水电站机组振动及其与厂房的耦联振动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水电建设的快速发展,机组容量和尺寸急剧增大,转速相应提高,机组振动及其诱发的水电站厂房结构振动问题日益突出,成为目前研究的热点和难点。我国已建的一些高水头、大容量水电站,出现了明显的振动问题,影响了机组的正常运行。针对这些实际问题,对机组振源和振动的研究更加紧迫。本文分析了水轮机密封系统的非线性动力特性,研究了水轮发电机组支承结构即导轴承、推力轴承的动力特性,探讨了机组动荷载传递方式。通过研究厂房、机组及其传力系统振动力学模型的建立,分析机组与厂房的动力特性,从而为机组和厂房结构的动力优化设计和振动控制提供理论指导和技术依据,具有重要的科学意义和工程价值。
     第一章绪论部分介绍了水电站机组与厂房结构的振动问题和研究现状,对机组支承结构即导轴承、推力轴承动力特性、水轮机迷宫密封系统振动特性及机组动荷载作用方式及传递途径进行了简要的描述。
     第二章用有限元法建立了水轮发电机组轴系振动力学模型,计算机组轴系统横向振动的自振频率,研究分析立式机组轴系统的稳定性。通过改变系统各参量,对机组临界转速和动力反应进行了敏感性分析,提出对振源控制和机组轴系统结构优化的建议,为合理选择机组形式和优化支承结构提供依据。
     第三章研究了推力轴承与导轴承对水轮发电机组的耦合作用。用有限元法建立了轴系横向振动力学模型,采用复模态分析方法计算了机组轴系统横向回转振动的自振频率及临界转速。分析了推力轴承与导轴承耦合作用对立式机组轴系统稳定性的影响。
     第四章分析了在Muszynska非线性密封力作用下水轮机转轮密封系统自激振动的动力特性,研究迷宫密封对水轮机转轮系统动力稳定性的影响。分别采用Muszvnska非线性密封力模型与八参数线性模型,分析了密封结构对系统运动特性的影响。
     第五章研究弹性支承对水轮机密封系统的影响。本章在上一章的基础上假设采用短轴承支承,用非线性油膜力模拟系统的弹性支承,建立弹性支承水轮机密封系统力学模型,并与刚性支承进行对比,分析临界失稳转速的变化情况。
     第六章考虑了导轴承动力特性的不固定性,研究机组与厂房耦合系统的动力学问题,揭示耦联振动的机理,建立了水电站机组与厂房的耦联振动模型,分析机组与厂房的动力特性及其相互影响。通过不同计算模型的比较,探讨水电站机组与厂房的相互作用机理,为以后的水电站厂房、水轮发电机组的抗振设计提供有益的参考。
The capacity and dimension of water turbinegenerating set has been sharply increasing with the rapid development of hydropower construction. At the same time, rotational speed has been increasing correspondingly. As a result, the vibration problem of water turbinegenerating set and the vibration of hydropower station's house are standing out gradually, which becomes an important issue to be studied. Obvious vibration has been happening in some hydropower stations with large capacity and high water head, which affects the normal work of water turbinegenerating sets. So it is an urgent work to study the vibration sources and vibration problems.
    nonlinear dynamic characterastics of labyrinth seal-rotating wheel system in hydraulic turbines has been analyzed in this thesis. Dynamic characteristics of journal bearing and thrust bearing have also been studied. The action and transmit mode of vibration loads has been discussed. A vibration mechanical model of hydropower house, water turbinegenerating set and transmit force system has been made to research their dynamic characteristics, which would provide theoretical and technical instruction for optimizing the structure and controlling the vibration of hydropower house and water turbinegenerating set.
    Chapter one simply introduces the vibration of hydropower house and water turbinegenerating set and its studying situation. This part also simply summarizes the dynamic characteristics of supporting structure, the vibration characteristics of seal-rotating wheel system in hydraulic turbines and the action and transmit mode of vibration loads.
