稀土La~(3+)对辣根细胞膜的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土在各个领域的应用进入植物生态系统而影响植物的生理功能及生长,已得到科学界肯定。然而,稀土对植物生理功能影响机制依然不明,并一直是相关交叉学科探究的难点与热点问题。稀土元素在植物体内分布、作用位置、作用位点和在细胞内的化学行为研究,是探索稀土对植物生理功能影响机制的重要途径。稀土离子进入细胞需跨过细胞质膜,显而易见,细胞膜是稀土与植物发生作用的前沿。细胞可通过其表面的受体与信号分子选择性互相作用,导致细胞内很多生理生化反应发生,最终体现为细胞整体的生物学效应过程。本文以辣根为材料,以轻稀土La~(3+)为探针,综合运用流式细胞仪、免疫荧光标记、扫描电镜、透射电镜、激光共聚焦显微镜、自主搭建的全内反射显微镜(TIRM)、计算机模拟、非电活性离子检测装置以及放射自显影技术等多学科交叉先进手段,探究了稀土在辣根中的分布、作用位置和位点以及在细胞内的化学行为与方式,揭示了不同浓度稀土作用于辣根后,细胞膜的结构、性质及功能响应的微观化学过程。为从细胞及分子层次阐明稀土植物学机理及其食品安全提供了科学依据。
     主要研究结果如下:
     1.低浓度La~(3+)作用于辣根时研究发现:(1) La~(3+)主要分布于细胞质膜上,不进入辣根细胞内部。(2)作为路易斯酸的La~(3+),可与辣根细胞外基质和细胞外被物质分子上作为一种路易斯碱的O原子等发生配位键合,而被锚定在细胞膜上显示出纳米尺寸大小的稀土生物分子配合物,即稀土生物纳米配合物。(3)La~(3+)与细胞质膜上物质分子的配位键合作用,直接影响其分子的原有结构,并可通过细胞膜的信号转导和基因调控而影响辣根细胞组成、结构和功能。
     2.高浓度La~(3+)作用于辣根时研究发现:(1)随着稀土La~(3+)作用于辣根浓度的增加,La~(3+)作用于辣根细胞的位置是由细胞外向细胞内。随La~(3+)浓度的升高,La~(3+)作用于细胞膜的位点就增加,也即La~(3+)会与膜上蛋白、膜蛋白、膜磷脂以及通道蛋白暴露于膜外部分分子上的O原子等发生配位键合,而生成众多不同纳米尺寸的稀土生物纳米配合物。(2)清晰地观察到La~(3+)以稀土生物纳米配合物形式通过胞吞作用进入细胞,即首先部分细胞膜凹陷,且包裹大量胞外La~(3+)生物纳米配合物颗粒;其后内陷部分逐渐闭合形成胞吞囊泡;然后胞吞囊泡从质膜上脱落并进入细胞内;最后胞吞囊泡在细胞质中被植物溶解酶溶解而进入细胞内各区室中。(3)部分过多结合La~(3+)的La~(3+)生物纳米配合物胞吞囊泡被植物溶解酶溶解时,导致部分胞囊泡破裂而出现异常的胞吞现象,引起许多不同尺寸的La~(3+)纳米配合物从胞吞囊泡释放到细胞质中,根据相似相容原理,在细胞质中自组装成不同直径(80nm-400nm)的La~(3+)生物纳米球。
     3.低浓度La~(3+)作用于辣根的细胞学机制为:(1)La~(3+)与细胞膜上生物分子多位点作用生成稀土生物纳米配合物而活化了辣根细胞的胞吞作用,并以这种作用方式启动细胞膜的信号传递和基因表达,并会导致信号传递和基因表达所产生一系列快速响应。诸如其中,优先是信号分子Ca2+,比对照增加了20.70%,从而证明信号传导加速;大量营养元素N、K的百分含量比对照分别增加了0.50%和131.70%;微量元素Mg、Fe、Zn的百分含量比对照分别增加了47.90%,23.00%和1.10%,显示有利于膜的组成和功能的增加,进而促进辣根细胞的长大。(2)通过细胞动态显微镜观察到,这种系列响应又反过来促进了植物的胞吞和胞吐作用,而植物胞吐作用运输出来的营养物质又用来增加细胞质膜和细胞壁的组成物质、结构物质和营养物质,使得合成细胞膜和细胞壁的量增加,从而促进细胞膜的弹性增加且极大地有利于细胞的长大。
     4.高浓度La~(3+)作用于辣根的细胞学机制为:(1)高浓度稀土La~(3+)作用于辣根时,La~(3+)在细胞膜上与生物分子的结合位点增多,即稀土生物纳米配合物也增多,导致很多细胞膜生物分子的微结构被改变,细胞膜分子功能被抑制。(2)高浓度稀土La~(3+)作用于辣根时,呈现La~(3+)过度活化植物细胞的胞吞作用现象,导致胞吞和胞吐时间更加缩短,即显著过度胞吞作用。这种过度胞吞作用使得进出细胞中的营养元素增加,但质膜中饱和脂肪酸含量比对照增加了20.80%,不饱和脂肪酸含量比对照降低了9.1%。证明过度胞吞作用伴随着细胞膜的损伤,进而细胞质膜弹性减弱。(3)高浓度La~(3+)处理辣根造成过度胞吞作用消耗大量的营养,从而影响物质运输。细胞的营养元素N、K、Mg、Fe、Zn的百分含量比对照组相分别降低了2.00%、45.20%、5.80%、0.63%和47.60%。过度耗能又需要大量的营养,同时细胞内营养元素减少,对辣根细胞的长大是不利的,辣根只有选择降低生物合成量来保持细胞不死亡,也即辣根通过使自身细胞不长大或缩小细胞来降低生物合成量,从而抵御高浓度La~(3+)对自身致死的伤害,即保存自我的一种保护机制的表现。(4)La~(3+)通过胞吞作用进入细胞,并出现植物细胞异常胞吞而在细胞质中自组装生成直径(80nm-400nm)的La~(3+)生物纳米球时,实验呈现出大部分的La~(3+)生物纳米球可通过胞吐作用或其它一些方式迁移到细胞膜外,并迁移至根部而进入土壤介质,从而降低细胞对稀土的蓄积,减轻稀土对细胞的伤害。(5)同时发现,少部分La~(3+)生物纳米球沉积在细胞内且不随时间而发生变化,此自组装La~(3+)生物纳米球扰乱了生物分子和植物溶解酶的识别信号,因而不能被溶解而长期累积在细胞内,即是La~(3+)在辣根细胞中的一种累积方式。(6)这种少部分大尺寸La~(3+)生物纳米球在细胞质中的沉积,导致其中生物分子的生物利用减少而抑制辣根细胞的生长;与此同时,植物细胞可利用该La~(3+)生物纳米球沉积而缓解高浓度La~(3+)对细胞膜及其细胞器的损伤,也是植物细胞缓解高浓度La~(3+)伤害植物的一种解毒机制。
