可倾瓦轴承动力学建模及动力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转子—轴承系统的建模是转子动力学设计的基础。动压流体轴承非线性油膜力的建模是转子—轴承系统数学模型的建立及其求解,以及系统非线性动力学行为研究的基础。
     本文研究可倾瓦径向滑动轴承更为合理的动力学模型及相应的高效算法。目前绝大多数相关研究仅针对可倾瓦轴承的线性化折合刚度、阻尼系数的动力分析模型,本文在单瓦非线性油膜力及其Jacobian矩阵的计算模型、可倾瓦轴承的完整动力特性分析模型以及转子—可倾瓦轴承系统线性和非线性动力学分析模型等几个方面,进行了建模及算法的研究。本文研究工作在理论及应用上取得了一些创新成果,所获得的结论对可倾瓦轴承—转子系统运动稳定性分析和工程应用具有积极的指导意义。
     具体地,本文主要的研究内容和成果有:
     1.针对滑动轴承的动力学行为研究,提出了求解非线性油膜力的加权有限元互补算法。基于流体润滑的变分不等方程理论,考虑油膜厚度对动力参数的影响,选取权函数与线性插值函数乘积的形式作为油膜压力函数,建立有限元离散化的一维变分不等方程。根据雷诺方程的一维互补方程系数矩阵为三对角矩阵的特点,用修正的追赶法求解对角元素占优的三对角方程,快速且无需迭代地直接求得满足Reynolds边界条件的油膜压力分布。算例结果表明,由于采用了权函数,只需非常稀疏的一维单元划分即可获得与二维有限元算法相媲美的精度,而计算耗时仅为后者的数千分之一。
     2.基于可倾瓦径向滑动轴承瓦块的扰动特性,首次提出了计算可倾瓦轴承完整动力特性系数的数学解析模型。在全局固定坐标系和局部动坐标系之间建立合适的坐标转换关系,获得作用于每块瓦和轴颈的油膜力及其Jacobian矩阵在全局坐标系下的解析表达式;其中在固结于瓦块的局部动坐标系下,单块瓦的油膜力及其Jacobian矩阵利用求解单瓦非线性油膜力的加权有限元方法求出;全局坐标系下所有子系统的油膜力向量关于广义位移和广义速度的Jacobian矩阵经过扩充后,叠加组合得到轴承油膜力的全局Jacobian矩阵。而此全局Jacobian矩阵可以用于具有快速收敛特性的Newton-Raphson方法来求解所有瓦块和轴颈的静态平衡位置,在得到可倾瓦轴承平衡位置的同时获得轴承完整的刚度和阻尼系数矩阵。在设定瓦块和轴颈的扰动频率后,此解析模型亦可以获得与传统算法一致的折合刚度和阻尼系数矩阵。本模型采用矩阵表达形式,计算过程清晰简洁,计算耗时较少,适用于转子—可倾瓦轴承系统的线性和非线性分析。
     3.针对可倾瓦轴承—转子系统的动力学研究,采用完整动力分析模型,对系统进行线性和非线性分析。在线性和分线性的分析中,首次将轴颈振动和瓦块摆动的动力学行为同时纳入研究过程。通过线性化的运动微分方程,采用数值方法分析静态平衡位置的稳定性。非线性周期响应则采用打靶法直接积分求解,并通过Floquent理论判断其稳定性。通过系统线性与非线性动力行为分析结果对比以及系统非线性动力学行为的考察,得到如下结论:
     1)可倾瓦轴承—转子系统并不具有‘本质稳定性’,将完整动力特性分析模型应用于系统动力学行为分析,可以计算其临界转速。
     2)可倾瓦轴承的某些参数对转子系统的稳定性有重要影响,特别是几何预负荷和瓦块支点偏置比,当几何预负荷为零或者瓦块支点位于瓦块中间位置时,可倾瓦轴承的稳定性降会大为降低。
     3)可倾瓦轴承—转子系统的非线性动力行为有别于固定瓦滑动轴承—转子系统。可倾瓦轴承在进入非线性分岔后,在相当长的频段内处于2倍周期运动的状态,在转速较高时,可倾瓦的扰动反馈作用对转子的影响非常明显,轴心轨迹呈现出多角盘绕的现象。
     4)可倾瓦轴承的非线性失稳转速远低于线性失稳转速,随着转子不平衡量的增加,系统的非线性运动特性增强。
     5)当转子的运转频率低于非线性失稳转速,且转子的不平衡量较小时,对刚性转子—可倾瓦轴承系统的不平衡响应进行非线性分析的计算结果与线性动力学所得的结果吻合较好。基于线性动力学可以用来计算转子—可倾瓦轴承系统在稳态、小不平衡量下的响应;转子转速超过分岔转速或者不平衡量较大时,线性分析的结果不能正确表现出系统的动力行为,应采用完整非线性动力学模型,研究转子—可倾瓦轴承系统的不平衡响应等非线性动力学行为。
Dynamic modeling of rotor-bearing systems is the base of rotor dynamic analysis. The most important element of the mathematical model for rotor-bearing systems is the modeling of nonlinear fluid-force in hydrodynamic bearings, which also is the precondition of nonlinear analysis for rotor dynamic behaviors.
