外啮合齿轮泵困油机理、模型及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
困油现象是外啮合齿轮泵固有的特性之一,困油压力值的准确评估是控制和减轻困油的前提,本文以困油模型的建立和困油压力的精确仿真为目标展开研究,主要工作包括以下几个方面:
     采用扫过面积的方法,以主动齿轮的啮合长度为变量,建立了异齿数齿轮泵的平均流量、流量不均匀系数、困油容积和困油流量的计算公式,为后续困油压力的仿真做好前期的准备工作。结果表明主大从小的异齿数组合对流量特性有利,对困油现象不利;而主小从大异齿数组合的影响则相反。
     采用计算创建法与虚拟量测法相结合,给出了最小困油面积和卸荷面积计算与验证的问题。实例表明卸荷面积的变化为抛物线型,具体应用时,不同参数下的卸荷面积可采用不同指数和系数的抛物线来简化。
     建立了困油压力仿真的模型。依据模型中是否考虑齿轮副的动力学分析,将困油模型分为静态模型和动态模型。采用数值模拟方法研究了含气比,侧板倾斜,有效体积模量,离心力和齿轮副的振动等因素对困油压力的影响。结果表明含气是造成处于膨胀阶段后期的困油压力基于零压附近的主要原因,入口含气比对困油压力的影响不大,而离心含气比以及出油口含气比在进入困油区后的放大效应的影响较大;过小的侧隙和过大的困油压力会加剧齿轮副的振动;动态模型仿真的压力峰值一般要比静态模型低,采用动态模型更可靠;从动轮侧的困油压力峰值一般也要大于主动轮侧的困油压力峰值。
     针对仿真模型中的四大泄漏量进行了研究。轴向泄漏考虑了侧板倾斜和困油区的封闭轮廓在一个困油周期内的变化;静态时,齿面啮合泄漏依赖于其间的最小油膜厚度,侧隙泄漏依赖于侧隙的原始设计值;动态时,两者均依赖于啮合位置和振动位置的变化。实例表明卸荷泄漏、侧隙泄漏和啮合泄漏与困油流量基本处于同一数量级,是缓解困油压力的主要途径。
     基于台架试验测量了从动轮侧的困油压力,并与理论分析结果进行了对比,从而对困油分析模型进行了验证。静、动态模型的仿真结果之间的差距较大,动态模型比较接近于试验结果。引流口的体积对困油压力造成的影响很小,可以忽略不计。
     最后,对相关参数如何影响困油压力进行了动态模型的仿真分析,结果表明较小的模数、齿数、压力角、齿宽、齿顶高系数和较大的正变位系数,有利于困油压力的缓解,同时较大的正变位系数对流量脉动现象的改善也有一定效果。此外,对于高压、低速以及低压、高速工况下的困油特性进行了分析。
     本文的研究工作为困油压力的精确预测提供了一种有效的方法,在齿轮泵设计尤其在泵的振动与噪声控制等方面,具有一定的理论意义和应用前景。
Phenomenon of trapped oil is an inherent characteristic of external gear pump; the accurate evaluating of value of trapped oil pressure is a precondition for controlling and relieving trapped oil pressure. With the targets of modeling and accurate simulation of trapped oil pressure, this paper performs a further research that contains the following main aspects:
     For a external gear pump with different teeth of drive gear and driven gear, by using a method of swept volume and taking engagement length of drive gear as a variable, the paper establishes formulas of average flow, uneven flow coefficient and trapped oil volume, the flow of trapped oil, all of them are a preparatory work for subsequent simulation of trapped oil pressure. The results show that the combination of more teeth of drive gear with fewer teeth of driven gear is favorable for improving the flow characteristic and unfavorable for reducing the phenomenon of trapped oil, while the effect of the combination of fewer teeth of drive gear with more teeth of driven gear is just on the contrary.
     The minimum area of trapped oil region and relief area are calculated by combining computation method with virtual measurement method. The results show that the curve of relief area is parabolic, different indices and coefficients of parabola can be adopted for simplificating calculation of actual relief area under different parameters in actual application.