     5.植物细胞膜是La~(3+)作用的首要位点之一:(1)稀土La~(3+)作用于辣根时浓度由低到高,由细胞外向细胞内。 La~(3+)在辣根叶细胞中分布、作用位置位点和细胞化学行为均取决于La~(3+)浓度;而La~(3+)对辣根低促高抑的影响,取决La~(3+)作用于细胞膜时La~(3+)的分布,La~(3+)的位置和La~(3+)的位点。(2)这些作用位置和位点又直接启动细胞膜的信号传递和基因表达,并会导致信号传递和基因表达所产生一系列细胞内响应并调控了细胞膜的组成、结构和功能;La~(3+)进入细胞都要通过细胞质膜这一首道屏障,无论低、高浓度La~(3+)处理辣根,辣根细胞膜都是La~(3+)作用的首要位点之一。
The applications of rare earth elements (REEs) have made the REEs enter into the plantecosystem, and influenced the growth and physiological function of plants, which has beenconcerned by the scientific community. However, the influence mechanism of REEs on thephysiological function of plants is still unclear, and it also is the difficulty and focus problemin related interdisciplinary. The investigation on the distribution, action location, action siteand cytochemical behavior of the REEs in plants are the important pathways for exploring theinfluence mechanism of the REEs affect on the physiological function of plants. Obviously,the plasma membrane is the first target affected by the REEs, because the REEs entering thecells need to pass through the plasma membrane. The selective interaction between receptorsand signaling molecules in cell surface resulted in many physiological and biochemicalreactions in cells, and reflected on the biological effects process in the overall cells. In thispaper, we chose horseradish as the experiment materials, light rare earth La~(3+)as a probe,respectively, and used the integrated multidisciplinary methods of flow cytometry,immunofluorescence labeling, scanning electron microscopy, transmission electronmicroscopy, laser confocal microscopy, computer simulation, non-electrical activity of iondetection device, and autoradiography to explore the distribution, action location, action siteand cytochemical behaviors and styles of rare earth in horseradish cells, and revealed themicro-chemical processes of rare earth acting on membrane structure, property and functionin horseradish cells. The results will provide cell and molecular level scientific basis forelucidating the botany mechanism and food safety of REEs.