     This thesis focuses on a better dynamic model of tilting-pad journal bearings and an efficient algorithm involved. Almost all of the relevant researches take the reduced stiffness and damping coefficients of tilting-pad bearings as research objects, comparatively, the full dynamic behaviors of tilting-pad bearings is studied here. This thesis studies on several aspects, such as, the efficient algorithm of nonlinear oil-film forces for a single pad, the analysis model and algorithm for the full dynamic coefficients of tilting-pad bearings, and the model of rotor dynamics of rotor-tilting-pad-bearing system. Some achievements are acquired in current research from theory and practice, and conclusions that are reached here may be beneficial to the engineering applications in stability of rotor motion.
     In detail, there are the following contents and achievements in current research.
     1. Based on the variational inequality theory of hydrodynamic lubrication, this thesis presents a weighted finite element algorithm to calculate the oil-film forces of journal bearings. Choosing a felicitous weighted function, two dimensional questions could be interpolated by one-dimensional elements with high accuracy. An amendatory direct-method is proposed to solve the equations whose coefficient matrices in tri-diagonal form. Then based on the interior characteristics, the solution of oil-forces is united with the solution of the Jacobian matrices. During this process, the operations are restricted within the positive pressure region, and no iteration is involved. Therefore, many redundant computations are avoided through the above measures. Numerical examples show that the results of this method agree with those of the two-dimensional finite element method very well, but significant computing time was saved.
     2. A mathematical model is presented for analyzing the dynamic characteristics of a tilting-pad bearing. By means of suitable coordinate transformation, the oil-film forces acting on the journal and each pad in the global coordinate system, along with its Jacobians can be obtained in a highly concise expression. The oil-film forces and Jacobians in the pad system are computed by the weighted finite element method, which contributed by the 2nd chapter. Furthermore, the global Jacobian is used to find the equilibrium position of the journal as well as each pad in the bearing at same time by Newton-Raphson method, which is superior to the traditional methods because the later needs multi-circle of iteration steps. Once the equilibrium position is found the negative of the global Jacobians are just the complete dynamic coefficient matrices. By making an assumption that the journal and pad oscillated under the same frequency, reduced characteristics can be obtained by this analysis method.
     3. The full dynamic characteristic mathematical model is used to analyze both linear and nonlinear dynamic behaviors of rotor-tilting-pad-bearing systems. The influence of pad motions is taken into account in the process of those analyses. By comparing the results of the linear analysis with that of the nonlinear analysis, conclusions as follows can be obtained:
     1) Tilting-pad bearings have not 'essentially stability', when the full dynamic model was used, the critical curves of the rotor system could be decided.
     2) Some parameters of tilting-pad bearing have marked influences on the stability of the system, especially the value of geometrical preload and the ratio of the offset of pad support point. When there no preload or the pad is supported in the middle, the rotor system has lower stability.
     3) The nonlinear dynamic behaviors of a tilting-pad bearing differ from that of the traditional fixed pad bearings. When rotor speed exceeds the nonlinear critical-speed, the bifurcation behavior show as 2T periodic motions in a wide speed band. And at the high speed, the feedback of the pad motion is distinct.
     4) The nonlinear critical-speed of tilting-pad bearings is more lower than that of linear critical-speed. With the increasing of the unbalanced mass of the rotor, the nonlinear characteristics of the system correspondingly increase.
     5) When the rotary frequency is lower than nonlinear critical-speed, the difference between the linear and nonlinear results can be neglectable in case of small unbalance, whereas significant in cases of large unbalance. Once the rotor speed exceeding the critical value, the linear analysis would be useless. It is necessary to consider the influence of the whole nonlinear oil-forces in tilting-pad bearings when the dynamics performance of the rotor-tilting pad bearing system is analyzed.
引文
[1] 虞烈,刘恒.轴承—转子系统动力学[M].西安:西安交通大学出版社,2001.
    [2] 郑惠萍.大型旋转机械中非线性因素综述[J].河北科技大学学报,1999,20(3):82-86.
    [3] Childs, D. W. Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis [M]. New York: John Wiley & Sons, 1993.
    [4] Frene, J., Nicolas, D., Degueurce, B., Berthe, D., and Godet, M. Hydrodynamic Lubrication: Bearings and Thrust Bearings [M]. Amsterdam: Elsevier Science, 1997.
    [5] 董勋.润滑理论[M].上海:上海交通大学出版社,1984.
    [6] 孙大成.润滑力学讲义[M].北京:中国友谊出版公司,1991.
    [7] 张直明主编.滑动轴承的流体动力润滑理论[M].北京:高等教育出版社,1986.