    In chapter two, the lateral vibration mechanical model of shaft system is created based on the finite element method (FEM), and the critical rotation speed of transverse revolving vibration of shaft system is calculated. Sensitivity analysis of critical rotate speed and dynamic response is performed by changing different parameters of the system. According to the results, the thesis gives suggestions about how to control the vibration sources and how to optimized the structure of shaft system in water turbinegenerating set.
    In chapter three, the couple behavior between the thrust bearing and journal bearing of water turbinegenerating set is investigated. The finite element method is used to analysis the lateral vibration mechanical model of shaft system, the natural frequency of transverse revolving vibration of shaft system is calculated according to complex model method. Through analysis the influence of couple behavior between thrust bearing and journal bearing to investigate stability of shaft system in water turbinegenerating set.
引文
[1] 邹结富,杨英.我国水电产业发展趋势分析.水力发电,2002,(1):1-4
    [2] 潘家铮.中国水利建设的成就、问题和展望.中国工程科学,2002,4(2):42-51
    [3] 马震岳,董毓新.水轮发电机组动力学.大连:大连理工大学,1989
    [4] 马震岳,董毓新.水电站机组及厂房振动的研究与治理.北京:中国水利水电出版社,2004
    [5] 马震岳,王溢波,董毓新.红石水电站机组振动及诱发厂坝振动分析.水力发电,2000,(9):52-54
    [6] 北京国电水利电力工程有限公司勘科分公司.十三陵抽水蓄能电站1#机组支承结构振动监测分析研究报告,2002
    [7] 汪丽川.浅析岩滩电厂厂房振动现象.广西电力技术,1996,(1):26-29
    [8] 何少润.天荒坪电站一号机振动问题初析.水力发电学报,2000,(2):95-107
    [9] 白延年.水轮发电机设计与计算.北京:机械工业出版社,1982
    [10] 何立冬,夏松波.转子密封系统流体激振及其减振技术研究简评.振动工程学报,1999,12(1):64-72
    [11] 姜培林,虞烈.水轮机阶梯式口环水封的转子动力特性系数的计算.水力发电学报,1998,(4):56-65
    [12] Someya T. Journal-bearing data book. Springer, Tokyo, 1989
    [13] 孟光.转子动力学的回顾与展望.振动工程学报,2002,15(1):1-9
    [14] 李苹,王正.大型水泵—水轮机组轴系的动力特性.清华大学学报(自然科学版),1996,(7):24-29
    [15] 王正伟,喻疆,方源等.大型水轮发电机组转子动力学特性分析.水力发电学报,2005,24(4):62-66
    [16] 闻邦椿,顾家柳,夏松波,王正.高等转子动力学.北京:北京机械工业出版社,2000
    [17] 孟庆国,詹世革,汲培文.重大项目“大型旋转机械非线性动力学问题”取得重要进展.中国科学基金,2004,(3):142-144
    [18] 郑铁生,伍晓红.复杂非线性转子-轴承系统动力特性数值分析.力学学报,2001,33(3):377-389
    [19] 高亹,张新江,张勇.非线性转子动力学问题研究综述.东南大学学报,2002,2(3):443-451
    [20] 刘占生,崔颖,黄文虎,韩万金.转子弯扭耦合振动非线性动力学特性研究.中国机械工程,2003,14(7):603-605
    [21] 李振平,闻邦椿.刚性转子-轴承系统的复杂非线性动力学行为研究.振动与冲击,2005,24(3):36-39
    [22] 张宇,陈予恕,毕勤胜.转子-轴承-基础非线性动力学研究.振动工程学报,1998,1(1):24-30
    [23] 张新江,武新华,夏松波,韩万金.弹性转子-轴承-基础系统的非线性振动研究.振动工程学报,2001,4(2):228-232
