龙门车铣中心液体静压导轨性能的理论分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
龙门车铣中心集车削和铣削成一体,通过一次装夹即可完成车削与铣削的全部工序,有效地提高了零件的加工精度和效率,在军事、航空、船舶以及其他民用工业领域都得到了广泛的应用。液体静压导轨是龙门车铣中心的关键功能部件之一,其性能的优良程度直接决定车铣中心的加工精度与产品质量。
     龙门车铣中心液体静压导轨的结构复杂,各油腔相互耦合,承载力计算困难。本文推导定压、定量及PM控制器供油下油腔承载力的普遍适用超静定力学模型,分析液体静压导轨的静态、动态、振动等性能指标,提出一种基于恒厚度油膜的开式导轨自适应供油方案,采用VC++软件开发油腔承载力计算及性能分析软件,对龙门车铣中心的龙门架及工作台进行现场测试,为龙门车铣中心的性能分析及优化设计提供理论依据。
     本文的主要研究内容如下:
     (1)考虑多油腔不规则布置的复杂液体静压导轨油腔承载力的超静定耦合问题,将承受外载荷时的油膜厚度表达式作为变形协调方程,详细推导出不同供油方式下多油腔不规则布置的复杂液体静压导轨的承载力普遍适用计算方案,为后续的液体静压导轨性能分析提供基础。
     (2)以回转工作台为对象,研究偏心载荷下定压及定量供油方式下各油腔的压力、流量及油膜厚度的耦合关系;对其中一个油腔的供油流量进行调节,研究调节流量对工作台各油腔性能的影响;研究油腔的数目及尺寸对垂直及倾覆载荷作用下导轨的静刚度、承载能力等性能指标的影响,对导轨面内的油腔数目及尺寸进行优化分析,为液体静压导轨的参数优化提供理论依据。
     (3)以外载荷为输入、油膜厚度为输出,推导出不同供油方式下闭式、开式液体静压导轨的静态及动态方程,将承载能力、静刚度、功率损失,调整时间、动刚度、相角裕度等分别作为液体静压导轨的静态、动态性能指标,并研究封油边宽度、系统泵压、油液粘度、油膜厚度等设计参数对导轨静态、动态性能的影响,为液体静压导轨的静态、动态性能分析提供理论依据。
     (4)根据液体静压导轨的运动学方程及油腔的压力流量方程,假定液体静压导轨的滑板等部件为刚体,得到静压油腔的刚度及阻尼系数,详细推导不同供油方式下闭式、开式液体静压导轨在激振力及激励位移下的振动模型,将固有频率、幅值放大系数等分别作为液体静压导轨的振动性能指标,并研究系统泵压、油液粘度、油膜厚度、油腔压力、导轨质量、载荷频率等设计参数对导轨振动性能的影响,采用VC++开发油腔性能分析软件,为液体静压导轨的振动性能分析提供理论依据。
     (5)针对开式液体静压导轨油膜刚度相对较小的情况,提出基于恒厚度油膜的定量泵+比例阀的自适应供油方案,并理论分析定压、定量、PM控制器供油及自适应供油方案的开式液体静压导轨油膜厚度,为提高开式液体静压导轨的油膜刚度提供理论依据。
     (6)以现场的一台龙门车铣中心为例,对其回转工作台及龙门架的油腔压力进行现场测试,验证其理论分析的正确性。
Gantry Turning and Milling Center with the integration of turning and milling cancomplete the whole process for just one fixture and improve machining accuracy andefficiency, and then it was used widely in the military, aviation, marine and other fields.The liquid hydrostatic slide, one of the most important key components, makes a fullimpact on the machining precision and quality of Gantry Turning and Milling Center.
     Due to complicated structure of liquid hydrostatic slide and coupling action betweenevery oil pocket, it is difficult to calculate the bearing capacity of oil pocket precisely. Sothis paper deduces the universal indeterminate mechanical model of the oil pocket,contrasts the performance of the liquid hydrostatic slide based on three oil-supply methods.According to the weak stiffness of open hydrostatic slide, a novel self-adaption oil-supplymethod is presented. The bearing capacity calculation software and performance analysissoftware are complied with VC++. The gantry frame and worktable used on site areexperimentally validated, and it provides the theoretical foundation for the optimizationand design of Gantry Turning and Milling Center.
