descript the elastic deformation of the friction surface, based on the theory analytical of the micro roughness's elastic contact model. Then the micro circulation elastic lubrication of the fractal surface was further established. It reveals that the effective between the surface topograph and the lubrication property. And the self-lubricating composite was adopted to solve out the local failure affected by the physic properties. The research shows that the method can significantly reveal the failure machinsim of the hydrodynamic lubrication by the coupled effects of porosity and surface fractal dimension. This model can provide a basis design theoretical for design of the sliding friction material and suface grid texture.
     In order to study the local failure mechanism during the mirco circulation lubrication sliding process, the work research on the deformation and unstability of micro elastic region. A fractal rough surfaces sliding contact model has been developed, which takes into account temperature rise and distribution. The finite-element method and thermal conduct theory are employed as the analytical methods. The model is used to analyze the local failure of the surface generated by typical rough surfaces and investigate the factors of thermal effects on the tribological performance of surface asperities. The results yield insight into the local failure mechanism and working condition (especially the high load and high velocity). The research provides a basis theoretical for lubrication failure of the friction surface on the sliding process under the extremly working condition.
     In order to investigate the lubrication state affected by the grid-textured, the study provides set of optimal design model based on the geometry parameters as dimensionless length, depth and angle of the grid textured surface. Effect of the grid textured surface on frictional performance was investigated by it. The results show that micro-cycle grid texture sliding surface can decrease friction coefficient effectively, and the geometry parameters have couple effects on the lubrication characteristic. The theoretical approach established providing a rudimental method for optimizing the design of grid textured surface.
引文
[1]Dai Z.D., Tong J., Ren L.Q.. Researches and developments of biomimetics in tribology [J]. Chinese Science Bulletin,2006,51(22):2681-2689.
    [2]张建华,陶德华,付尚发,等.新型人工关节仿生润滑系统设计及滑液摩擦学特性研究[J].摩擦学学报,2003,23(6):500-503.
    [3]田丽梅,任露泉,韩志武,等.仿生非光滑表面脱附与减阻技术在工程上的应用[J].农业机械学报,2005,36(3):138-141.
    [4]Liu Z.M.. Elevated temperature diffusion self-lubricating mechanisms of a novel cermet sinter with orderly micro-pores [J]. Wear,2007,262:600-606.
    [5]Stribeck R.. Kugellager fur beliebige Belastungen [M]. Zeitschrift des Vereines deutscher Ingenieure,1902.
    [6]Hori Y.K.. Hydrodynamic lubrication [M]. Japan:Yokendo Ltd.2002.
    [7]普朗特L.等.普朗特流体力学基础[M].朱自强、钱翼稷、李宗瑞译.北京:科学出版社,2008.
    [8]Fox R. W. and Mcdonald A. T.. Introduction to Fluid Mechanics 8th Edition [M]. New York:John Wiley and Sons.Inc,2011.
    [9]Munson B.R, Young D. F. and Okiishi T.H.. Fundamentals of Fluid Mechanics.6th Edition [M]. New York:John Wiley and Sons.Inc.2009.
    [10]Hamilton D.B., Walowit J.A. and Allen C.M.. A Theory of Lubrication by Microasperities[J]. ASME J. Basic Eng.,1966,88:177-185.
    [11]Anno J.N., Walowit J.A. and Allen C.M.. Microasperity Lubrication, ASME Journal of Lubrication Technology [J].1968,90:351-355.
    [12]Anno J.N., Walowit, J.A. and Allen C.M.. Load Support and leakage from Microasperity-Lubricated Face Seals[J]. ASME Journal of Lubrication Technology, 1969,91:726-731.
    [13]Etsion I., Kligerman Y, Halperin G. Analytical and experimental investigation of laser-textured mechanical seal faces[J]. Tribology Transactions,1999,42(3):511-516.
    [14]Wang X.L., Kato K., Adachi K. and Aizawa K.. Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water[J]. Tribology International,2003,36(3):189-197.
    [15]Stephens L.S., Siripuram R., Hayden M., and McCartt B.. Deterministic Micro Asperities on Bearings and Seals using a modified LIGA Process[J]. Journal of engineering for Gas Turbine and Power, Transactions of ASME,2004,126:147-154.
    [16]Ma C. B.and Zhu H.. An optimum design model for textured surface with elliptical-shape dimples under hydrodynamic lubrication [J]. Tribology International. 2011,44:987-995.