    [24] 杨建刚,蔡霆,高亹.转子-轴承耦合系统动力响应问题研究.中国电机工程学报,2003,3(5):94-97
    [25] 沈松,郑兆昌.大型转子-基础-地基系统的非线性动力分析.应用力学学报,2004,1(3):9-12
    [26] 袁振伟,褚福磊,林言丽,王三保.考虑流体作用的转子动力学有限元模型.动力工程,2005,25(4):457-461
    [27] Y. Kang, Y.-P. Chang, J.-W. Tsai, L.-H. Mu, D Y.-F. Chang. An Investigation in stiffness effects on dynamics of rotor-bearing-foundation systems. Journal of Sound and Vibration, 2000, 231(2): 343-374
    [28] Keith E. Rouch, Tim H. McMains, Robert W. Stephenson, Mark F. Emerick. Modeling of complex rotor systems by combining rotor and substructure models. Finite Elements in Analysis and Design, 1991, (10): 89-100
    [29] J.M. Vance, B.T. Murphy and H.A. Tripp. Critical speeds of turbomachinery: computer predictions vs experimental measurements. Part Ⅱ: Effect of tilt pad bearings and foundation effects[J]. ASME Trans., J. Vibr., Acoust. and Reliability in Design, 1987:8-14
    [30] J.C. Nicholas, J.K. Whalen and S.D. Frankun. Improving critical speed calculations using flexible bearing support FRF compliance data[J]. Proc. Fifteenth Turbomachinery Symposium, Corpus Christi, TX, November 10-13, 1986, Texas A&M University, 1986
    [31] S. Edwards, A.W. Lees, M.I. Friswell. Experimental Identification of excitation and support parameters of a flexible rotor-bearings-foundation system from a single run down[J]. Journal of Sound and Vibration, 2000, 232 (5): 963-992.
    [32] K. L. Cavalca, P.F. Cavalcante, E.P. Okabe. An investigation on the influence of the supporting structure on the dynamics of the rotor system[J]. Mechanical Systems and Signal Processing, 2005, 19: 157-174.
    [33] Mittwolen N, Hegel T, Glicnicke J. Effects of hydrodynamic thrust bearing on lateral shaft vibration. ASME Journal of Tribology, 1991, 113(3): 811-818
    [34] 乔卫东,刘宏昭,马薇等.水轮发电机组轴系非线性力学模型的建立.西安理工大学学报,2004,20(2):122-125
    [35] 谷朝红,姚熊亮,陈起富.水轮机部件流固耦合振动特性研究.大电机技术,2001.(6):47-52
    [36] 党小建,梁武科,廖伟丽.水力机组流固耦合的数学模型.机械强度,2005,27(6):864-866
    [37] 吴培豪.鱼子溪4号机梳齿密封自激振动机理的探讨与改进密封形式的建议.1982
    [38] C.C. Crawford. Self-excited Vibration of a Hydraulic Turbine. Journal of Engineering for Power, 1967
    [39] 李启章.对水轮机自激振动和高水头机组振动问题的看法.
    [40] 马震岳.水轮发电机组及压力管道的动力分析.[博士学位论文].大连:大连理工大学,1988
    [41] [瑞士]W特劳佩尔(郑松宇等译).热力透平机.北京:机械工业出版社,1988:603-609
    [42] Alford J S. Protecting turbomachinery form self—excited rotor whirl. Journal of Engineering for Power, 1965,87(4): 189-198