     The main research contents of this article are as follows:
     (1)According to the oil pocket’s complicated arrangement and the intercouplingindeterminate mathematics model, the mathematic expression between the oil filmthickness and the bearing capacity of the oil pocket is established as the deformationcompatibility equation. The universal solution method of the complicated arrangement oilpocket with the different oil supply method is derived in detail. The force calculationprogram is developed using VC++, and it provides a basis for the subsequent performanceanalysis of the liquid hydrostatic slide.
     (2)Taking the worktable as the research subject, the influence of the eccentric load onthe oil pocket’s pressure, the rated flow and the oil film thickness with different oil-supplymethod is analyzed. The relationship between the rated flow of the adjusted oil pocket andthe performance indexes of the other oil pockets can be presented in order to keep all oilfilm at a specified thickness. Based on a single slide surface of the liquid hydrostatic slide, the influence of the number and the dimension of the oil pocket on the static stiffness andthe bearing capacity under the vertical load and the overturning torque is analyzed, and thenumber and the dimension of the oil pocket is optimized. And it provides a basis for theparameter optimization of the liquid hydrostatic slide.
     (3)Taking the external load and the oil film’s thickness as the input and output of thehydrostatic slide, the static and the dynamic equation with different oil-supply method areestablished. The influence of the design parameter, bearing capacity, static stiffness, powerloss, adjusting time, dynamic stiffness and phase margin, on the static and dynamicperformance index is analyzed separately. And it provides a basis for the static anddynamic performance analysis of the liquid hydrostatic slide.
     (4)According to the kinematic equation and the pressure-flow equation of the slide,supposing that the sliding plate is the rigid body, the stiffness and the damping coefficientof the oil pocket are presented. The vibration model of open-type and closed-type liquidhydrostatic slide with different oil-supple method under the exciting force and the excitingdisplacement is established. The influence of the design parameter, as nature frequency,amplitude magnification coefficient, on the vibration performance is analyzed. Theperformance analysis program is developed using VC++, and it provides a basis for thevibration performance analysis of the hydrostatic slide system.
     (5)According to the weak oil-film stiffness of open-type hydrostatic slide, a novelself-adaptive oil-supply method based on constant thickness oil-film is presented. The oilfilm thickness of open-type liquid hydrostatic slide separately with constant pressure,constant flow, PM controller and self-adaptive oil-supply methods are contrasted andanalyzed, and it provideds a basis for improving oil-film stiffness of open-type liquidhydrostatic slide.
     (6) The field test of the rotary working table and the gantry frame of Gantry Turningand Milling Center used on site are done. It vertifies the correctness of the theoreticalresearch.
引文
[1]徐国志,田军,金鑫,等.高精度内圆磨床液体静压导轨刚度计算[J].精密制造与自动化,2013,(1):27-29.
    [2]邓力凡.孔式环面深浅腔液体动静压轴承的结构及稳定性研究[J].机床与液压,2013,41(1):80-81.
    [3]熊万里,侯志泉,吕浪,等.基于动网格模型的液体动静压轴承刚度阻尼计算方法[J].机械工程学报,2012,48(23):118-126.
    [4]丁振乾.我国机床液体静压技术的发展历史及现况[J].精密制造与自动化,2003,(3):19-21.
    [5] Addea D. Vibration Damping in Hydrostatic Bearing: Analysis and Experimental Tests [J]. Shockand Vibration Digest,2000,32(1):41-42.
    [6] Roberto B. Hydrostatic Systems Supplied Through Flow Dividers [J]. Tribology International,2001,(34):25-38.
    [7] Kane N R, Sihler J, Slocum A H. A Hydrostatic Rotary Bearing with Angled SurfaceSelf-compensation [J]. Precision Engineering,2003,(27):125-139.
    [8] Ron A J V O, Anton V B, Mink R. A Mathematical Model of the Hydro-support: anElasto-hydrostatic Thrust Bearing with Mixed Lubrication [J]. Tribology International,2004,(37):607-616.
    [9] Kytka P, Ehmann C, Nordmann R, etal. Active Vibration Damping of a Flexible Structure inHydrostatic Bearing [J]. IFAC Proceedings Volumes,2006,4(1):656-661.