    [8] 钟一谔,何衍宗,王正,李方泽.转子动力学[M].北京:清华大学出版社,1987.
    [9] 平克斯,斯德因李希特著,西安交通大学轴承研究小组译.流体动力润滑理论[M].北京:机械工业出版社,1980.
    [10] 张文.转子动力学理论基础[M].北京:科学出版社,1990.
    [11] Tower, B. First Report on Friction Experiments (Friction on Lubricated Bearings) [J]. Proceedings of the Institution of Mechanical Engineers, 1883, 632-659.
    [12] Tower, B. Second Report on Friction Experiments (Experiments on the Oil Pressure in a Bearing) [J]. Proceedings of the Institution of Mechanical Engineers, 1885, 58-70.
    [13] Reynolds, O. On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower's Experiments, Including an Experimental Determination of the Viscosity of Olive Oil [J]. Philosophical Transactions of the Royal Society of London, 1886, 177: 157-234.
    [14] Sommerfeld, A. Zur Hydrodynamische Theorie der Schmiermittelreibung [J]. Zeitschrift fur Mathematik und Physik, 1904, 50: 97-155.
    [15] Gumbel, L. Monatsblatter Berliner Bezirksver [M]. Berlin: VDI-Verlag, 1914.
    [16] Swift, H. W. The Stability of Lubricating Films in Journal Bearings [J]. Proceedings of the Institute Civil Engineers, London, 1932, 233: 267-322.
    [17] Stieber, W. Das Schwimmlager, Hydrodynamische Theorie des Gleitlagers [M]. Berlin: VDI-Verlag, 1933.
    [18] Cameron, A., and Wood, W. L. The Full Journal Bearing [J]. Proceedings of the Institution of Mechanical Engineers, 1949, 161: 59-64.
    [19] Michell, A. G. M. Progress of Fluid-Film Lubrication [J]. Transactions of the ASME, 1929, 51: 153-163.
    [20] Ocvirk, F. W., and DuBois, G. B. Analytical Derivation and Experimental Evaluation of Short Bearing Approximations of Full Journal Bearing [R]. Washington: NACA Technical Report 1157, 1953.
    [21] DuBois, G. B., and Ocvirk, F. W. The Short Bearing Approximation for Plain Journal Bearings [J]. Transactions of the ASME, 1955, 77: 1173-1178.
    [22] Forsythe, G. E., and Wasow, W. R. Finite Difference Methods for Partial Differential Equations [M]. New York: John Wiley & Sons, 1960.
    [23] Carrier, G. F., and Pearson, C. E. Partial Differential Equations, Theory and Techniques [M]. New York: Academic Press, 1976.
    [24] Lund, J. W., and Thomsen, K. K. A Calculation Method and Data for the Dynamic Coefficients of Oil-Lubricated Journal Bearings [C]. Design Engineering Conference on Fluid Film Bearing and Rotor Bearing System Design and Optimization. Chicago: ASME, 1978: 1-28.
    [25] Carre, B. A. The Determination of the Optimum Accelerating Factor for Successive Over-Relaxation [J]. The Computer J., 1961, 4(1): 73-78.
    [26] Christopherson, D. G. A New Mathematical Method for the Solution of Film Lubrication Problems [J]. Proceedings of the Institution of Mechanical Engineers, 1941, 146(3): 126-135.
    [27] Cryer, C. The Method of Christopherson for Solving Free Boundary Problems for Infinite Journal Bearings by Means of Finite Differences [J]. Mathematics of Computation, 1971, 25: 435-443.
    [28] Bayada, G. Inequations Variationelles Elliptiques avec Conditions aux Limites Periodiques: Application a la Resolution de l'Equation de Reynolds [D]. Lyon: Universite Lyon 1, 1972.
    [29] Barrett, L. E., Allaire, P. E., and Gunter, E. J. The Dynamic Analysis of Journal Beatings Using a Finite Length Correction for Short Beating Theory [C]. Design Engineering Conference on Fluid Film Bearing and Rotor Beating System Design and Optimization. Chicago: ASME, 1978: 29-41.
    [30] Black, H. F., and Brown, R. D. Modal Dynamic Simulation of Flexible Shafts in Hydrodynamic Bearings [C]. International Conference on Vibrations in Rotating Machinery. Cambridge, England: IMechE, 1980: 109-113.
    [31] Myers, C. J. Bifurcation Theory Applied to Oil Whirl in Plain Cylindrical Journal Bearings [J]. ASME J. of Applied Mechanics, 1984, 51(2): 244-250.
    [32] Brancati, R., Rocca, E., Russo, M., and Russo, R. Joumal Orbits and Their Stability for Rigid Unbalanced Rotor [J]. ASME J. of Tribology, 1995, 117: 709-716.
    [33] Rohde, S. M., and Li, D. F. A Generalized Short Beating Theory [J]. ASME J. of Lubrication Technology, 1980, 102(3): 278-282.
