液体静压转台系统油膜工作性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重载、大型、高速、精密、自动化、多功能的加工机床具有尺寸大、重量大、精度高等特点,是未来机床的发展趋势,其对结构、环境、控制等都提出了更高的要求。应用流体润滑技术的静压机床中,油膜的工作性能的优劣直接影响到整个机床运行的可靠性、寿命和经济指标。
     本文以液体静压转台系统为研究对象,对油膜的工作性能进行了分析。建立了模拟液体静压转台内部三维流动的数学模型及边界条件,利用CFD原理,选用层流模型,数值研究了粘度和温—粘、压—粘关系对粘度的改变、圆形油腔几何特征对油膜工作性能的影响,并对比分析了牛顿流体和非牛顿流体工作性能的不同。具体内容为:
     (1)分析计算了润滑油粘度对液体静压转台系统承载力及刚度的影响。在工作环境、油腔的几何尺寸等不变的条件下,随着润滑油粘度的增加,液体静压转台系统承载能力及刚度都逐渐增大;随着润滑油粘度的增加,油腔内的温升也相应增加。
     (2)引入温—粘特性,分析了温度对液体静压转台系统承载力及刚度的影响。温-粘特性在很大程度上影响油腔内的承载能力、刚度和温升,在数值计算及工程设计中,不能忽略环境温度及液压机床自身摩擦生热对润滑油粘度的影响。
     (3)引入压—粘特性,分析了压力对润滑油粘度、液体静压转台系统的承载力及刚度的影响。压-粘特性会增大润滑油的粘度,进而提高油膜的承载能力和刚度,尤其在重载、高压的条件下,不能忽略压力对润滑油特性的影响。
     (4)分析了圆形油腔几何特征对液体静压转台系统工作性能的影响。减小油膜厚度和油腔深度、增加封油边宽度或扩大油腔内径等途径可以增大油腔承载能力;油腔深度较小的条件下,对上部工作转台的冲击作用会影响加工的稳定性。应该综合考虑承载能力、刚度以及工作台的稳定性进行圆形油腔几何尺寸的选择。
     (5)对比计算了不同转速条件下,牛顿流体和非牛顿流体的润滑性能;分析计算了高剪切率条件下,牛顿流体与非牛顿流体工作性能的不同。与牛顿流体相比较,具有“剪切稀释”特性的非牛顿流体降低油腔的承载能力且稳定性较差,具有“剪切稠化”特性的非牛顿流体则与之相反;高速条件下,粘度大的润滑油或具有剪切稠化性质的润滑油具有更好工作性能的结论。
     研究结果表明,在液体静压支承系统的研究和设计中,温—粘效应和压—粘效应的影响十分显著,不能忽略。可以通过改变油腔的几何特征增大油腔的承载能力及油膜刚度,以免除润滑油选择的局限性。同时,在润滑油的选择中,应确定润滑油的流变特性,保证油膜的工作性能。本文的研究结果对液体静压支承系统的油腔几何特征的设计及润滑油的选择有重要指导意义。
Heavy, large, high-speed, precision, automation, multi-function machine tools with large size, heavy, high precision properties is the trends of industries. It has higher requirements on its structure, the environment and control systems. The oil film's performance in fluid lubrication technology will directly affect the reliability of operation, life and economic indicators.
     A 3-D model of hydrostatic turntable was set up to simulate the flow of oil film. Laminar flow model and the finite volume method are selected in the simulation by using FLUENT software and CFD theory. Influences of viscosity, temperature– viscosity relationship, pressure - viscosity relationship, round oil chamber’s geometry feature et al on oil film’s performance were investigated. The difference between Newtonian fluid and non-Newtonian fluid was also compared. Results are in the following:
     (1) Influences of lubricant oil’s viscosity on hydrostatic bearing capacity and stiffness of the system were studied. It can be obtained in the conditions of other factors being constant that carrying capacity and stiffness of hydrostatic bearing system are increased with the augment of oil viscosity, meanwhile, oil cavity temperature also increased.
     (2) Temperature’s effect considering the temperature - viscosity characteristics on carrying capacity and stiffness of hydrostatic bearing system was calculated. It is shown that the temperature - viscosity characteristics has great influence on the oil chamber’s carrying capacity, stiffness and temperature rise. It should not be ignored that the environmental temperature and the heat generated by friction’s influence on oil’s viscosity in the numerical simulation and engineering design.