    [10] Bouzidane A, Thomas M. An Electrorheological Hydrostatic Journal Bearing for ControllingRotor Vibration [J]. Computers and Structures,2008,(86):463-472.
    [11] Dalane O, Knudsen F F, Lset S. Nonlinear Coupled Hydrostatics of Floating Conical Platforms
    [C]. The28th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2009.2009,(1):793-802.
    [12] Dalane O, Faye K F, Lset S. Nonlinear Coupled Hydrostatics of Arctic Conical Platforms [J].Journal of Offshore Mechanics and Arctic Engineering,2011,134(2):73-82.
    [13] Cao Y S, Tahchiev G, Zhang F W, et al. Effect of Hydrostatic Nonlinearity on Motions ofFloating Structures [C]. ASME201029th International Conference on Ocean, Offshore andArctic Engineering, OMAE2010.2010,(4):257-267.
    [14] Kumar M, Kim D. Static Performance of Hydrostatic Air Bump Foil Bearing [J]. TribologyInternational,2010,43(4):752-758.
    [15] Lee D, Kim D. Design and Performance Prediction of Hybrid Air Foil Thrust Bearings [J].Journal of Engineering for Gas Turbines and Power,2011,133(4):72-78.
    [16] Yamamoto H, Kyosuke O, Cui C Z, et al. Vibration Analysis of Hydrostatic Gas Bearing SpindleConsidering the Elastic Deformation of Rotor [J]. Transactions of the Japan Society ofMechanical Engineers,1996,62(603):4294-4301.
    [17] Sinhasan R, Sah P L. Static and Dynamic Performance Characteristics of an OrificeCompensated Hydrostatic Journal Bearing with Non-newtonian Lubricants [J]. TribologyInternational,1996,29(6):515-526.
    [18] Sharma S C, Jain S C, Sah P L. Static and Dynamic Performance Characteristics of OrificeCompensated Hydrostatic Flexible Journal Bearings with Non-newtonian Lubricants [J].Tribology Transactions,2001,44(2):242-248.
    [19] Nagaraju T, Sharma S C, Jain S C. Performance of Externally Pressurized Non-recessedRoughened Journal Bearings with Non-newtonian Lubricant [J]. Tribology Transactions,2003,46(3):404-413.
    [20] Narendra S, Satish C, Jain S C, et al. Performance of Membrane Compensated MultirecessHydrostatic/Hybrid Flexible Journal Bearing System Considering Various Recess Shapes [J].Tribology International,2004,37:11-24.
    [21] Wang X, Yamaguchi A. Characteristics of Hydrostatic Bearing/Seal Parts for Water HydraulicPumps and Motors. Part1: Experiment and Theory [J]. Tribology International,2001,(34):25-38.
    [22] Harigaya Y, Suzuki M, Takiguchi M. Analysis of Oil Film Thickness on a Piston Ring of DieselEngine-effect of Oil Film Temperature [C]. Proceedings of the2001Spring TechnicalConference of the ASME Internal Combustion Engine Division. Philadelphia, USA,2001,36(3):19-27.
    [23] Harigaya Y, Suzuki M, Takiguchi M. Analysis of Oil Film Thickness on a Piston Ring of DieselEngine-effect of Oil Film Temperature [J]. Journal of Engineering for Gas Turbines and Power,2003,125(2):596-603.
    [24] Ishijima T, Shimada A, Harigaya Y, et al. An Analysis of Ring Temperature, Oil FilmTemperature, Oil Film Thickness and Heat Transfer on a Piston Ring of an IC Engine inConsideration of Ring Movement in a Cycle [C].2006Spring Technical Conference of theASME Internal Combustion Engine Division. Aachen, Germany, May,2006:665-676.
    [25] Harigaya Y, Suzuki M, Toda F, et al. Analysis of Oil Film Thickness and Heat Transfer on aPiston Ring of a Diesel Engine: Effect of Lubricant Viscosity [J]. Journal of Engineering for GasTurbines and Power,2006,128(3):685-693.
    [26] Harigaya Y, Suzuki M, Toda F, et al. Analysis of Oil Film Thickness and Heat Transfer on aPiston Ring of a Diesel Engine: Effect of Lubricant Viscosity [C]. ASME2002InternalCombustion Engine Division Fall Technical Conference, ICEF2002. New Orleans, Louisiana,United states, September,2002:471-480.