    [34] Reason, B. R., and Narang, I. P. Rapid Design and Performance Evaluation of Steady-State Journal Bearings—A Technique Amenable to Programmable Hand Calculators [J]. ASLE Transactions, 1982, 25(4): 429-444.
    [35] 陈照波,焦映厚,夏松波,黄文虎.求解有限长圆柱型滑动轴承中非线性油膜力的近似解析方法[J].中国电机工程学报,2001,21(增刊):6-9.
    [36] Booker, J. F., and Huebner, K. H. Application of Finite Element Methods to Lubrication: An Engineering Approach [J]. ASME J. of Lubrication Technology, 1972, 94(4): 313-323.
    [37] Rohde, S. M., Oh, K. P. Higher Order Finite Element Methods for the Solution of Compressible Porous Beating Problems [J]. International J. for Numerical Methods in Engineering, 1975, 9(4): 903-911.
    [38] Bayada, G. Variational Formulation and Associated Algorithm for the Starved Finite Journal Bearing [J]. ASME J. of Lubrication Technology, 1983, 105(3): 453-457.
    [39] Lund, J. W. Spring and Damping Coefficients for the Tilting-Pad Journal Bearing [J]. ASLE Transactions, 1964, 7: 342-352.
    [40] Hori, Y., and Kato, T. Earthquake-Induced Instability of a Rotor Supported by Oil Film Bearing [J]. ASME J. of Vibration, Acoustics, Stress, and Reliability in Design, 1990, 112(2): 160-165.
    [41] Earles, L. L., Palazzolo, A. B., and Armentrout, R. W. A Finite Element Approach to Pad Flexibility Effects in Tilt Pad Journal Bearings: Part Ⅰ and Ⅱ [J]. ASME J. of Tribology, 1990,112(2):169-182.
    [42] 吕延军,虞烈,刘恒.基于Reynolds边界的滑动轴承动力学系数的计算及应用[J].摩擦学学报,2004,24(1):61-65.
    [43] 杨建刚,蔡霆,高亹.汽轮机轴承动力特性三维流固耦合分析模型[J].中国电机工程学报,2004,24(8):147-151.
    [44] 王文,张直明.油叶型轴承非线性油膜力数据库[J].上海工业大学学报,1993,14(4):299-305.
    [45] 孟志强,徐华,朱均.基于Poincare变换的滑动轴承非线性油膜力数据库方法[J].摩擦学学报,2001,21(3):223-227.
    [46] 焦映厚,陈照波,夏松波,陈明,黄文虎,张直明.转子—非圆轴承系统非线性动力学行为的研究[J].航空动力学报,2000,15(4):413-418.
    [47] 焦映厚,陈照波,刘福利,曲秀全,张直明.Jeffcott转子—可倾瓦滑动轴承系统不平衡响应的非线性分析[J].中国电机工程学报,2004,24(12):227-232.
    [48] 郑铁生,张文,马建敏,杨树华.滑动轴承非线性油膜力的几个理论问题及应用[J].水动力学研究与进展,2003,18(6):761-768.
    [49] Rohde, S. M., and McAllister, G. T. A Variational Formulation for a Class of Free Boundary Problems Arising in Hydrodynamic Lubrication [J]. International J. of Engineering Science, 1975, 13: 841-850.
    [50] Lewy, H., and Stampacchia, G. On the Regularity of the Solution of a Variational Inequality [J]. Communications on Pure and Applied Mathematics, 1969, 22: 153-188.
    [51] Karamardian, S. The Nonlinear Complementarity Problem with Applications—Part Ⅱ[J]. J. of Optimization Theory & Applications, 1969, 4(3): 167-181.
    [52] Cimatti, G. On a Problem of the Theory of Lubrication Governed by a Variational Inequality [J]. Applied Mathematics and Optimization, 1977, 3: 227-242.
    [53] Kinderlehrer, D., and Stampacchia, G. An Introduction to Variational Inequalities and their Applications [M]. New York: Academic Press, 1980.
    [54] Kumar, A., Sinhasan, R., and Singh, D. V. Performance Characteristics of Two-Lobe Hydrodynamic Journal Beatings [J]. ASME J. of Lubrication Technology, 1980, 102(4): 425-429.
    [55] Bayada, G., and Chambat, M. Nonlinear Variational Formulation for a Cavitation Problem in Lubrication [J]. J. of Mathematical Analysis and Applications, 1982, 90(2): 286-298.
    [56] Klit, P., and Lund, J. W. Calculation of the Dynamic Coefficients of a Journal Bearing, Using a Variational Approach [J]. ASME J. of Tribology, 1986, 108(3): 421-425.
    [57] 张文,郑铁生,马建敏,郭建萍.油膜轴承瞬态非线性油膜力的力学建模及其表达式[J].自然科学进展,2002,12(3):255-260.