     (3) Pressure’s influence considering the pressure - viscosity characteristics on the carrying capacity and stiffness of hydrostatic bearing system was calculated. It is presented that the pressure - viscosity characteristics can change the oil chamber’s carrying capacity and stiffness. Especially in overload and high-pressure conditions, the pressure - viscosity characteristics should not be ignored.
     (4) The geometric characteristics of the circular cavity’s influence on the performance of hydrostatic bearing system were analyzed. It is found that the carrying capacity of the oil chamber can be increased by decreasing film thickness and the depth of the oil chamber, or increasing the width of oil chamber’s oil seal edges and diameter of oil chamber. However, the turntable will have poor stability when the depth of the oil chamber is smaller. Therefore, carrying capacity, stiffness and stability should be taken into account in choosing the circular oil cavity’s geometry.
     (5) The Newtonian fluid and non-Newtonian fluid’s performance were compared under different speed conditions. It is given that, with the high shear rate conditions, the Newtonian fluid and non-Newtonian fluid have different behaviors. In addition, the oil with high viscosity or the characteristic of shear thickening has a good performance in the high-speed conditions.
     In the whole, Effects of temperature - viscosity and pressure - viscosity relationship are significant, and should not be ignored in hydrostatic support system’s research and design. Capacity of oil chamber and the oil film stiffness could be increased by changing the geometry characteristics of the oil chamber so as to remove the lubricant selection limitations. Meanwhile, the rheological property should be considered to ensure the film's performance in choosing the oil. Results on the hydrostatic bearing system have important guiding significance on oil cavity geometry’s design and the choice of lubricant oil.
引文
1 R. Serrato,M. M. Maru,L. R. Padovese. Effect of Lubricant Viscosity Grade on Mechanical Vibration of Roller Bearings. Tribology International. 2007, (40):1270~1275.
    2 J. Khaled,Al-Fadhalah,A. Abdallah,Elsharkawy. Effect of Non-Newtonian Lubrication on the Separation of a Sphere from a Flat. Tribology International. 2008,(41):1237~1246.
    3汪久根,谭建荣.三维非牛顿体椭圆接触弹流润滑应力分布及其图示.机械工程学报. 1998,34 (6): 27~33.
    4雒建斌,张朝辉,温诗铸.薄膜润滑研究的回顾与展望.中国工程科学. 2003, 5 (7): 84~90.
    5 I. K. Dien, H. G. Elrod. Generalized Steady-State Reynolds Equation for Non-Newtonian Fluids with Application to Journal Bearings. Journal of Lubrication Technology. Transactions ASME. 1983,(7):385~390.
    6 B. Najji,B. Bou-Said,D. Berthe. New Formulation for Lubrication with Non-Newtonian Fluids. Journal of Tribology. Transactions of the ASME. 1989,(111):29~34.
    7 B. Gecim,W. O. Winer. Film Thickness Analysis for Line Contacts Under Pure Rolling Conditions with a Non-Newtonian Rheological Model. American Society of Mechanical Engineers.1990,(30):18~21.
    8 N. B. Naduvinamania,P. S. Hiremathb,G. Gurubasavaraja. Effect of Surface Roughness on the Couple-Stress Squeeze Film Between a Sphere and a Flat Plate. Tribology International. 2005,(38): 451~458.
    9 S. H. Wang, H. H. Zhang, D. Y. Hua. The Influence of the Viscoplastic and Viscoelastic Character of a Lubricant on Elastohydrodynamic Lubrication. Wear. 1987,(8):85~97.
    10陈大融,温诗铸.非牛顿介质润滑计算的进展.自然科学进展. 1992, (3):205~215.
    11孟心斋,杨建玺,孟昭焱.液体静压支承静态性能新表达式探索.中国工程科学. 2002, (5):63~66.
    12陈皓生,陈大融,汪家道,李永健.粗糙表面滑动轴承非牛顿介质润滑的计算.摩擦学学报. 2005,(11):559~563.
    13汪家道,陈大融,孔宪梅,及开元.面接触规则凹坑表面流体润滑计算.清华大学学报(自然科学版). 2001, 41(2):42 ~45.