     The simulation model of the trapped oil pressure is established in the paper, and the model is divided into static model and dynamic model according to with or without dynamic factor of gear pair. The influence of percentage of gas in oil, slope of side plate, effective bulk modulus, and centrifugal force and gear pair vibration on trapped oil pressure is studied by numerical simulation. The results show that gas in oil is the major cause of zero-approaching trapped oil pressure in the later stage of expansion, and that inlet gas in oil has little effect on the trapped oil pressure, while the effect of percentage of centrifugal gas and percentage of outlet gas in oil is amplified in the trapped oil areas; and smaller backlash and higher oil pressure will aggravate vibration of gear pair. Normally the peak of simulated pressure in dynamic model is lower than that in static model, making dynamic model more reliable. At peak of trapped oil pressure in driven gear side is greater than that in drive gear side under normal circumstances.
     Four kinds of leakages in the simulation model are investigated, among which, axial leakage takes slope of side plate and variation of trapped oil profile in a trapping period into account, in static state, meshing leakage from meshing tooth surface depends on the minimum film thickness therein, and leakage from backlash depends on original design values of backlash; in dynamic state, both of them depend on change of meshing position and vibration location. The results show that the relief leakage and backlash leakage and meshing leakage are basically the same as trapped oil flow in magnitude; these three kinds of leakages are main method for relieving the trapped oil pressure.
     Trapped oil pressure in driven gear side is measured on test device and compared with the results of theoretical analysis, thus the simulation model has been verified. There is a larger gap in simulation results of static model and dynamic model, and the results in dynamic model are closer to the test results, the volume of drainage has little influence on trapped oil pressure, therefore it is negligible.
     Finally, the influence of relevant parameters on trapped oil pressure is analyzed based on dynamic model. The results show that small modulus, number of teeth, pressure angle, gear width, addendum coefficient and big positive profile shift coefficient contribute to the relieving of trapped oil pressure. In particular, greater positive profile shift coefficient is very effective for relieving of the flow pulse and trapped oil. In addition, trapped oil pressure is forecasted in special working conditions such as high-pressure and low-speed or low-pressure and high-speed.
     In conclusion, the research offers an effective method for the accurate prediction of trapped oil pressure, and is useful in the design of gear pump, especially, in vibration and noise controlling, etc. this study is of significance both in theoretical and applications.
引文
[1]甘学辉.聚合物齿轮泵特性理论研究及数值模拟[D].郑州:郑州机械研究所,2002.
    [2](美)Igor J.Karassik编,陈允中,曹占友,邓国强译.泵手册(第三版)[M].北京:中国石化出版社,2003.
    [3]俞云飞.液压泵的发展展望[J].液压气动与密封,2002,91(1):2-6.
    [4]齿轮泵和齿轮马达[N].URL:jxzy.lzptc.edu.cn/ziyuan/55/yyyqdjs/kcgh/img/4-2.PPT.
    [5]顾建勤.外啮合齿轮泵油压测试方法与分析[J].上海工程技术大学学报,2003,17(4):281-285.
    [6]许贤良,赵连春,杨球来等.复合平衡齿轮泵理论研究与实验分析[J].煤炭学报,2004,29(4):497-501.
    [7]Fabrizio Paltrinieri.Modelling and Simulating Hydraulically Balanced External Gear Pumps and Motors[D].University of Modena and Reggio Emilia,Modena,Italy,2004.
    [8]栾振辉.无啮合力齿轮泵[J].煤矿机械,2002,(1):40-43.
    [9]周毅钧,栾振辉,唐琼.基于MATLAB的无啮合力齿轮泵结构优化设计[J].安徽理工大学学报(自然科学版),2008,28(2):51-53.
    [10]王强.纯水液压齿轮泵及试验系统研究[D].昆明:昆明理工大学,2003.
    [11]徐世明.高粘度齿轮泵的机理研究及开发研制[D].北京:北京化工大学,1999.
    [12]李秀明.高粘度齿轮泵特性分析及齿轮参数优化[D].郑州:郑州机械研究所,2002.