    [17]王晓雷,王静秋,韩文非.边界润滑条件下表面微细织构减摩特性的研究[J].润滑与密封,2007,32(12):36-39.
    [18]刘金依,刁东风,谢友柏.表面纹理磁盘滑动接触的温度和应力及退磁临界条件的研究[J].摩擦学学报,2006,26(5):461-466.
    [19]历建全,朱华.表面织构及其对摩擦学性能的影响.润滑与密封,2009,34(2).
    [20]刘红彬,孟永钢.基于区域分解法的表面纹理油膜润滑分析[J].摩擦学报,2007,27(6):555-561.
    [21]Schneider Y. G. Formation of Surfaces with uniform micropatterns on precision machine and instrument parts [J]. Precis. Eng.,1984,6:219-225.
    [22]Bulatov V. P., Krasny V. A., Schneider Y. G. Basics of machining methods to yield wear and fretting-resistive surfaces having regular roughness patterns [J]. Wear, 1997,20(1/2):132-137.
    [23]Wang X., Kato K., Adachi K. The lubrication effect of micro-pits on parallel sliding faces of SiC in water [J]. Tribology Transactions,2002,45(3):294-301.
    [24]Wang X., Kato K.. Improving the anti-seizure ability of SiC seal in water with RIE texturing [J]. Tribology Letters.2003,14(4):275-280.
    [25]Wang X., Kato K., Adachi K., Aizawa K.. Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water [J]. Tribology International,2003,36(3):189-197.
    [26]Pettersson U., Jacobson S.. Tribological texturing of steel surface with a novel diamond embossing tool technique [J]. Tribology International,2006,39:695-700.
    [27]Uehara Y., Wakuda, M., Yamauchi Y, et al. Tribology properties of dimpled silicon nitride under oil lubrication [J]. Journal of the European Ceramic Society, 2004,24:369-373.
    [28]Stephens L. S., Siripuram R., Hayden M., et al. Deterministic micro asperities on bearings and seals using a modified LIGA process [J]. Transactions of the ASME, Journal of Engineering for Gas Turbines and Power,2004,126 (1):147-154.
    [29]闰利文.微机械制造工艺及其应用[J].现代制作工程,2004,3:83-85.
    [30]Aaron G, Steven P., Kornel E., et al. Surface texturing of tribological interfaces using the vibromechanical texturing method [J]. Journal of Manufacturing Science and Engineering,2009,131:1-8.
    [31]符永宏,华希俊,陶根宁,等.摩擦副表面激光微造型工艺试验研究[J].应用激光,200,26(5):295-298
    [32]Ryk G., Kligerman Y., Etsion I., et al. Experimental investigation of partial laser surface texturing for piston ring friction Reduction [J]. Tribology Transactions,2005, 48(4):583-588.
    [33]Gerbig Y., Dumitru G, Romano, et al. Effects of laser texturing on technical surfaces [C]. Surface Engineering 2002-Synthesis, Characterization and Applications, 2003:455-60.
    [34]Weikert M., Fohl C., Dausinger F., et al. Surface structuring of metals with short and ultra short laser pulses [J]. Proceedings of the SPIE-The International Society for Optical Engineering,2003,5063 (1):208-213.
    [35]Geiger M., Roth S., Becker W.. Influence of laser-produced microstructures on the tribological behavior of ceramics [J]. Surface & Coatings Technology,1998,100 /101 (1/3):17-22.
    [36]Tonder K.. Inlet roughness tribodevices:dynamic coefficient and leakage[J]. Tribology International 2001,34(12):847-52.
    [37]Cupillard S., Glavatskih S., Cervantes M.J.. Computational fluid dynamics analysis of journal bearing with surface texturing[J]. Proceedings of the Institution of Mechan-ical Engineers, Part J:Journal of Engineering Tribology,2008,222:97-107.
    [38]Kovalchenko O., Ajayi A., Fenske Erdemir G., Etsion I.. The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact[J]. Tribology International.2005,38:219-25.
    [39]Siripuram R.B., Stephens L.S.. Effect of deterministic asperity geometry on hydrodynamic lubrication[J]. Journal of Tribology.2004,126:527-34.
    [40]Ryk G and Etsion I.. Experimental investigation of laser surface texturing for reciprocating automotive components [J]. Tribology Transactions,2002,45(4): 444-449.
    [41]Wakuda M., Yamauchi Y, Kanzaki S., Yasuda Y. Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact [J]. Wear,2003,254:356-363.