    [43] Vance J M, Murphy B T. Labyrinth seal effects on rotor whirl stability. Inst. of Mechanical Engineer, 1980:369-373
    [44] Black H P. Effects of hydraulic forces in annular pressure seals on the vibration of centrifugal pump rotors. Journal of Mech. Eng. Science, 1969,11(2):206-213
    [45] Childs D W.Dynamic analysis of turbulent annular seals based on hirs. Journal of Lubrication Technology, 1983,105(3):429-436
    [46] Nordmann R, Dietzen F J. Calculating rotordynamic coefficients of seals by finite difference techniques. The 4th Workshop on Rotordynamic Instability Problems in High Performance Turbomachinery, Taxas A&M University, 1986,77-98
    [47] 任兴民,顾家柳,秦卫阳.具有封严蓖齿转子系统的动力稳定性分析.应用力学学报,1996:13(2):77-83
    [48] 沈庆根,李烈荣,郑水英.迷宫密封的两控制体模型与动力特性研究.振动工程学报,1996,9(1):24-30
    [49] Bently D E, Muszvnska A. Role of circumferential flow in the stability of fluid-handling machine rotors. The 5th Workshop on Rotordynamic Instability Problems in High Performance Turbomachinery, Taxas A&M University, 1988,1-15
    [50] Muszynska A and Bently DE. Frequency swept rotating input perturbation techniques and identification of the fluid force models in rotor/bearing/seal systems and fluid handling machines. J. of Sound and Vibration, 1990,143(1):103-124
    [51] Muszunska A. Model testing of Rotor /Bearing systems. The International Journal of Analytical and Experimental Modal Analysis, 1996,1(3):15-34
    [52] 李松涛,许庆余,万方义.迷宫密封转子系统非线性动力稳定性的研究.应用力学学报,2002,19(2):27-30
    [53] 陈予恕,丁千.非线性转子—密封系统的稳定性和Hopf分岔研究,振动工程学报,1997,10(3):368-374
    [54] 金琰,袁新.转子密封系统流体激振问题的流固耦合数值研究.工程热物理学报,2003,524(3):395-398
    [55] 袁镒吾,刘又文,强非线性问题的改进的L—P解法.应用数学和力学,2000,21(7),741-745
    [56] 唐驾时.多自由度强非线性振动的渐近解.湖南大学学报,1998,(4),15-19
    [57] A.H.奈弗著,宋家驌,戴世强译.摄动方法习题集.上海:上海翻译出版公司.1990.
    [58] A.H.奈弗著,干辅俊等译,摄动方法.上海,上海科技出版社,1984,178-179
    [59] 李骊著.强非线性振动系统的定性理论与定量方法.北京,利学版社.1997,155-202
    [60] 袁镒吾,阎建军.强非线性自激振动问题的瞬态解.应用力学学报,2003,20(3):66-69
    [61] 姚大坤,李至昭,曲大庄.混流式水轮机自激振动分析.大电机技术,1998,(5):43-47
    [62] 林铭贤.混流式水轮机组振动初探.水利科技,2001,(1):52-53
    [63] 曹润,马云.DGT480—180给水泵多级水封在现场的实际应用.青海电力,2001,(4):30-32
    [64] 陈予恕.非线性振动系统的分叉和混沌理论.北京:高等教育出版社,1993
    [65] 陈子恕.非线性振动、分叉和混沌理论及其应用.振动工程学报,1997,5(3):235-250
    [66] 房德明.汽轮发电机严重损坏实例及分析.中国电力,1994,5:29-33
    [67] 焦映厚等.非线性转子动力学的研究现状与展望.哈尔滨工业大学学报,1999:31(3):1-4