    [13]甘学辉,吴晓铃.聚合物齿轮泵功率特性研究[J].流体机械,2004,32(11):14-17.
    [14]V I Stupa,Yu A Chernyshov.A Study of the Operation of a Gear Pump on Highly Viscous Polymer Solution[J].Chemistry and Technology of Main-Made Fibres,1973(4):22-23.
    [15]Wayne Strasser.CFD Investigation of Gear Pump Mixing Using Deforming / Agglomerating Mesh[J].Journal of Fluids Engineering,2007,129(4):476-484.
    [16]V I Stupa,Yu A Chernyshov.Dependence of Gear-Pump Operation on Viscosity of the Metered Liquid[J].Chemistry and Technology of Main-Made Fibres,1990,(6):454-456.
    [17]栾振辉.活齿泵的理论研究[J].华中理工大学学报,2000,28(7):54-56.
    [18]左瑞光,白杰.中心轮齿数对五极外啮合齿轮复合泵流量脉动的影响分析[J].液压与气动,2007,(3):30-33.
    [19]N.D.Manring and S.B.Kasaragadda.The theoretical flow ripple of an external gear pumps [J].Transactions of the ASME,2003,125(10):396-404.
    [20]K.Nagamura,K.Ikejo,F.G Tutulan.Design and performance of gear pumps with a non-involute tooth profile[J].Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2004,21(8):699-712.
    [21]PJ Gamez-Montero,E Codina.Flow characteristics of a trochoidal-gear pump using bond graphs and experimental measurement[J].Part 1,Proceedings of the Intitution of Mechanical Engineers Part Ⅰ-Journal of Systems and Control Engineering,2007,221(Ⅰ3):331-339.
    [22]PJ Gamez-Montero,E Codina.Flow characteristics of a trochoidal-gear pump using bond graphs and experimental measurement[J].Part 2,Proceedings of the Intitution of Mechanical Engineers Part Ⅰ-Journal of Systems and Control Engineering,2007,221(Ⅰ3):340-346.
    [23]Pedro Javier Gamez-Montero.Fluid Dynamic Characterizations of an Internal Gear Hydraulic Pump Generated by Trochoidal Profiles[C].Department of Fluidmechanics(?)LABSON(Campus Terrassa) of the Technical University of Catalonia,Terrassa,Spain,2004.
    [24]V.M.Ryazantsev.Gear Pump Containing Elements with Cycloidal Profile[J].Chemical and Petroleum Engineering,1994,30(2):86-68.
    [25]徐学忠.内啮合摆线齿轮泵的理论研究与仿真[D].南京:东南大学,2005.
    [26]Hobbs John,Fricke,Hans Juergen.New Methods of Reducing Noise in External Gear Pumps [R].Robert Bosch Corp,USA,n 801005,1980.
    [27]孔凡.异齿宽齿轮泵的研究[J].流体机械,2004,32(10):14-18.
    [28]臧克江,周欣,顾立志等.降低齿轮泵困油压力新方法的研究[J].中国机械工程,2004,15(7):579-582.
    [29]杨元模,刘朝晖.外啮合齿轮泵抽空现象探究及解决方法[J].液压与气动,2006,(12):81-83.
    [30]林子光.曲线齿轮油泵的研究[J].机械工程师,2001,(11):18-20.
    [31]丁万荣.BCB-B型变量齿轮泵的变量范围[J].机床与液压,1998,(2):35-39.
    [32]齿轮泵代替柱塞泵功能技术分析[N].URL:http://www.autooo.net/autooo/jx/tech,2007.
    [33]J.M.Reveille.Progress in automotive NVH field[C].Proceedings of International Conference on Noise and Vibration Engineering,Leuven,Belgium,2002 September 16-18,Leuven(2002).
    [34]陈英.外啮合齿轮泵振动和噪声研究[J].吉林工程技术师范学院学报(自然科学版),2006,22(3):7-9.
    [35]Anon.Cmputer Aided Design in High Pressure Hydraulic Systems[CP].Computer Aided Design in High Pressure Hydraulic Systems,London,Engl,1983,101-135.