    14戴学余等.几种低粘度润滑介质下动静压轴承的性能分析.润滑与密封. 2004, (3):11~17.
    15陈皓生,李永健,陈大融,汪家道.规则形貌作用下非牛顿流体润滑的数值分析.机械工程学报. 2007, (8):48~52.
    16 X. K. Li,D. R. Gwynllyw,A. R. Davies,T. N. Phillips. On the Influence of LubricantPproperties on the Dynamics of Two-Dimensional Journal Bearings. Non-Newtonian Fluid Mech. 2000, (93): 29~59.
    17陈皓生,陈大融,汪家道,李永健.动载荷下径向轴承的非牛顿介质润滑.润滑与密封. 2005, (5):170~173.
    18刘大全.考虑温粘热效应的滑动轴承非线性油膜力模型研究及其应用.复旦大学博士论文. 2005.
    19钟洪,张冠坤.液体静压动静压轴承设计使用手册.电子工业出版, 2007:3~4.
    20 E. Hoglund. Influence of Lubricant Properties on Elastohydrodynamic Lubrication. Wear. 1999, (232):176~184.
    21 T. Nakahara,K. Yagi. Influence of Temperature Distributions in EHL Film on Its Thickness Under High Slip Ratio Conditions. Tribology International. 2007, (40):632~637.
    22 S. M. Chun. A Parametric Study on Bubbly Lubrication of High-Speed Journal Bearings. Tribology International. 2002, (35):1~13.
    23刘旭辉,李连进,宋平娜,滕献银.非牛顿流体润滑剂的动力学模型及仿真研究.润滑与密封. 2006,(4):76~78.
    24 J. Vlachopoulos. The Role of Rheology in Polymer Extrusion,SPIE. Proceedings of New Technologies for Extrusion. Milan: SPIE,2003:1~5.
    25 B. Bhushan. Introductiong to Tribology. 1999:236~237.
    26陈皓生,陈大融,汪家道.粘弹性非Newton介质润滑流变特性的频域分析.清华大学学报. 2005, (8):1058~1061.
    27 A. Erdemir. Review of Engineered Tribological Interfaces for Improved Boundary Lubrication. Tribology International. 2005, 38 (3):249~256.
    28 X. Ai, H. S. Cheng. A Transient EHL Analysis for Line Contacts with Measured Surface Roughness Using Multigrid Technique. ASME Journal of T ribology. 1994, (116):549~557.
    29 L. Chang. Traction in Thermal Elastohydrodynamic Lubrication of Rough Surface. ASME Journal of Tribology. 1992, (114): 186~191.
    30 C. H. Venner,A. A. Lubrecht,W. E. Ten Napel. Numerical Simulation of the Overrolling of a Surface Feature in an EHL Line Contact. ASME Journal of Tribology. 1993, (115):777~783.
    31 C. H. Venner,A. A. Lubrecht. Transient Analysis of Surface Features in an EHL Line Contact in the Case of Sliding. ASME Journal of Tribology. 1994,(116): 186~193.
    32 M. Geiger,S. Roth,W. Becker. Surface & Coating Technology. Elsevier Science S. A. Lausanne Switzerland. 1998, (100):17~22.
    33 H. Ike. Properties of Metal Sheets with 3D Designed Surface Microgeometry Prepared by Special Rolls. Journal of Materials Processing Technology. 1996, (60): 363~368.
    34 J. R. Lin. Surface Roughness Effect on the Dynamic Stiffness and Damping Characteristics of Compensated Hydrostatic Thrust Bearings. International Journal of Machine Tools and Manufacture. 2000, 40(11):1671~1689.
    35 L. L. Wang,I. W. Cheng. An Average Reynolds Equation for Non-Newtonian Fluid with Application to the Lubrication of the Magnetic Head-Disk Interface. Tribology Transaction. 1997, 40 (1):111 ~119.
    36 H. L. Chiang, C. H. Hsu. Lubrication Performance of Finite Journal Bearings Considering Effects of Couple Stresses and Surface Roughness. Tribology International. 2004, (37):297~307.
    37 T. Almqvist,R. Larsson. Some Remarks on the Validity of Reynolds Equation in theModeling of Lubricant Film Flows of the Surface Roughness Scale. ASME J Tribo. 2004, 126 (10): 703.