    [27] Ishijima T, Shimada A, Kodaira S, et al. An Analysis of Ring Temperature, Oil Film Temperatureand Oil Film Thickness on a Piston Ring of an IC Engine in Consideration of Ring Movement:Effect of Ring Sliding Face Profile [C].2007Fall Technical Conference of the ASME InternalCombustion Engine Division. Charleston, SC, United states, October,2007:591-599.
    [28] Sharma S C, Jain S C, Bharuka D K. Influence of Recess Shape on the Performance of aCapillary Compensated Circular Thrust Pad Hydrostatic Bearing [J]. Tribology International,2002,(35):347-356.
    [29] Sharma S C, Phalle V M, Jain S C.2011. Performance Analysis of a Multirecess CapillaryCompensated Conical Hydrostatic Journal Bearing [J]. Tribology International,2011,(44):617-626.
    [30] Phalle V M, Sharma S C, Jain S C, et al. Performance Analysis of a2-lobe Worn MultirecessHybrid Journal Bearing System using Different Flow Control Devices [J]. TribologyInternational,2012,(52):101-116.
    [31] Sharma S C, Phalle V M, Jain S C. Performance of a Noncircular2-lobe Multirecess HydrostaticJournal Bearing with Wear [J]. Industrial Lubrication and Tribology,2012,64(3):171-181.
    [32] Beznsov A V, Drozdov Y N, Antonenkov M A, et al. Tribology of Hydrostatic Bearings ofCoolant Pumps of Fast Neutron Reactors with Lead Coolant [J]. Journal of Friction and Wear,2012,33(5):338-344.
    [33] Beznsov A V, Bokova T A, Antonenkov M A, et al. Wear of Frictional Surfaces inHigh-temperature Lead and Lead-bismuth Coolants [J]. Russian Engineering Research,2010,30(2):128-132.
    [34] Beznsov A V, Novozhilova O O, Savinov S Y, et al. Experimental Study of the Axial Velocity ofLead Coolant Flow in a Ring-sharped Gap with Different Oxidizing Potential [J]. Atomic Energy,2010,108(3):223-228.
    [35] Beznsov A V, Bokova T A, Antonenkov M A, et al. Hydrodynamic Characteristics of Lead andLead-bismuth Coolants [J]. Atomic Energy,2010,109(2):88-95.
    [36] Beznsov A V, Nazarov A V, Bokova T A, et al. Operation of Slip Bearings and Gear Couplings inHeavy Liquid Metal [J]. Russian Engineering Research,2009,29(2):148-153.
    [37] Beznsov A V, Novozhilova O O, Savinov S Y, et al. Experimental Investigation of the Flow Rateof Heavy Liquid-metal Coolant [J]. Atomic Energy,2009,106(4):300-303.
    [38] Pinaev S S, Muraviev E V, Beznsov A V, et al. Optimization of Insulating Coating FormationTechnology on the Structural Materials For Heavy Liquid Metal Coolants [C]. Proceedings of the11th International Conference on Fusion Research,2004, Kyotot, Japan, August,2004:1419-1423.
    [39] Dhar A, Agarwal A K, Saxena V. Measurement of Dynamic Lubricating Oil Film Thicknessbetween Piston Ring and Liner in a Motored Engine [J]. Sensors and Actuators, A: Physical,2009,149(1):7-15.
    [40] Mistry K, Bhatt D V, Sheth N R. Theoretical Modeling and Simulation of Piston Ring Assemblyof an IC Engine [C].2004ASME/STLE International Joint Tribology Conference.2004, Part A:869-892.
    [41] Canbulut F. The Experimental Analyses of the Effects of the Geometric and Working Parameterson the Circular Hydrostatic Thrust Bearings [J]. JSME International Journal, Series C:Mechanical Systems, Machine Elements and Manufacturing,2006,48(4):715-722.
    [42] Khorshidi K. Effect of Hydrostatic Pressure and Depth of Fluid on the Vibrating RectangularPlates Partially in Contact with a Fluid [J]. Applied Mechanics and Materials,2012,(110):927-935.
    [43] Khorshidi K. Effect of Hydrostatic Pressure on Vibrating Rectangular Plates Coupled with Fluid[J]. Scientia Iranica,2010,17(6):415-429.