    [36]I.M.Bidhendi,K.Foster,R.Taylor.Computer predictions of cyclic excitation sources for an external gear pump[C].Computer Aided Design in High Pressure Hydraulic Systems Symposium,ImechE,1983.
    [37]Fiebig Wieslaw,Kollek Waclaw.Dynamic Loads in a Gear Pump with External Gear Wheels[J].Przegl Mech,1987,46(5):16-19.
    [38]Lee S-H,Royston T J.Air-borne,fluid-borne and structure-borne noise radiation paths in a hydraulic power application equipped with a gear pump[CA].Proceedings of the 1997National Conference on Noise Control Engineering,NOISE-CON.Part 2(of 2),Jun 15-171997,University Park,PA,USA,p 47-52.
    [39]D.Childs,H.Moes,H.Van Leeuwen.Journal bearing impedance descriptions for rotordynamic application[J].Journal of lubrication technology,1977,99(10):198-214.
    [40]S.Theodossiades,S.Natsiavas.On geared rotordynamic systems with oil journal bearings [J].Journal of Sound and Vibration,2001,243(4):721-745.
    [41]Kuang,J.H.and Yang,Y.T.An estimate of mesh stiffness and load sharing ratio of a spur gear pair[J].International power Transmission and Gearing conference,ASME,1992,43(1):1-9.
    [42]A.Fernandez Del Rincon,G.Dalpiaz.A model for the elastodynamic analysis of external gear pumps[CA].Proceedings of the 2002 International Conference on Noise and Vibration Engineering,ISMA,Sep 16-18 2002,Leuven,Belgium,p 1387-1396.
    [43]KA Edge,BR Lipscombe.The reduction of gear pump pressure ripples[J].Proc.I.Mech.E,1987,201(B2):99-106.
    [44]M Eaton,PS Keogh,KA Edge.The modeling,prediction and experimental evaluation of gear pump meshing pressures with particular reference to aero-engine fuel pumps[J].Proceedings of the Intitution of Mechanical Engineers Part Ⅰ-Journal of Systems and Control Engineering,2008,220(5):365-379.
    [45]P97系列双联高压齿轮泵[N].URL:http://www.cnsb.cn/html/products/2901/info_show_2901772.html,2009.
    [46]GHP1AQ型高压小排量齿轮油泵[N].URL:http://www.wxdfyy.com/cp16.htm,2009.
    [47]许仰曾.21世纪液压泵的发展趋势[J].传动&控制,2001,283(5):72-73.
    [48]栾振辉.齿轮泵研究的现状与发展[J].起重运输机械,2005,(6):11-13.
    [49]高粘度齿轮泵的发展特点[N].URL:http://article.designnews.com.cn/2006-12/20061227083111.htm.
    [50]鲍高弟,谢峰.高粘度系统油泵粘性摩擦功耗的探讨及应用[J].润滑与密封,2001,(3):55-57.
    [51]刘永红,熊伟.熔体齿轮泵国产化的探讨[J].聚酯工业,2003,16(3):12-14.
    [52]杜建新.高粘度泵的发展趋势[J].机械,2005,32(5):1-3.
    [53]张旭东.采用试验法进行高粘度齿轮泵系列化设计[D].郑州:郑州机械研究所,2006.
    [54]李玉龙,刘焜.外啮合齿轮泵动态困油模型及其参数影响分析[J].农业机械学报,2009,40(9):214-219.
    [55]何存兴.液压组件[M].北京:机械工业出版社,1982.
    [56]第四章 船用泵和油马达[N].www.uushop.net.
    [57]李玉龙,刘焜.考虑困油和卸荷的外啮合齿轮泵动态扭矩计算[J].农业工程学报,2009,25(4):91-95.
    [58]怎样检查齿轮泵齿轮啮合状况[N].URL:www.sbgl.net/bencandy-77-30585-1.htm,2008.