    [58] 陈龙,郑铁生,张文,马建敏.轴承非线性油膜力的一种变分近似解.应用力学学报,2002,19(3):90-95.
    [59] 沈光琰,肖忠会,郑铁生,张文.油叶型轴承—不平衡转子系统的非线性动力学分析[J].航空动力学报,2004,19(5):604-609.
    [60] Kraiko, A. N. The Formulation of Problems of Lubrication Theory for Journal Bearings [J]. J. of Applied Mathematics and Mechanics, 2002, 66(5): 757-765.
    [61] Elrod, H. G., and Burgdorfer, A. Refinement of the Theory of Gas Lubricated Journal Bearing of Infinite Length [C]. Proceedings of the First International Symposium on Gas Lubricated Bearings. Washington, 1959:93-118.
    [62] 金德勒雷,斯当帕柯亚著,郭友中,刘君兰译[M].变分不等方程及其应用.北京: 科学出版社,1991.
    [63] 郑铁生,李立,许庆余.一类椭圆型变分不等式离散问题的迭代算法[J].应用数学和力学,1995,16(4):329-335.
    [64] 郑铁生.流体润滑离散变分不等方程的一种直接解[J].水动力学研究与进展,1997,12(3):344-349.
    [65] 刘大全,肖忠会,张文,郑铁生.滑动轴承非线性油膜力的一维直接解法[J].机械工程学报,2005,41(2):51-56.
    [66] Zheng, T., and Hasebe, N. Calculation of Equilibrium Position and Dynamic Coefficients of a Journal Bearing Using Free Boundary Theory [J]. ASME J. of Tribology, 2000, 122(3): 616-621.
    [67] 郑铁生,徐庆余.滑动轴承动特性系数新算法[J].机械工程学报,1996,32(3):20-27.
    [68] Zhang, J. Calculation and Bifurcation of Fluid Film with Cavitation Based on Variational Inequality [J]. International J. of Bifurcation and Chaos, 2001, 11(1): 43-55.
    [69] Barwell, F. T. Beating Systems - Pinciples and Practice [M]. Oxford Uni. Press, 1979.
    [70] Elwell, R. C. and Findlay, J. A. Design of Pivoted-Pad Journal Bearings [J]. ASME J. of Lubrication Technology, Series F. 1969, 91: 87-103.
    [71] Boyd, J. and Raimondi, A. An Anaysis of the Pivoted Pad Journal Bearing [J]. Mechanical Eng., 1953, 380-386.
    [72] Orcutt. F. K., The Steady State and Dynamic Characteristics of the Tilting Pad Journal Beating in Laminar and Turbulent Flow Regimes [J]. Journal of Lubrication Technology, Transaction ASME. Series F. 1967, 89: 392-404.
    [73] Nicholas, J. C., Gunter, E. J., and Allaire, P. E. Stiffness and Damping Coefficients for the Five-Pad Tilting Pad Bearing [J]. ASLE Transaction, 1979, 22(2): 113-124.
    [74] Allaire, P. E., Parsell, J. K., and Barrett, L. E. A pad perturbation method for the dynamic coefficients of tilting-pad journal bearings [J]. Wear, 1981, 72(1): 29-44.
    [75] Parsell, J. K., Allaire, P. E., and Barrett, L. E. Frequency Effects in Tilting-Pad Journal Beating Dynamic Coefficients [J]. ASLE Transaction, 1983, 26(2): 222-227.
    [76] 虞烈.轴承—转子系统的稳定性与振动控制研究[D].西安:西安交通大学,1987.
    [77] Rouch, K. E. Dynamics of Pivoted-Pad Journal bearings, Incouding Pad Translation and Rotation Effects [J]. ASLE Transaction, 1983, 26(1): 102-109.
    [78] 张直明.计入支点弹性和阻尼时可倾瓦轴承支撑的转子系统的动力稳定性[J].机械工程学报,1983,19(2):9-21
    [79] Adams, M. L. and Payandeh, S. P. Self-Excited Vibration of Statically Unloaded Pads in Tilting-Pad Journal Bearings [J]. ASME J. of Lubrication Technology, 1983, 105: 377-384.
    [80] Barrett, L. E., Allaire, P. E. and Wilson, B. W.. The Eigenvalue Dependence of Reduced Tilting Pad Bearing Stiffiness and Damping Coefficients [J]. Tribology Transactions, 1988, 31: 411-419.
    [81] Lund, J. W., and Pedersen, L. B.. The Influence of Pad Flexibility on the Dynamic Coefficients of a Tilting Pad Journal Bearing [J]. ASME J. of Tribology, 1987, 109(1): 65-70.
    [82] White, M. F. and Chan S. H.. The Subsynchronous Dynamic Behavior of Tilting-Pad Journal Bearings [J]. ASME J. of Tribology, 1992, 114: 167-173.