    [44] Tomoya F, Atsushi M, Kazuo Y. Expermental Characterization of Disturbance Force in a LinearDrive Sustem with High-precision Rolling Guideways [J]. International Journal of Machine Tooland Manufacture,2011,(51):104-111.
    [45] Shin J H, Kim H E, Kim K W. Lubrication Analysis of the Thrust Bearing in the Valve Plate of aSwash-plate Type Axial Piston [C]. ASME/STLE2011International Joint Tribology Conference,IJTC2011, Los Angeles, United states, October,2011:199-201.
    [46]王瑜,庞志成.定量供油静压支承中设计间隙对静动态特性的影响[J].机械,1990,17(6):17-19.
    [47]刘成祥.液体静压导轨恒流量控制的设计与分析[J].机床与液压,2008,36(7):125-128.
    [48]王华,陈学东.恒流量静压导轨设计分析[J].装备制造技术,2011,(7):66-68.
    [49]郭玉英.立式车床静压导轨的设计[J].机械工程师,2011,(6):118-119.
    [50]刘军胜.数控外圆磨床砂轮架闭式静压导轨的设计[J].精密制造与自动化,2011,(4):36-39.
    [51]张晓毅.恒流闭式静压导轨静压系统修正计算法及应用[J].机床与液压,2011,39(18):56-58.
    [52]张君安,张文豪,廖波,等.具有可变均压槽的气体静压推力轴承性能研究[J].摩擦学学报,2009,29(4):329-334.
    [53]赵明,黄正东,王书亭,等.重型数控立车工作台静压计算[J].机械工程学报,2009,45(9):120-135.
    [54] Zhao M, Huang Z D, Li B, et al. Hydrostatic Pressure Calculation and Optimization for Designof Beam and Slide-rest Guideways in Heavy Duty CNC Vertical Turning Mill [J]. ChineseJournal of Mechanical Engineering,2007,20(5):16-22.
    [55]李鹏飞,刘宏昭,陈洪波,等.高速运行条件下静压气浮导轨摩擦力分析[J].中国机械工程,2010,21(13):1590-1593.
    [56]张国渊,袁小阳.基于混合均质模型的气液两相流润滑动静压轴承性能分析[J].低温工程,2010,(2):8-23.
    [57]王建磊,袁小阳,苏卫民,等.低温高速动静压轴承气液两相润滑氧介质物性参数获取[J].低温工程,2011,(5):27-31.
    [58]郭红,张直明,岑少起,等.径向浮环动静压轴承稳定性研究[J].振动与冲击,2012,31(7):17-21.
    [59]姚英学,崔大朋,秦冬篱.新型狭缝节流球形静压气体陀螺轴承的动态特性[J].宇航学报,2010,31(8):2050-2057.
    [60]杨国文,高全杰,郭良斌,等.隐函数求解法在单供气孔静压气体球轴承参数优化中的应用[J].武汉科技大学学报,2010,33(4):427-430.
    [61]江桂云,王勇勤,严兴春,等.油膜轴承动静压混合效应的分析[J].机械设计,2010,27(7):86-89.
    [62]郭良斌,宣立明,王卓,等.小孔节流式盘状静压止推气体轴承主要几何参数的设计[J].机床与液压,2012,40(1):95-98.
    [63]罗恕燕,王时龙,周杰,等.油垫数量对工作台恒流静压导轨副性能的影响[J].机床与液压,2010,38(17):1-4.
    [64]关朝亮,戴一帆,王建敏,等.基于直线电机驱动的空气静压导轨动静态倾覆特性研究[J].机械科学与技术,2010,29(9):1182-1186.
    [65]龙威,包钢.进口效应对小孔节流静压空气轴承静特性的影响[J].轴承,2010,(7):31-35.
    [66]任迪,王祖温,包钢,等.新型高刚度静压气体球轴承的静态特性[J].吉林大学学报:工学版,2010,10(6):1599-1603.
    [67] Wang F S, Bao G. Characteristics of Supersonic Flow in New Type Externally PressurizedSpherical Air Bearings [J]. Journal of Center South University,2012,(19):128-134.
    [68]孙昂,马文琦,王祖温.平面静压气浮轴承的超声速流场特性[J].机械工程学报,2010,46(9):113-119.