    [59]#12
    [60]杨元模,吴霞,刘朝晖.外啮合齿轮泵产生噪声的原因探究及解决方法[J].南昌航空工业学院学报(自然科学版),2006,20(4):73-76.
    [61]Kojima Eiichi,Shinada,Masaaki.CHARACTERISTICS OF FLUIDBORNE NOISE GENERATED BY FLUID POWER PUMP[J].Bulletin of the JSME,1984,27(2):2188-2195.
    [62]徐晓东.非对称渐开线齿轮的啮合特性及应力分析研究[D].南京航空航天大学,2006.
    [63]彭浏新.ZCBG3350齿轮泵高噪声分析及解决[J].液压与气动,2004,(11):76-77.
    [64]V I Stupa,Yu A Chernyshov.Analytical determinations of the pressure in the inter-tooth space of a metering gear pump[J].Machines and Apparatus,1982,(5),p 46-48.
    [65]G.Mimmi.Experimental investigation of flowrate irregularity in rotary gear pumps[J].American Society of Mechanical Engineers,Design Engineering Division(Publication) DE,1992,43(1):283-289.
    [66]Yanada,Ichikawa,Itsuji.Study of the Trapping of Fluid in a Gear Pumps[J].Proceedings of the Institution of Mechanical Engineers,Part A:Power and Process Engineering,1987,201(A1):39-45.
    [67]E.Koc.Bearing misalignment effects on the hydrostatic and hydrodynamic behaviors of gears in fixed clearance end plates,Wear,1994,173(2):199-206.
    [68]E.Koc.C.J.Hooke.Experimental investigation into the design and performance of hydrostatically loaded floating wear plates in gear pumps[J].Wear,1997,209(3):184-192.
    [69]G.Dalpiaz,A.Fernandez Del Rincon and E.Mucchi.Modeling meshing phenomena in gear pumps[C].Proceedings of ISMA 2004,Leuven,Belgium,September 2004,pp.949-963.
    [70]M Eaton,PS Keogh & KA Edge.Modeling and simulation of pressures within the meshing teeth of gear pumps[C].Proceedings of International Conference on Recent Advances in Aerospace Actuation Systems and Components,Toulouse,France,13 - 15 June 2001.
    [71]M.Borghi,F.Paltrinieri,M.Milani,Zardin B.The influence of cavitation and areation on gear pumps and motors meshing volumes pressures[C].Proceedings of 2006 ASME International Mechanical Engineering Congress and Exposition,IMECE2006 - Fluid Power Systems and Technology Division,Chicago,IL,United States,Nov 5-10 2006.
    [72]Final Report - Modeling the trapped volume in an external gear pump[N].URL:www.nfpa.com/Education/PDF/University of Missouri-Modeling the Trapped Volume in an External Gear Pump.pdf,2003.
    [73]Hyun Kim,Hazel Marie,Suresh Patil.Two-dimensional CFD Analysis of a Hydraulic Gear Pump[C].ASEE 2007,Annual Conference Proceedings CD:AC 2007-821.
    [74]外啮合齿轮泵[N].URL:http://www.efluid.com.cn/app/app_detail.aspx?id=4134.
    [75]G Houzeaux,R Codina.A finite element method for the solution of rotary displacement pumps[J].Computers & Fluids,2007,36(6),667 - 679.
    [76]Emiliano Mucchi,Alessandro Rivola.Influence of design and operational parameters on the dynamic behavior of gear pump[C].The 14th International Congress on Sound Vibration,9-12 July 2007,Cairns,Australia.
    [77]KJ Huang,WC Lian.Kinematics flowrate characteristics of external spur gear pumps using an exact closed solution[J].Mechanism and Machine Theory,2009,44(6):1121-1131.
    [78]甘学辉,侯东海,吴晓铃.斜齿齿轮泵无侧隙啮合困油特性的研究[J].机械工程学报,2003,39(2):145-148.
    [79]臧克江,刘宇辉,董广强等.AutoCAD2000环境下的外啮合齿轮泵容腔容积计算[J].佳木斯大学学报(自然科学版),2001,(12):355-357.