    [68] 杨金福,刘占生,于达仁.滑动轴承非线性油膜力研究.哈尔滨工业大学学报,2003,35(3):257-260
    [69] 王文,张直明.油叶型轴承非线性油膜力数据库.上海工业大学学报,1993,4:299-305
    [70] 孟志强,徐华,朱均.基于Poincare变换的滑动轴承非线油膜力数据库方法.摩擦学学报,2001,21(3):223-227
    [71] 张信志,马利锋.计算大型水轮发电机组导轴承非线性油膜力的一种准非线性简化方法.水力发电学报,1999,(2):92-99
    [72] 张文,郑铁生,马建敏等.油膜轴承瞬态非线性油膜力的力学建模及其表达式.自然科学进展,2002,12(3):255-260
    [73] 李苹,窦海波,王正.水轮发电机组主轴系统的建模及其非线性瞬态响应.清华大学学报,1998,38(6):123-128
    [74] 于军.转子—轴承系统非线性不平衡响应仿真考察及阶梯形对弯曲刚度的影响.[硕士学位论文].上海:上海大学,1999
    [75] 李志刚,张直明.多跨转子—滑动轴承系统非线性动力学仿真.自然杂志,1997,19(s):76-82
    [76] 李志纲.多跨转子—轴承系统非线性动力学分析.[博士学位论文].上海:上海大学,1995
    [77] 刘荣强.大型汽轮发电机组轴系稳定性检测及非线性条件下失稳机理研究.[博士学位论文].哈尔滨:哈尔滨工业大学,1996
    [78] 武新华,刘荣强,夏松波.非线性油膜力作用下滑动轴承涡动轨迹及稳定性分析.振动工程学报,1996,9(3):302-307
    [79] 朱均.转子—滑动轴承系统的稳定裕度.机械工程学报,1995,31(2):57-62
    [80] 陈渭.流体动力润滑推力轴承动力特性及其对转子横向振动状态的影响.[博士学位论文].西安,西安交通大学工程与科学研究院,1991
    [81] 姜培林,虞烈.推力轴承对轴承—转子系统的耦合作用研究.应用力学学报,1996,13(4):46-52
    [82] 姜培林,虞烈.弹性横梁支承的可倾瓦推力轴承的静态分析.西安交通大学学报,1997,31(7):74-78
    [83] 王俊,卢锷,王家骐.径向滚动轴承在工程分析中简化方法的研究.光学精密工程,19997(2):110-115
    [84] 姜培林,虞烈.可倾瓦径向滑动轴承支承的转子系统瞬态响应计算.计算力学学报,1999,16(1):101-106
    [85] Kenneth H. hueber. The Finite Element Method for the Engineers. 1982
    [86] Kenneth H. hueber. A Three-dimensional Thermo-hydrodynamic Analysis of Sector Thrust Bearing. ASLE Transactions, 1974
    [87] Kenneth H. hueber. Application of Finite Elenent Methods to Thermo-hydrodynamic Lubrication. International Journal for Numerical Methods in Engineering, 1974
    [88] 推力轴承小组.水轮发电机推力轴承的润滑计算.哈尔滨电工学院学报,1978
    [89] 张鹏顺,叶宗浩.大型推力轴承的实测及其瓦变性的分析计算.第二届全国摩擦、润滑、磨损会议论文集,1979
    [90] 推力轴承小组.大型水轮水电机组推力轴承的实测结果和理论分析.白山水电厂,1984
    [91] 赵红梅,董毓新,马震岳.水轮发电机托瓦支承推力轴承的润滑计算.大电机技术,1994,(1):8-12
    [92] 赵红梅,董毓新,马震岳.油膜温度呈三维分布的推力轴承润滑计算.大连理工大学学报,1994,34(5):589-594
    [93] 陈贵清.推力轴承油膜刚度对发电机转子轴系固有频率的影响.河北理工学院学报,2000,22(4):48-53
    [94] 李景惠,李永海,向敬忠.推力轴承油槽油流态的可视性研究.哈尔滨理工大学学报,2000,5(2):56-58
    [95] 孙守驯,曲建俊,邹高万等.水轮发电机组全弹性金属塑料轴瓦运行总结.水力发电,2002,(12):41-43
    [96] 武中德,张宏,张仁江.水轮发电机推力轴承润滑性能分析.黑龙江电力,2002,24(2):16-18
    [97] 金昌范,徐刚.小浪底水轮发电机组推力轴承甩油处理.2003,(3):23-24
    [98] 万庆.洪家渡电站机组推力轴承甩油分析与处理.水电站机电技术,2006,29(3):47-49
    [99] 舒扬启,王日宣.水电站厂房动力分析.北京:水利水电出版社,1987
    [100] 董毓新,李彦硕.水电站建筑物结构分析.大连:大连理工大学出版社,1995
    [101] 马震岳,沈成能,王溢波等.红石水电站厂房的机组诱发振动及抗振加固研究.水力发电学报,2002,(1):28-36.
    [102] 杜晓京.地下厂房机组支承结构振动观测与分析.水力发电,1999,(2):27-30
    [103] 文洪,张春生,刘郁子等.天荒坪电站地下厂房结构动静力分析及设计.水力发电,1998,(8):70-73.