    [69]于贺春,马文琦,赵广,等.船舶增压器静压气体轴承—转子系统动力学特性研究[J].振动与冲击,2011,30(12):1-27.
    [70]薛飞,赵万华.静压导轨误差均化效应影响因素研究[J].西安交通大学学报,2010,44(11):33-36.
    [71]李瑞珍,郭红,王丹丹.内外膜独立供油径向浮环动静压轴承静特性优化分析[J].河南科技大学学报:自然科学版,2010,31(4):16-38.
    [72]杜建军,张国庆,刘暾.均压槽与静压气体轴颈轴承承载特性的关系研究[J].机械工程学报,2012,48(15):106-112.
    [73]刘志丹,王时龙,李川,等.大型滚齿机工作台静压导轨的压力油流场数值模拟[J].四川兵工学报,2010,31(5):48-55.
    [74]王赵宇,杜军,王维轩.卸荷静压导轨在立式磨床上的应用[J].液压与气动,2011,(7):57-58.
    [75]王维轩.静压油腔掉压分析与研究[J].机械工程师,2012,(7):149-150.
    [76]左旭芬.矩形静压导轨在数控凸轮磨床上的应用[J].精密制造与自动化,2010,(4):30-31.
    [77]马方杰,李亮达,刘波,等.气体静压推力轴承性能测试实验台设计[J].液压与气动,2012,(2):47-50.
    [78]何发诚,桂林.变频恒流静压轴承的研制[J].制造技术与机床,2011,(9):140-141.
    [79]董胜先,马求山.动静压轴承支撑高速主轴系统基本性能分析[J].制造技术与机床,2011,(9):136-139.
    [80]李文锋,杜彦亭,贾广辉.精密数控车床静压导轨的设计[J].机床与液压,2011,39(23):87-90.
    [81]李文锋,杜彦亭,李敏,等.精密数控车床静压导轨性能仿真研究[J].机床与液压,2012,40(5):14-17.
    [82]张伟.定量供油开式液体静压环形导轨油膜厚度研究[J].机械工程师,2011,(7):34-35.
    [83]张伟,王亮.一种改进型液体静压导轨在机床中的应用[J].机械工程师,2011,(4):107-108.
    [84]吕琳,邓明,李艳霞,等.精冲机静压导轨的油膜刚度设计及控制[J].精密成形工程,2010,2(5):48-51.
    [85]王学敏,张启勇,庄明,等.低温氦透平膨胀机静压气体径向轴承的改进设计[J].机械工程学报,2010,46(15):142-154.
    [86]王学敏,白红宇,庄明.有限差分法求动静压轴颈轴承性能研究[J].哈尔滨工程大学学报,2011,32(10):1381-1390.
    [87]吴笛.局部多孔质气体静压径向轴承的建模与仿真[J].轴承,2010,(10):31-36.
    [88]刘志毅.摆动瓦动静压轴承特性分析[J].哈尔滨轴承,2011,32(3):1-3.
    [89]王建中,陈曦,张华.自由活塞斯特林制冷机中静压气体轴承的探讨[J].流体机械,2011,39(11):62-66.
    [90]徐林. M7120型平面磨床主轴轴承静压改造[J].液压气动与密封,2012,(4):58-60.
    [91]姚方,马希直.辊压机液体静压轴承的设计及性能研究[J].润滑与密封,2012,37(4):82-101.
    [92]邵俊鹏,张艳琴,韩桂华,等.重型静压轴承油腔结构优化与流场仿真[J].系统仿真学报,2010,22(5):1093-1096.
    [93]邵俊鹏.静压推力轴承润滑性能研究方向[J].哈尔滨理工大学学报,2011,16(6):1-10.
    [94] Shao J P, Dai C X, Zhang Y Q, et al. The Effect of Oil Cavity Depth on Temperature Field inHeavy Hydrostatic Thrust Bearing [J]. Journal of Hydrodynamics,2011,23(5):676-680.
    [95] Shao J P, Li H M, Yang X D, et al. Study on Flowability of the Gap Oil Film of the Multi-oil PadHydrostatic Bearing with Variable Viscosity [C].1st International Conference on IntelligentHuman-machine Systems and Cybernetics, Hangzhou, China,2009,15-18.