    38 I. Krˇupka,M. Hartl. The Influence of Thin Boundary Films on Real Surface Roughness in Thinfilm,Mixed EHD Contact. Tribology International. 2007, (40):1553~1560.
    39 N. B. Naduvinamani, A. Siddangouda. Effect of Surface Roughness on the Hydrodynamic Lubrication of Porous Step-Slider Bearings with Couple Stress Fluids. Tribology International. 2007, (40):780~793.
    40汪家道,陈大融,孔宪梅.规则凹坑表面形貌润滑研究.摩擦学学报. 2003, 23(1):52~55.
    41李笑迪,陈皓生,陈大融,汪家道.非牛顿介质中图形化表面对减阻效果的影响.润滑与密封. 2007, 32(1):4~6.
    42韩中领,汪家道,陈大融.不同凹坑深度在乏油润滑状态下的减阻实验.润滑与密封. 2007, 32(3):19~21.
    43韩中领,汪家道,陈大融.表面形貌在面面接触乏油状态下的减阻效果实验.润滑与密封. 2006, (7):91~93.
    44韩中领,汪家道,陈大融.表面形貌在乏油润滑时的最大静摩擦力研究.润滑与密封. 2007, 32(9):21~24.
    45梅雪松,陶涛,邓文和.凹坑深度对表面动态弹流润滑的影响.西安交通大学学报. 1997, 31(7):29~34.
    46杨志强,崔金磊,杨沛然.表面粗糙纹理对非牛顿热弹流润滑性能的影响.润滑与密封. 2008, (4):7~11.
    47章梓雄,董曾南.粘性流体力学.清华大学出版社, 2004:214.
    48 X. F. Peng, G. P. Peterson, B. X. Wang. Frictional Flow Characteristics of Water Flowing Through Rectangular Microchannels. Experimental Heat Transfer. 1994, (7):249~264.
    49 N.T. Nguyen, D. Bochnia, R. Kiehnscherrf, W. D?zel. Investigation of Forced Convection in Micro?uid Systems. Sensors Actuators. 1996, (55):49~55.
    50 Z.X. Li, D.X. Du, Z.Y. Guo. Experimental Study on Flow Characteristics of Liquid in Circular Microtubes, in: Proceedings of International Conference on Heat Transfer and Transport Phenomena in Microscale, Begell House, New York, USA, 2000:162~168.
    51 H.Y.Wu, P. Cheng. Friction Factors in Smooth Trapezoidal Silicon Microchannels with Different Aspect Ratios, Int. J. Heat Mass Transfer. 2003, (46):2519~2525.
    52 P. Hao, H. Feng, K. Zhu. Flow Characteristics in a Trapezoidal Silicon Microchannel, J. Micromech. Microeng. 2005, (15):1362~1368.
    53刘震北.静压支承设计中压降系数的计算.机械设计. 1980, (2):58~61.
    54 M. Braun, M. Dzodzo, S. Lattime. Some Qualitative and Quantitative Aspects of Flow in a Hydrostatic Journal Bearing Pocket. Fluids Engineering Division Conference ASME. 1996, (4):109~114.
    55 M. Braun, M. Dzodzo. Three Dimensional Flow and Pressure Patterns in a Single Pocket of a Hydrostatic Journal Bearing. Proceedings of the 1995 Workshop of NASA Lewis Reasearch Center. 1995, (10181):285~297.
    56 M. Dzodzo, M. Braun, R. Hendricks. Pressure and Flow Characteristics in a Shallow Hydrostatic Pocket with Rounded Pocket/Land Joints. Tribology International. 1996, 29(1):69~76.
    57 M. J. Braun, M. Dzodzo. Effects of Hydrostatic Pocket Shape on the Flow Pattern and Pressure Distribution. International Journal Machinery. 1995, 1(3-4):225~235.
    58 M. Braun, M. Dzodzo. Effects of the Feeline and the Hydrostatic Pocket Depth on the Flow Pattens and Pressure Distribution. Journal of Tribology. 1995, (117):224~233.
    59 M. Braun, M. Dzodzo. Three-Dimensional Flow and Pressure Patterns in a Hydrostatic Journal Bearing Pocket. Journal of Tribology. 1997, (119):711~719.