    [104] 王俊红,黄勇.广蓄二期工程地下厂房结构振动研究及减振措施.水力发电,2001,(11):32-34
    [105] 李振富,赵小娜,王日宣.万家寨水电站机墩组合结构动力分析.水利水电技术,2004,23(2):61-64
    [106] 练继建,秦亮,王日宣,胡志刚,王海军.双排机水电站厂房结构动力特性研究.水力发电学报,2004,23(2):55-60
    [107] 陈婧,马震岳,刘志明等.三峡水电站主厂房振动分析.水力发电学报,2004,23(5):36-39
    [108] 陈婧,马震岳,刘志明等.水轮机压力脉动诱发厂房振动分析.水力发电,2004,30(5):24-27
    [109] 欧阳金惠,陈厚群,李德玉.三峡电站厂房结构振动计算与试验研究.水利学报,2005,36(4):484-490
    [110] 水电水利规划设计总院.抽水蓄能电站厂房结构振动研究项目研究报告.2004
    [111] 孙万泉.水电站厂房结构振动分析及动态识别.[博士学位论文].大连:大连理工大学,2004
    [112] 熊卫,史仁杰,毛文然.回龙抽水蓄能电站地下厂房整体结构振动研究.人民黄河,2004,26(7):40-43
    [113] 沈可,张仲卿,梁政.岩滩水电站厂房水力振动计算.水电能源科学,2003,21(1):73-75
    [114] 井町勇.机械振动.科学出版社,1979
    [115] 杨代立,董毓新.伞式机组轴系统弓状回转自振特性.大电机技术,1985
    [116] 白延年主编.水轮发电机设计与计算.机械工业出版社,1982
    [117] 马震岳,董毓新.水轮机转轮密封处水流的动力特性及其对机组自振特性的影响.大电机技术,1987
    [118] 马震岳,董毓新.水轮发电机组轴系数的动力反应.机组学术讨论会论文集,1987
    [119] R.Jiyavan.装在挠性轴承上的水轮发电机转子由电不平衡引起振动的特性.国外大电机,1984
    [120] 上田庸夫.500m水头20.6万kW水轮机及21.6万kV·A发电机机组工地试验.东方电机,技术参考资料,1981
    [121] M.Utecht.伊泰普水轮发电机组的振动分析.国外大电机,1984
    [122] J. W. Lund, Spring and damping coefficients for the Tilting-pad Journal bearing. 《ACE Transactions》,1964
    [123] 马震岳,董毓新.基础、导轴承刚度和磁拉力等对机组自振特性的影响.大电机技术.1986
    [124]
    [125] N. Mittwollen, T. Hegel, J. Glienicke. Effects of Hydrodynamic Thrust Bearing on Lateral Shaft Vibration. J of Tribology, Trans ASME. 1991, 113(3):811-818
    [126] 姜培林,虞烈.弹性横梁支承的可倾瓦推力轴承的静态分析.西安交通大学学报,1997,31(6):74-79
    [127] 荣吉利,邹经湘,张嘉钟,黄文虎.水电机组轴系横向自振特性的有限元计算方法与结果分析.中国电机工程学报,1997,17(1):33-41
    [128] 马震岳,董毓新.水轮发电机组振动.大连:大连理工大学出版社,2003
    [129] 杨晓明,马震岳.水轮发电机组横向振动的敏感性分析.振动工程学报,2004,17,(S):206-209
    [130] P. L. Jiang, L. Yu. Dynamics of a rotor-bearing system equipped with a hydrodynamic thrust bearing. Journal of Sound and Vibration, 1999,227(4):833-872
    [131] 朱因远,周纪卿.非线性振动和运动稳定性.西安:西安交通大学出版社,1992
    [132] 钟一谔.转子动力学.北京:清华大学出版社,1987
    [133] J. W. Lund, Spring And Damping Coefficients For The Tilting Pad Journal Bearing. Asle Transactions, 1964,342-348
    [134] 董毓新,马震岳.水电机组轴系统振动分析计算.大连理工大学水电站教研室,1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700