    [96] Zhang Y Q, Yu X D, Yang X D, et al. Viscosity Influence Research on Load Capacity of HeavyHydrostatic Bearing [C].3rd International Conference on Advanced Design and Manufacture,Nottingham, UK,2010,63-66.
    [97] Zhang Y Q, Yang X D, Li H M, et al. Research on Influence of Cavity Depth on Load Capacityof Heavy Hydrostatic Bearing in Variable Viscosity Condition [C].1st International Conferenceon Material and Manufacturing Technology, Chongqing, China,2010,1181-1185.
    [98] Zhang Y Q, Xu X Q, Yang X D, et al. Analysis on Influence of Oil Film Thickness onTemperature Field of Heavy Hydrostatic Bearing in Variable Viscosity Condition [C].2011International Conference on Chemical Engineering and Advanced Materials. Changsha, China,2010,129-131:1418-1421.
    [99]尹明虎,曲庆文,王成.悬臂型径向气体动压轴承温度场分析[J].山东理工大学学报:自然科学版,2010,24(5):73-76.
    [100]唐军,黄筱调,张金.大重型静压支承静态性能及油膜流体仿真[J].辽宁工程技术大学学报:自然科学版,2011,30(3):426-429.
    [101]孙仲元,黄筱调,方成刚.重型静压轴承流场与压力场仿真分析[J].机械设计与制造,2010,(10):203-204.
    [102]张逸舟,黄筱调,于春建.大重型机床静压导轨的静态性能及油膜流体仿真研究[J].机械设计与制造,2012,(10):102-104.
    [103]江云,侯国安,孙涛.液体静压导轨热特性有限元分析[J].航空精密制造技术,2011,47(5):23-25.
    [104] Hu G A, Sun T. Design and Analysis of Hydrostatic Bearing Slide used Linear MotorDirect-drive [C].2011International Conference on Mechatronics and Intelligent Materials, MIM2011. Lijiang, China, May,2011:666-670.
    [105] Hu G A, Sun T. Design of an Ultra-precision Machine Tool for Machining Microstructures ofLaser Fusion Capsule [J]. International Journal of Nanomanufacturing,2011,7(3):223-231.
    [106]吴定柱,陶继忠.多孔介石墨气体静压止推轴承静态性能分析[J].中国机械工程,2010,21(19):2296-2301.
    [107]孔中科,陶继忠.不同压力腔的气体静压轴承静特性的数值模拟[J].机械研究与应用,2012,(5):16-21.
    [108]张杰,李鲲,吴兆山,等.核主泵流体静压式二级密封的压力变形数值研究[J].液压气动与密封,2012,(6):56-59.
    [109]李华川,苏茜.基于Ansys的空气静压轴承有限元分析[J].轴承,2010,(9):9-44.
    [110]王绪胜.几种不同结构的静压径向气体轴承性能分析[J].液压与气动,2010,(11):49-52.
    [111]陈改革,杨涛,陈立,等.阵列式空气轴承特性与供气压强关系的仿真分析[J].机械设计与研究,2010,26(5):74-83.
    [112]彭志,王立鹏,王欣彦.数控机床导轨面变形预补偿的有限元分析[J].机床与液压,2011,39(12):26-27.
    [113]夏毅敏,张刚强,罗松保,等.非球面超精密机床静压轴承温度场的分布[J].光学精密工程,2012,20(8):1759-1764.
    [114]郝胜强,张新宇,吴士海,等.球磨机静压轴承油膜温度场数值模拟与分析[J].辽宁科技大学学报,2012,35(2):130-161.
    [115]杨建玺,周浩兵,崔凤奎.液体动静压轴承油腔结构对承载特性的影响[J].河南科技大学学报:自然科学版,2012,33(5):37-40.
    [116]李璟,董妍波,党凯.液体静压导轨油膜厚度的研究[J].中国化工贸易,2012,(6):238-239.
    [117] Kang Y, Shen P C, Chang Y, et al. Modified Predictions of Restriction Coefficient and FlowResistance for Membrane-type Restrictors in Hydrostatic Bearing by using Regression [J].Tribology International,2007,(40):1369-1380.
    [118]林延章.单向薄膜节流器的新型设计及特性比较[D].台湾:台湾中原大学,2005.