    60 F. Horvat. Experimental and Numerical Analysis of Flow and Pressure Fields Inside a Variable Depth Single Pocket Hydrostatic Bearing. The University of Akron. 2008.
    61 G. Jean, Detry, B. B. B. Jensen, M. Sindic, C. Deroanne. Flow Rate Dependency of Critical Wall Shear Stress in a Radial-Flow Cell. Journal of Food Engineering. 2009, (92):86~99.
    62 G. Jean, Detry, B. B. B. Jensen, M. Sindic, C. Deroanne. Laminar Flow in Radial Flow Cell with Small Aspect Ratios: Numerical and Experimental Study. Chemical Engineering Science. 2009, (64):31~42.
    63 C. Neto,D. R. Evans,H. J. Butt,et al. Boundary Slip in Newtonian Liquids: a Review of Experimental Studies. Reports on Progress in Physics. 2005, (68): 2859~2897.
    64 M. Gad-el-Hak. The Fluid Mechanics of Micro Devices- the Freeman Scholar Lecture. Transactions of the ASME,Journal of Fluids Engineering. 1999,(121):5~33.
    65 J. Ou, B. Perot, J. P. Rothstein. Laminar Drag Reduction in Micro Channels Using Ultrahydrophobic Surfaces. Physics of Fluids. 2004, 16(12):4635~4643.
    66 K. Watanabe, Yanuar,H. Udagawa. Drag Reduction of Newtonian Fluid in a Circular Pipe with a Highly Water-Repellent Wall. Journal of Fluid Mechanics. 1999, (381):225~238.
    67 K. Watanabe, Yanuar, H. Mizunuma. Slip of Newtonian Fluids at Slid Boundary. JSME,International Journal,Series B: Fluids and Thermal Engineering. 1999, 41(3):525~529.
    68 C. H. Choi, C. J. Kim. Large Slip of Aqueous Liquid Fiow Over a Nanoengineered Superhydrophobic Surface. Physical Review Letters. 2006, (96):066001.
    69 R. Pit, H. Hervet, L. Leger. Direct Experimental Evidence of Slip in Hexadecane: Solid Interfaces. Physical Review Letters. 2000, (85):980~983.
    70 V. S. J. Craig, C. Neto, D. R. M. Williams. Shear-Dependent Boundary Slip in an Aqueous Newtonian Liquid. Physical Review Letters. 2001, (87):054504.
    71 E. Bonaccurso, M. Kappl, H. J. Butt. Hydrodynamic Force Measurements: Boundary Slip of Water on Hydrophilic Surfaces and Electrokinetic Effects. Physical Review Letters. 2002, (88):076103.
    72 R. G. Horn,O. I. Vinogradova,M. E. Machay,et al. Hydrodynamic Slippage in Inferred from Thin Film Drainage Measurements in a Solution of Nonadsorbing Polymer. Journal of Chemical Physics. 2000, 112(14):642~643.
    73马国军.微纳米间隙流动的边界滑移及其流体动力学研究.大连理工大学博士学位论文. 2007.
    74朱希玲.静压轴承压力场的有限元数值模拟.上海工程技术大学学报. 2002,16(2): 92~95.
    75 T. Almqvist, A. Almqvist, R. Larsson. A Comparison Between Computational Fluid Dynamic and Reynolds Approaches for Simulating Transient EHL Line Contacts. Tribology International. 2004, (37): 61~69.
    76高飞,顾磊.普通导轨表面微观凹坑润滑的数值模拟和试验研究.煤矿机械. 2006.
    77刘红彬,孟永钢.基于区域分解法的纹理表面流体润滑分析——纹理分布模式的影响.摩擦学报. 2007, (11):555~561.
    78张艳芹,邵俊鹏,倪世钱.大尺寸静压轴承温度场数值模拟.中国机械工程. 2008, 19(5): 563~565.
    79崔勤建,杨建玺,樊红朝.油膜轴承承载性能分析及参数优化.机床与液压. 2005, (4):20~22.
    80卢华阳,孙首群.液体静压导轨支承油膜的有限元分析.机床与液压. 2007, 35(10):46~49.
    81庞志成.液体气体静压技术.黑龙江人民出版社, 1981.
    82许贤良.王传礼,液压传动.国防工业出版社, 2006.
    83 http://www.shychsdb.com/product.asp?typeid=6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700