    [42]Mourier L., Mazuyer D., Lubrecht A. A., Donnet C. Transient increase of film thickness in micro-textured EHL contacts [J]. Tribology International,2006,139: 1745-1756.
    [43]Andersson P., Koskinen J., Varjus S., Gerbig Y, Haefke H., Georgiou S., Zhmud B., Buss W..Micro lubrication effect by laser-textured steel surfaces [J]. Wear,2007, 262:369-379.
    [44]Bayada G., Chambat M., and V'azquez C.. Characteristics method for the formulation and computation of a free boundary cavitation problem [J]. J. Comput. Appl. Math.,1998,98 (2):191-212.
    [43]Etsion I., Burstein L.. A model for mechanical seals with regular micro-surface structure [J]. Tribology Transactions,1996,39 (3):677-683.
    [44]Etsion I., Kligerman Y.. Analytical and exper imental investigation of laser-textured mechanical seal faces [J]. Tribology Transaction,1999,42(3):511-516.
    [45]Etsion I. and Halperin G. A laser surface textured hydrostatic mechanical seal [J]. Tribology Transaction,2002,45(3):430-434.
    [46]Mayer E.. The mo-hydrodynamic in mechanical seals [C]. Proc. of 4th inter. Conf. on fluid sealing,1970,124-134.
    [47]Brizmer V., Kligerman Y. and Etsion I.. A laser surface textured parallel thrust bearing [J]. Tribology Transaction,2003,46 (3):397-403.
    [48]王晓雷,韩文非,加藤康司.碳化硅陶瓷的水润滑特性及其表面微细织构的优化设计[J].中国机械工程,2005,19(4):457-460.
    [49]Miehail S.K.and Barber G.C.. The Effects of Roughness on Piston Ring Lubrieation:Part I-Model Development [J]. STLE Tribology Transaetions,1995, 38(1):19-26.
    [50]Miehail S.K. and Barber G.C.. The Effects of Roughness on Piston Ring Lubrieation:Part 11-The Relationship between Cylinder Wall Surface Topography and oil FilmThiekness[J]. STLE Tribology Transaetions,1995,38(1):173-177.
    [51]Pettersson U. and Jacobson S.. Textured surfaces for improved lubrication at high pressure and low sliding speed of roller [J]. Tribology International,2007,40:355-359.
    [52]Bolander N.W. and Sadeghi F.. Surface modification for piston ring and liner [J]. IUTAM Symposiumon Elastohydrodynamics and Micro-Elastohydrodynamics,2006, 134:271-283.
    [53]Bolander N.W., Sadeghi F. and Gerber G.R.. Piston ring friction reduction through surface modification [J]. Proceedings of the 2005 Fall Technical Conference of the ASME Internal Combustion Engine Division,2005:663-671.
    [54]Hamrock B.J., Schmid S.R., Jacobson B.O.. Fundamental of fluid film lubrication 2nd ed [M]. Mec. Eng.,2004.
    [55]Hu Y.Z. and Zhu D.. A Full Numerical Solution to the Mixed Lubrication in Point Contacts [J]. Journal of Tribology,2000,122:1-9.
    [56]Greenwood J. A. and Williamson J. B.. Contact of Nominally Flat Surfaces [J]. Proc. Roy. Soc.,1966,295:300-319.
    [57]Patir N. and Cheng H. S.. An Average Flow Model for Determining Effects of Three- Dimensional Roughness on Partial Hydrodynamic Lubrication [J]. ASME J. Lub.Tech.,1978,100:12-17.
    [58]Zhu D. and Jane Q.. Effect of Roughness Orientation on the Elastohydrodynamic Lubrication Film Thickness[J]. Journal of Tribology,2013,135:1-9.
    [59]Johnson K. L., Greenwood J. A. and Higginson J. G. The Contact of Elastic regular Wavy Surfaces [J]. Int. J. Mech. Sci.,1985,27:383-396.
    [60]Webster M. N. and Sayles R. S.. A Numerical Model for the Elastic Frictionless Contact of Real Rough Surfaces [J]. ASME Journal of Tribology,1986,108:314-320.
    [61]Ju Y. and Farris T. N.. Special Analysis of Two-Dimensional Contact Problems [J]. ASME Journal of Tribology,1996,118:320-328.
    [62]Hu Y. Z., Barber G. C. and Zhu D.. Numerical Analysis for the Elastic Contact of Real Rough Surfaces [J]. Tribology Transactions,1998,42(3):17-21.