    [80]李玉龙.基于特征的齿轮泵困油及卸荷面积计算[J].农业机械学报,2006,37(11):106-109.
    [81]李玉龙,刘焜.外啮合齿轮泵卸荷面积的精确仿真分析[J].农业工程学报,2009,25(3):42-45.
    [82]李玉龙,刘焜.外啮合齿轮泵困油面积和卸荷面积计算式的建立[J].农业机械学报,2009,40(6):203-207.
    [83]曾良才,湛从昌.齿轮泵阻尼槽式卸荷槽的分析与研究[J].武汉冶金科技学报,1996,19(2):189-193.
    [84]赵亮,王冬屏.齿侧间隙很小时齿轮泵困油问题分析[J].机械工程学报,1999,35(6):77-79.
    [85]杨元模,谢永悫.解决外啮合齿轮泵困油现象的两种新方法[J].液压与气动,2006,(8):75-78.
    [86]周德军.双重卸荷槽--消除齿轮泵困油压力新方法的研究[J].液压气动与密封,2006,(6),21-24.
    [87]李玉龙.齿轮泵CAD(Ⅱ)[D].合肥:合肥工业大学,1994.
    [88]李玉龙,王学军,顾广华.外啮合齿轮泵困油历程的仿真研究[J].机械传动,2004,(6):19-21.
    [89]解生泽,周超梅,马先贵等.齿轮润滑油泵的润滑状态分析[J].沈阳工业大学学报,2003,25(5):3374-375.
    [90]臧克江,周欣.齿轮泵困油压力测试系统设计[J].工程设计学报,2006,13(14):264-266.
    [91]李玉龙,刘焜,王学军.齿轮泵扭矩计算的动态再现[J].农业机械学报,2006,37(3):142-144.
    [92]臧克江,陈鹰.AutoCAD环境下的齿轮泵理论流量计算与验证[J].农业机械学报,2003,(4):76-79.
    [93]李玉龙,刘焜,鲍仲辅.基于渐开线齿轮展成法的参数化精确建模[J].现代制造工程,2006,(9):70-72.
    [94]李玉龙,刘焜.外齿轮式高压油泵全齿面润滑的理论分析[J].农业机械学报,2008,39(12):178-182.
    [95]李玉龙,刘焜.异齿数对外啮合齿轮泵困油现象的影响[J].辽宁工程技术大学学报(自然科学版),2009,28(3):470-473.
    [96]马军.齿轮泵的困油现象分析及其解决措施[J].淮南职业技术学院学报,2006,18(6):70-72.
    [97]毛华永,李国祥,徐秀兰等.渐开线齿轮机油泵特性分析[J].内燃机,2002,15(6):15-17.
    [98]李志华,刘小思,顾广华.齿轮泵齿轮基本参数的优化设计[J].江西农业大学学报,1997,19(3):132-136.
    [99]孙恒.机械原理[M].北京:高等教育出版社,1986.
    [100]李志华.齿轮泵CAD(Ⅰ)[D].合肥:合肥工业大学,1993.
    [101]Wikipedia.Bulk modulus[N].http://en.wikipedia.org/wiki/Bulk_modulus,2007.
    [102]李玉龙,刘焜.异齿数下外啮合齿轮泵困油和卸荷的面积计算[J].机械传动,2008,32(5):53-56.
    [103]王学军,李玉龙.CAD/CAM应用软件--UG训练教程[M].北京:高等教育出版社,2003.
    [104]李玉龙,王勇.UG下外啮合齿轮泵齿轮3D设计和分析[J].机床与液压,2004,(9):21-23.
    [105]蔡春源.机械设计手册(4)[M].沈阳:辽宁科学技术出版社,2000.
    [106]鲍仲辅.基于UG的内啮合渐开线齿轮泵的CAD研究[D],合肥学院,2006.
    [107]李玉龙,刘焜,徐强.外啮合齿轮泵立体CAD系统研究[J].机械传动,2005,29(6):36-39.
    [108]顾永泉.流体动密封[M].北京:石油大学出版社,1990.