    [83] Earles, L. L., Palazzolo, A. B., and Armentrout, R. M. M.. A Finite Element Approach to Pad Flexibility Effects in Tilt Pad Journal Bearings: PartⅡ- Assembled Bearings and System Analysis [J]. ASME J. of Tribology, 1990, 112: 178-182.
    [84] Desbordes, H., Fillon, M., Chan Hew Wai, C., and Frene, J.. Dynamic Analysis of Tilting-Pad Journal Beating - Influence of Pad Deformations [J]. ASME J. of Tribology, 1994, 116: 621-628.
    [85] Desbordes, H., Fillon, M., Frene, J., and Chan Hew Wai, C.. The Effects of Three-Dimensional Pad Deformations on Tilting-Pad Journal Bearings Under Dynamic Loading [J]. ASME J. of Tribology, 1995, 117: 379-384.
    [86] Rodkiewicz, C. M., and Yang, P.. A Non-Newtonian TEHL Analysis of Tilting-Pad Bearings Subjected to Inlet Pressure Build-Up [J]. ASME J. of Tribology, 1995, 117: 461-467.
    [87] Yang, P., and Rodkiewicz, C. M.. Time-Dependent TEHL Solution to Centrally Supported Tilting Pad Beatings Subjected to Harmonic Vibration [J]. Tribology Intemational, 1996, 29(5): 433-443.
    [88] Yang, P., and Rodkiewicz, C. M.. On the Numerical Analysis to the Thermoelastohydrodynamic Lubrication of a Tilting Pad Inclusive of Side Leakage [J]. Tribology Transactions, 1997, 40(2): 259-266.
    [89] El-Butch, A. M., and Ashour, N. M.. Analysis of Heavu Duty Tilting-Pad Journal Beating Taking into Account Pad Distortion and Possible Adoption of Rubber Pad Segments [J]. Tribology International, 1999, 32: 285-293.
    [90] Tripp, H., and Murphy, B. Eccentricity Measurements on a Tilting-Pad Bearing [J]. ASLE Transaction, 1985, 28: 217-222.
    [91] Brockwell, K. R., Kleinbub, D., and Dmochowski, W. Measurements of the Dynamic Operating Characteristics of the Five Shoe Tilting Pad Journal Beating [J]. Tribology Transactions, 1990, 33: 481-492.
    [92] Fillon, M., Bligoud, J. C. and Frene, J.. Expermental Study of Tilting-Pad Journal Beatings Comparison with Theoretical Thermoelastohydrodynamic Results [J]. ASME J. of Lubrication Technology, 1992, 114: 579-588.
    [93] Ha, H. C., and Yang, S. H.. Excitation Frequency Effects on the Stiffness and Damping Coefficients of a Five-Pad Tilting Pad Journal Bearing [J]. ASME J. of Tribology, 1999, 121: 517-522.
    [94] Fu, W. B., and Parking, D. W.. Mathematical Analysis for the Clearance Space of a Tilting Pad Journal Bearing [J]. STLE Tribology Transactions, 1995, 38: 525-532.
    [95] 徐华,姜歌东,丛红,谢友柏,王凤才.四瓦可倾瓦径向滑动轴承动力特性的实验研究[J].摩擦学学报,2001,21(5):225-229.
    [96] Pagano, S., Rocca, E., Russo, M., and Russo, R.. Dynamic Behaviour of Tilting-Pad Journal Bearings [J]. Proc. Inst. Mech. Engrs., 1995, 209: 275-285.
    [97] Brancati, R., Rocca, E., and Russo, R.. Non-Linear Stability Analysis of a Rigid Rotor on Tilting-Pad Journal Beatings [J]. Tribology International, 1996, 29(7): 571-578.
    [98] 闻邦椿,顾家柳,夏松波,王正.高等转子动力学——理论、技术与应用[M].北京:机械工业出版社,1999.
    [99] Nicoletti, R., and Santos, I. F.. Linear and Non-Linear Control Techniques Applied to Actively Lubricated Journal Bearings [J]. J. of Sound and Vibration, 2003, 260: 927-947.
    [100] Saruhan, H., Rouch, K. E., and Roso, C. A.. Design Optimization of Tilting-Pad Journal Bearing Using a Genetic Algorithm [J]. International Journal of Rotating Machinery, 2004, 10(4): 301-307.
    [101] Rankine, W. J. M. On the Centrifugal Force of Rotating Shafts [J]. Engineer, 1869, 27: 249-256.
    [102] Jeffcott, H. H. The Lateral Vibration of Loaded Shafts in the Neighbourhood of a Whirling Speed—The Effect of Want of Balance [J]. Philosophical Magazine, Series 6, 1919, 37: 304-314.
    [103] Stodola, A. Steam and Gas Turbines [M]. New York: McGraw-Hill, 1927.
    [104] Green, R. B. Gyroscopic Effects on the Critical Speeds of Flexible Rotors [J]. ASME J. of Applied Mechanics, 1948, 15: 369-376.