    [63]Ai X., Cheng H. S. and Zheng L.. A Transient Model for Micro-Elastohydrodynamic Lubrication with Three Dimensional Irregularities [J]. ASME Journal of Tribology,1993,115:102-110.
    [64]Ai X.. Numerical Analyses of Elastohydrodynamically Lubricated Line and Point Contacts with R6ugh Surfaces By Using Semi-system and Multigrid Methods [D]. Ph. D. dissertation, Northwestern University, Evanston, IL.1993.
    [65]Venner C. H. and Lubrecht A. A.. Numerical Analysis of the Influence of Waviness on the Film Thickness of a Circular EHL Contact [J]. ASME Journal of Tribology,1996,118:153-161.
    [66]Xu G. and Sadeghi F.. Thermal EHL Analysis of Circular Contacts With Measured Surface Roughness [J]. ASME Journal of Tribology,1996,118:473-483.
    [67]Zhu D. and Ai X.. Point Contact EHL Based on Optically Measured Three-Dimensional Rough Surfaces [J]. ASME Journal of Tribology,1997,119: 375-384.
    [68]陈东辉.典型生物摩擦学解结构及仿生[D].吉林大学博士学位论文.2007
    [69]Carpenter P.. The right sort of roughness [J]. Nature,1997,388:713
    [70]Zhang Y.F., Wu H., Yu X.Q. Chen F., and Wu J.. Microscopic Observations of the Lotus Leaf for Explaining the Outstanding Mechanical Properties [J]. Journal of Bionic Engineering.2012,9(1):84-90
    [71]戴振东,佟金,任露泉.仿生摩擦学研究及发展[J].科学通报,2006,51:2353-2359.
    [72]Ball P..Engineering shark skin and other solutions[J].Nature,1999,400:507-509.
    [73]Balasubramanian A. K. and Miller A. C. and Rediniotis O.K.. Microstructured hydrophobic skin for hydrodynamic drag reduction[J]. AIAA J,2004,42(2):411-414.
    [74]Zhou T., Leong K.C.,and Yeo K.H.. Experimental study of heat transfer enhancement in a drag-reducing two-dimensional channel flow[J]. International Journal of Heat and Mass Transfer,2006,49(7-8):1462-1471
    [75]Wu J.M. and Tao W.Q.. Effect of longitudinal vortex generator on heat transfer in rectangular channels [J]. Applied Thermal Engineering,2012,37:67-72
    [76]Zhao D.Y., Huang Z.P., Wang M.J., Wang T., Jin Y.F.. Vacuum casting replication of micro-riblets on shark skin for drag-reducing applications[J]. Materials processing Technilogy.2012,212,198-202
    [77]Zhang D.Y., Luo Y.H., Li Xiang, Chen H.W.. Numerical simulation and experimental study of dragreducing surface of a real shark skin[J]. Journal of Hydrodynamics,2011,23(2):204-211
    [78]田牛.微循环概念的探讨[J].微循环学杂志,1993,4(1),4-6.
    [79]Krupka I.,and Hartl M.. The effect of surface texturing on thin EHD lubrication films[J]. Tribology International,2007,40:1100-1110.
    [80]Jayanth K.., and Zhongmin J. etc.. Biotribology of articularcartilage-A review of the recent advances[J]. Medical Engineering&Physics,2008,30:1349-1363.
    [81]Gerard A., Ateshian, The role of interstitial fluid pressurization in articular cartilage lubrication[J]. Journal of Biomechanics,2009,42:1163-1176.
    [82]Zhang Z.H., Ren L.Q., Zhou H., etc.. Effect of Thermal Fatigue Loading on Tensile Behavior of H13 Die Steel with Biomimetic Surface [J]. Journal of Bionic Engineering 2010,7(4) 390-396
    [83]Arvind R., Singh etc.. Bio-inspired dual surface modification to improve tribological properties at small-scale[J]. Applied Surface Science,2009,255, 4821-4828.
    [84]刘佐民等,一种高温自补偿润滑耐磨材料及其制备方法.发明专利,授权号:ZL200410060662.4.
    [85]Zhang D.Y., Luo Y.H., Li Xiang, Chen H.W.. Numerical simulation and experimental study of dragreducing surface of a real shark skin[J]. Journal of Hydrodynamics,2011,23(2):204-211
    [86]Sahlin F.. CFD-analysis of hydrodynamic Lubrication of Textured surface[D]. Lulea University of technology,2013.