    [109]温诗铸,杨沛然.弹性流体动力润滑[M].北京:清华大学出版社,1992.
    [110]温诗铸.摩擦学原理[M].北京:清华大学出版社,1990.
    [111]李玉龙,刘焜.外齿轮润滑泵无困油时齿面润滑状态的研究[J].润滑与密封,2008,33(5):42-45.
    [112]陈英,荆宝德,王义强.外啮合齿轮泵内泄漏理论模型的建立及参数优化[J].机床与液压,2007,35(10):108-110.
    [113]劳赛夫.Excel软件在偏微分方程数值求解中的应用[J].河海大学学报,2001,29(5):110-114.
    [114]王小明,池哲萍.用EXCEL解微分方程[J].合肥工业大学学报(自然科学版),2001,24(4):602-606.
    [115]刘向军.工程流体力学[M].北京:中国电力出版社,2007.
    [116]王新月.气体动力学基础[M].西安:西北工业大学出版社,2006.
    [117]李玉龙,许泽银,徐强.齿轮泵补偿面设计的参数化研究[J].农业机械学报,2005,36(8):70-74.
    [118]Brancati R.,E.Rocca,R.Russ.计算啮合齿轮轮齿间油膜挤压的齿轮敲击振动模型[J].传动技术,2006,20(3):15-20.
    [119]张锁怀,石守红,丘大谋.齿轮耦合的转子-轴承系统的非线性模型[J].机械科学与技术,2001,20(2):191-193.
    [120]卫丽,亓秀梅.齿轮传动动载荷沿啮合线分布规律的分析[J].机械工程与自动化,2006,139(6):63-66.
    [121]刘国华,王艳菊.考虑挤压油膜的齿轮系统非线性动力学[J].机械设计,2001,(11):17-19.
    [122]余志生.汽车理论(第3版)[M].北京:机械工业出版社,2004.
    [123]毕凤荣,崔新涛,刘宁.渐开线齿轮动态啮合力计算机仿真[J].天津大学学报,2005,38(11):991-995.
    [124]U mezaw a K,Suzuki T,and Sato T.Vibration of power transmission helical gears (approximate equation of tooth stiffness)[J].Bull.J.Soc.Mech.Engrs,1986,29(1):1605-1611.
    [125]R Singh,H Xie,and R J Comparin.Analysis of auto-motive neutral gear rattles[J].J.Sound Vibr.,1989,13(2):177-196.
    [126]Y Cai.Simulation on the rotational vibration of helical gears in consideration of the tooth separation phenomenon(a new stiffness function of helical involute tooth pair)[J].Trans.ASME,J.Mech.Des.,September 1995,177:460-469.
    [127]C Padmanabhan,R C Barlow,T E Rook.Computational issues associated with gear rattles analysis[J].Trans.ASME,J.Mech.Des.,March 1995,177:185-191.
    [128]Y Wang,R Manoj,W J Zhao.Gear rattles modeling and analysis for automotive manual transmission[J].Proc.Instn Mech.Engrs,PartD:J.Automobile Engineering,2001,215(D2):241-258.
    [129]L C Chow,R J Pinnington.Practical industrial method of increasing structural damping in machinery[J].Ⅱ:Squeeze-film damping with liquids,J.Sound Vibr.,1989,128(2):333-347.
    [130]李和平,夏翔,刘莹等.齿轮泵参数优化设计CAD[J].机械研究与应用,2005,18(05):100-101.
    [131]陈琪,徐林林,李庆春等.高粘度齿轮泵结构参数的优化设计[J].北京石油化工学院学报,2004,12(03):3-6.
    [132]彭玉洁.齿轮泵优化设计及参数化仿真[D].天津:天津大学,2000.
    [133]殷金祥.低脉动齿轮泵的机理分析与优化设计[D].扬州:扬州大学,2002.
    [134]刘贵根.多齿轮泵的基础理论与优化设计[D].芜湖:安徽理工大学,2006.
    [135]聂一彪.大排量齿轮泵的结构及性能优化研究[D].广州:广东工业大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700