    [105] Newkirk, B.L. Shaft Whipping [J]. General Electric Review, 1924, 27: 169-178.
    [106] Newkirk, B. L., and Taylor, H.D. Shaft Whipping Due to Oil Action in Journal Bearings [J]. General Electric Review, 1925, 28: 559-568.
    [107] Smith, D. M. The Motion of a Rotor Carried by a Flexible Shaft in Flexible Bearings [J]. Proceedings of the Royal Society of London, 1933, 142: 92-118.
    [108] Black, H. F. The Stabilizing Capacity of Bearings for Flexible Rotors with Hysteresis [J]. ASME J. of Engineering for Industry, 1976, 98(1): 87-91.
    [109] Barrett, L. E., Gunter, E. J., and Allaire, P. E. Optimum Bearing and Support Damping for Unbalance Response and Stability of Rotating Machinery [J]. ASME J. of Engineering for Power, 1978, 100(1): 89-94.
    [110] Lund, J. W., and Sternlicht, B. Rotor-Bearing Dynamics with Emphasis on Attenuation [J]. ASME J. of Basic Engineering, 1962, 84: 491-502.
    [111] Lund, J. W. The Stability of an Elastic Rotor in Journal Bearings with Flexible, Damped Supports [J]. ASME J. of Applied. Mechanics, 1965, 87: 911-920.
    [112] Gunter, E. J. Dynamic Stability of Rotor-Bearing Systems [R]. Washington: NASA SP-113, 1966.
    [113] Childs, D. W., and Moyer, D. S. Vibration Characteristic of the HPOTP (High-Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine) [J]. ASME J. of Engineering for Gas Turbines and Power, 1985, 107(1): 152-159.
    [114] 黄文虎,夏松波,焦映厚,刘占生,陈照波,胡超,石田辛男等.旋转机械非线性动力学设计基础理论与方法[M].北京,科学出版社,2006.
    [115] 黄文虎,武新华,焦映厚,夏松波,陈照波.非线性转子动力学研究综述[J].振动工程学报,2000,13(4):497-509.
    [116] 孟光.转子动力学研究的回顾与展望[J].振动工程学报,2002,15(1):1-9.
    [117] 高亹,张新江,张勇.非线性转子动力学问题研究综述[J].东南大学学报(自然科学版),2002,32(3):443-451.
    [118] Ehrich, F. F. Some Observation of Chaotic Vibration Phenomena in High Speed Rotordynamics [C]. Twelfth Biennial Conference on Mechanical Vibration and Noise, the ASME Design Technical Conference. Montreal: ASME, 1989, 18(5): 367-376.
    [119] Ishida, Y. Nonlinear Vibrations and Chaos in Rotordynamics [J]. JSME International J., Series C: Dynamics, Control, Robotics, Design and Manufacturing, 1994, 37(2): 237-245.
    [120] Brown, R. D., Addison, P., and Chan, A. H. C. Chaos in the Unbalance Response of Journal Bearings [J]. Nonlinear Dynamics, 1994, 5(4): 421-432.
    [121] Brancati, R., Russo, M., and Russo, R. On the Stability of Periodic Motions of an Unbalanced Rigid Rotor on Lubricated Journal Bearings [J]. Nonlinear Dynamics, 1996, 10(2): 175-185.
    [122] Adiletta, G., Guido, A. R., and Rossi, C. Chaotic Motions of a Rigid Rotor in Short Journal Bearings [J]. Nonlinear Dynamics, 1996, 10(3): 251-269.
    [123] 陈予恕,孟泉.非线性转子—轴承系统的分叉[J].振动工程学报,1996,9(3):266-275.
    [124] 袁小阳,朱均.滑动轴承—转子系统Hopf分岔分析计算方法[J].航空动力学报,1999,14(2):166-170.
    [125] 刘恒,虞烈,谢友柏,姚福生.非线性不平衡转子轴承系统周期解的预测[J].航空动力学报,1999,14(1):74-78.
    [126] 刘恒,虞烈,谢友柏,刘恭忍,姚福生.非线性动力系统多重周期解的伪不动点追踪法[J].力学学报,1999,31(2):222-229.
    [127] 徐小峰,张文.一种非稳态油膜力模型下刚性转子的分岔和混沌特性[J].振动工程学报,2000,13(2):247-253.
    [128] 于洪洁,吕和祥.动态油膜—柔性转子的分岔与混沌[J].力学学报,2002,34(5):827-832.
    [129] 张彦梅,陆启韶.非稳态油膜力作用下转子振动的分岔与稳定性分析[J].航空学报,2003,24(1):36-38.
    [130] 孙保苍,周传荣.轴承—转子系统的分岔与混沌特性研究[J].振动、测试与诊断,2004,24(3):192-196.
    [131] Timoshenko, S., and Young, D. H. Vibration Problems in Engineering (3rd Edition) [M]. New York: D. Van Nostrand, 1955.