    [87]朱华,姬翠翠.分形理论及其应用[M].北京:科学出版社,2011.
    [88]敖力布,林鸿溢.分形学导论[M].呼和浩特:内蒙古人民出版社,1996.
    [89]Komvopoulos K.. Effects of multi-scale roughness and frictional heating on solid body contact deformation[J]. Comptes Rendus Mecanique 2008,336:149-62.
    [90]Komvopoulos K., Gong Z.Q.. Stress analysis of a layered elastic solid in contact with a rough surface exhibiting fractal behavior [J]. Journal of Tribology 2007,44:2109-2129.
    [91]Johnson K. L.. Contact mechanics[M]. Beijing:Higher Education Press,1981.
    [92]沃国纬,王元淳.弹性力学[M].上海:上海交通犬学出版社,1998.
    [93]Wei P., Bhushan B.. Three-dimensional contact analysis of layered elastic/plastic solids with rough surfaces[J]. Wear,2001,249(9):741-760.
    [94]Roelands C.J.A., Vlugter J.C., Watermann H.I.. The viscosity temperature pressure relationship of lubricating oils and its correlation with chemical constitution[J]. ASME Journal of Basic Engineering,1963,85:601.
    [95]Venner C.H., Lubrecht A.A.. Multilevel methods in lubrication[M]. Elsevier,2000.
    [96]Voigt W.. Uber die Beziehung Zwischen den Beiden, Elastizitat Skonstanten Isot Roper Korper [The Relationship between the Two, Isotropic Elastic Constants Bodies] [J]. Wied Ann,1889,38:573-587.
    [97]Reuss A.. Berechnung der Fliessgrenze von Misch Kristallen auf Grund der Plastizitat Stheorie [Calculation of the Yield Stress of Mixed Crystals based on the Theory of Plasticity] [J], Mathematics and Mechanics,1929,9:49-58.
    [98]American Society for Metal. Metals Handbook [M], American Society for Metals, 1985.
    [99]Treleven G.L.. Measurement of the elastic modulus in colloidal crystals using a Bragg scattering technique[J]. OK State Univ., Stillwater, USA,1992.
    [100]Tjong S.C.. Carbon nanotube reinforce composites:metal and ceramic matrices[J]. Wiley-VCH; 2009.
    [101]Duckworth W.. Discussion of Ryshkewitch paper by Winston Duckworth[J]. Journal of the American Ceramic Society,1953:36:68.
    [102]黄健萌,高诚辉,李友遐,等.工程粗糙表面接触摩擦热力学研究进展[C]//第八届全国摩擦学大会论文集,广州.2007:204-210.
    [103]Yuan C.Q., Peng Z., Yan X. P.. Surface roughness evolutions in sliding wear process[J]. Wear,2008,265(3-4):341-348.
    [104]Sofuoglu H.,OZER A.. Thermomechanical analysis of elastoplastic medium in sliding contact with fractal surface[J]. Tribology,2008,41(8):783-796.
    [105]刘佐民.M50高速钢高温摩擦磨损特性的研究[J].摩擦学报,1997,17(1):38-44.
    [106]Richard S.C., Ware O.W.. Friction heating calculations[J]. Solid Friction, 1993,18:39-43.
    [107]Bakolas V.. Numerical generation of arbitrarily oriented non-Gaussian three-dimensional rough surfaces[J]. Wear,2003,254(5-6):546-554.
    [108]Jaeger J. C. and Carslaw H. S.. Conduction of Heat in Solids[M]. Clarendon Press, Oxford, UK,1959.
    [109]Lu Y, Liu Z.M.. Thermal Parameters of Sweat Lubricating Composite and its Effect on High Temperature Rolling Bearing [J]. Advanced Materials Research.2009, 1895:79-82.
    [110]Yang J. and Komvopoulos K.. A mechanics approach to static friction of elastic-plastic fractal surfaces[J]. ASME-Journal of Tribology,2005,127(2):315-324.
    [111]Sofuoglu H. and Ozer A.. Thermomechanical analysis of elastoplastic medium in sliding contact with fractal surface[J]. Tribology International,2008,41(8):783-796.
    [112]温诗铸,杨沛然.弹性流体动力润滑[M].清华大学出版社,1992.
    [113]Sriram V.. Surface Textures for Enhanced Lubrication:Fabrication and Characterization Techniques[D]. University of Kentucky.2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700