    [119] Nie S L, Huang G H, Li Y P. Tribological Study on Hydrostatic Slipper Bearing with AnnularOrifice Damper for Water Hydraulic Axial Piston Motor [J]. Tribology International,2006,39:1342-1354.
    [120]唐健.不同节流方式的静压轴承承载性能研究[J].机床与液压,2010,38(12):77-80.
    [121]李锁斌,尹志宏,唐邦强.静压轴承薄膜节流器系统的理论建模及性能分析[J].润滑与密封,2010,35(11):94-97.
    [122]梅怡.新型液体静压支承技术在机床导轨上的应用[J].液压与气动,2012,(6):83-86.
    [123]张亮,戴惠良,刘思仁.基于AMESim的静压导轨自适应供油系统的研究[J].制造技术与机床,2010,(12):25-28.
    [124]汤何胜,陈伦军,曹捷.基于AMESim/Simulink的轴向柱塞泵滑靴副静压支承特性仿真研究[J].机床与液压,2011,39(15):101-105.
    [125] Ye H L, Zheng X L, Shen J X, et al. Dynamic Modeling and Analysis of Axial Vibration of theHydrostatic Slide Turntable [J]. Engineering Mechanics,2012,29(3):218-225.
    [126]魏旭壕,叶红玲,刘赵淼.基于液体静压支承转台的动力学分析与数值模拟[J].科技导报,2009,27(20):55-59.
    [127]陈东菊,张飞虎,付鹏强.空气静压导轨气膜波动的辨识[J].机械工程学报,2010,46(21):187-193.
    [128] Chen D J, Fan J W, Zhang F H. Dynamic and Static Characteristics of a Hydrostatic Spindle forMachine Tools [J]. Journal of Manufacturing Systems,2010,(11):1-8.
    [129]朱维斌,李东升.气体静压导轨气膜振动的数值模拟[J].测试技术学报,2009,23(2):129-133.
    [130] Wang X H, Zheng J, Sun S W, et al. Research on Performance of Slide-valve in Water HydraulicServo-valve with Hydrostatic Bearing [C].2010International Conference on MechanicAutomation and Control Engineering, MACE2010. Wuhan, China, June,2010:3619-3622.
    [131] Wang Z W, Zhao W H, Lu B H. Influencing Factors on Dynamic Response of HydrostaticGuideways [C].2nd International Conference on Advances in Materials and Manufacturing,ICAMMP2011. Guilin, China, December,2011:2095-2101.
    [132] Wang Z W, Duan R Z, Xu W L, et al. Research on Control Strategy of Oil Film Stiffness ControlSystem of Hydrostatic Center Frame [C].2012International Conference on MechanicalEngineering, Materials Science and Civil Engineering, ICMEMSCE2012. Harbin, China,August,2012:629-633.
    [133]张雯,李东升,禹静,等.气体静压导轨气膜厚度的电容式测试方法[J].传感器与微系统,2012,31(7):67-83.
    [134]李东升,张雯,禹静,等.气体静压导轨刚度讨论与误差源分析[J].中北大学学报:自然科学版,2011,32(6):768-774.
    [135]李树森,郭永红,朱赞彬,等.精密机床静压气体轴承静特性分析及基本参数的优化[J].润滑与密封,2012,37(1):29-32.
    [136]赵晓敏.空气弹簧在机械振动台中的应用[J].电子工业专用设备,2011,(9):54-57.
    [137]万里,王孚懋.高速加工车床主轴的动态特性分析与Matlab仿真[J].现代制造技术与装备,2010,(3):1-13.
    [138]凌玲,王云懋,吴百海,等.高速旋转静压支承接头的芯轴动态力学分析[J].润滑与密封,2010,35(2):56-63.
    [139]王明权,李战伟,贾月明.高速空气静压电主轴的振动及控制策略[J].电子工业专用设备,2011,(202):46-51.
    [140]李战伟,王明权,贾月明.切割机空气静压电主轴径向承载力及刚度的设计[J].电子工业专用设备,2011,(200):39-48.
    [141]林立明,王同臣,马庆国.浅析如何推动我国重型数控机床工业发展[J].工业技术,2010,(29):107.
    [142]白洪良.浅析我国重型数控机床工业发展趋势[J].民营科技,2011,(3):166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700