    [132] Myklestad, N. O. A New Method for Calculating Natural Modes of Uncoupled Bending Vibrations of Airplane Wings and Other Types of Beams [J]. J. of Aeronautical Science, 1944, 11: 153-162.
    [133] Prohl, M. A. A General Method for Calculating Critical Speeds of Flexible Rotors [J]. ASME J. of Applied Mechanics, 1945, 12(3): 142-148.
    [134] Pestel, E. C., and Leckie, F. A. Matrix Methods in Elastomechanics [M]. New York: McGraw-Hill, 1963.
    [135] Horner, G. C., and Pilkey, W. D. The Riccati Transfer Matrix Method [J]. ASME J. of Mechanical Design, 1978, 100(4): 297-302.
    [136] Lund, J. W., and Orcutt, F. K. Calculations and Experiments on the Unbalance Response of a Flexible Rotor [J]. ASME J. of Engineering for Industry, 1967, 89(4): 785-796.
    [137] Lund, J. W. Stability and Damped Critical Speeds of a Flexible Rotor in Fluid-Film Bearings [J]. ASME J. of Engineering for Industry, 1974, 96(2): 509-517.
    [138] Ruhl, R. L. Dynamics of Distributed Parameter Turborotor Systems: Transfer Matrix and Finite Element Techniques [D]. New York: Cornell University, 1970.
    [139] Ruhl, R. L., and Booker, J. F. A Finite Element Model for Distributed Parameter Turborotor Systems [J]. ASME J. of Engineering for Industry, 1972, 94(1): 126-132.
    [140] Nelson, H. D., and McVaugh, J. M. Dynamics of Rotor-Bearing Systems Using Finite Elements [J]. ASME J. of Engineering for Industry, 1976, 98: 593-600.
    [141] Nelson, H. D. A Finite Rotating Shaft Element Using Timoshenko Beam Theory [J]. ASME J. of Mechanical Design, 1980, 102(4): 793-803.
    [142] 周纪卿,朱因远.非线性振动[M].西安:西安交通大学出版社,1998.
    [143] 胡海岩.应用非线性动力学[M].北京:航空工业出版社,2000.
    [144] Hsu, C. S. A Theory of Cell-to-Cell Mapping Dynamical Systems [J]. ASME J. of Applied Mechanics, 1980, 47(4): 931-939.
    [145] Hsu, C. S., and Guttalu, R. S. An Unravelling Algorithm for Global Analysis of Dynamical Systems: An Application of Cell-to-Cell Mappings [J]. ASME J. of Applied Mechanics, 1980, 47(4): 940-948.
    [146] 刘恒,陈绍汀.非线性系统全局动态特性分析的PCM法及其在转子轴承系统中的应用[J].应用力学学报,1995,12(3):7-15.
    [147] Tombuyses, B., and Aldemir, T. Continuous Cell-to-Cell Mapping [J]. J. of Sound and Vibration, 1997, 202(3): 395-415.
    [148] 陈予恕,唐云,陆启韶,郑兆昌,徐健学,欧阳怡.非线性动力学中的现代分析方法[M].北京:科学出版社,1992.
    [149] Morrey, C. B. Multiple Integrals in the Calculus of Variations [M]. New York: Springer-Verlag, 1966.
    [150] Neumann, K. Zur Frage der Verwendung von Durchblickdichtungen im Dampfturbinenbau [J]. Maschinenbautechnik, 1964, 13(4): 188-195.
    [151] Vermes, G. A Fluid Mechanics Approach to the Labyrinth Seal Leakage Problem [J]. ASME J. of Engineering for Power, 1961, 83(2): 161-169.
    [152] Gurevich, M.I. Theory of Jets in Ideal Fluid [M]. New York: Academic Press, 1965.
    [153] Abramovich, G.N. The Theory of Turbulent Jets [M]. Cambridge: MIT Press, 1963.
    [154] Yamada, Y. Resistance of a Flow through an Annulus with an Inner Rotating Cylinder [J]. Bulletin of the JSME, 1962, 5(1): 302-310.
    [155] Ozguven, H. N., and Ozkan, Z.L. Whirl Speeds and Unbalance Response of Multibearing Rotors Using Finite Elements [J]. ASME J. of Vibration, Acoustics, Stress, and Reliability in Design, 1984, 106(1): 72-79.
    [156] Bathe, K. J., and Wilson, E. L. Numerical Methods in Finite Element Analysis [M]. Englewood Cliffs, New Jersey: Prentice-Hall, 1976.
    [157] Wilson, E. L., Yuan, M. W., and Dickens, J. M. Dynamic Analysis by Direct Superposition of Ritz Vectors [J]. Earthquake Engineering & Structural Dynamics, 1982, 10(6): 813-821.
    [158] Yuan, M., Chen, P., Xiong, S., Li, Y., and Wilson, E. L. The WYD Method in Large Eigenvalue Problems [J]. Engineering Computations, 1989, 6(1): 49-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700