     The main results are summarized as follows:
     1. La~(3+)would not enter into the cells as it would mainly distribute on the plasmamembrane when horseradish treated with La~(3+)at the low concentration. La~(3+), as a Lewis acid,can coordinate with Lewis base atoms on extracellular matrix and extracellular materialmolecules in horseradish cells, such as O atoms. And then La~(3+)can be anchored on plasmamembranes which appeared as rare earth biomolecules complexes in nanoscale, which is rareearth nano-biocomplexes. The ligand-binding anchoring affect the original configuration ofthe molecules on/in the plasma membrane, and then affect the constitution, structure andfunction of horseradish cells by the signal transduction and gene control of plasmamembranes.
     2. The results showed that the location where La~(3+)acting on cells moved to cell interiorwhen horseradish treated with La~(3+)at the high concentration. With the increase of theconcentration of La~(3+), the action sites of La~(3+)acting on plasma membranes were increased;That is, La~(3+)can coordinate with O atoms in protein on/in membrane, membranephospholipids and the part of channel protein outside the membrane to form numerous rareearth nano-biocomplexes in different nano scales. It was clearly observed that the rare earth nano-biocomplexes were transported into cells by endocytosis. Firstly, a part of plasmamembrane invaginated into a pit, which encapsulated the La~(3+)nano-biocomplex particles.Secondly, the pit gradually developed into a bud, and then pinched off as a vesicle intocytoplasm. Finally, the bud was fused with lysosome or lytic vacuole in cytoplasm andentered into the cellular compartments. Some nano-biocomplexes with too much La~(3+)bustedwhen they were being dissolved by lysosome, and then numerous La~(3+)nano complexes indifferent scales were released from the buds into cytoplasm, which was an unusualendocytosis. Then numerous La~(3+)nano complexes were self-assembled to form the nano-scaleLa~(3+)bioballs with different diameters (80nm-400nm) on the basis of similar consistencyprinciple.
     3. The cytology mechanisms of La~(3+)at the low concentration influence horseradish areas follows.(1) La~(3+)and biological molecules on/in plasma membrane formed rare earthnano-biocomplexes by multisite interactions, which activated the endocytosis of horseradishcells. The signal transduction and the genetic expression were started by forms rare earthnano-biocomplexes, resulting in a series of fast responses of cells. For example, Ca2+, animportant signal molecule, activated firstly. The content of Ca2+increased by20.70%compared with that of the control, which indicated that signal transduction was accelerated. Incomparison with those of the control, the content of macroelements, such as N and K, wereincreased by0.50%and131.70%, respectively; Meanwhile, the content of microelements,such as Mg, Fe and Zn, increased47.90%,23.00%and1.10%, respectively. The resultsindicated that the constitution and function of membrane were improved, and then the growthof horseradish cells was promoted.(2) It was observed through the cell dynamic microscopethat the series of responses promoted the endocytosis and exocytosis of plant in return. Thenutrient substance transported out from the cell interior added into the substances which werethe constitution, structure and nutrition of the plasma membrane and cell wall. And then theamount of plasma membrane and cell wall were increased; thereby, plasma membraneelasticity was promoted and the growth of cells was improved.
     4. The cytology mechanisms of La~(3+)at the high concentration influence horseradishare as follows.(1) The number of binding site of La~(3+)and biomolecules on plasma membraneincreased when horseradish were treated with La~(3+)in high concentration, that is, the numberof rare earth nano-biocomplexes was increased. The increase induced to the change of themicrostructure of biological molecules on/in the plasma membrane, and then inhibited themolecular function of the plasma membrane.(2) It was appeared that endocytosis in cells wasover-activated by La~(3+)when horseradish was treated with La~(3+)at the high concentration,leading to the time of endocytosis and exocytosis shortened, namely, notable excessiveendocytosis. The excessive endocytosis made the amount of nutrient elements in theintra/extra cellular substance exchange increased. However, compared with those of thecontrol, the content of saturated fatty acid in plasma membrane was increased by20.80%,while the content of unsaturated fatty acid was decreased by9.1%. It indicated that thedamage of plasma membrane would happen following the excessive endocytosis, and then the plasma membrane elasticity was decreased.(3) A great amount of nutrition has beenconsumed during the excessive endocytosis caused by the treatment with La~(3+)at the highconcentration. Compared with those of the control, the content of the nutrient elements suchas N, K, Mg, Fe and Zn decreased by2.00%,45.20%,5.80%,0.63%and47.60%,respectively. A great amount of nutrition was needed for the excessive energy dissipation;meanwhile, the amount of the intracellular nutrition elements was decreased, which wasdisadvantageous for the growth of the horseradish cells. Thus horseradish can do nothing forkeeping cells alive but decreasing the biosynthesis, that is, horseradish decreased thebiosynthesis by inhibiting the cells growth or lessening cells to resist the lethal damage fromLa~(3+)at the high concentration. The strategy is a protection mechanism of self rescue.(4) AsLa~(3+)entered into cells by endocytosis, an unusual endocytosis emerged. La~(3+)self-assembledinto La~(3+)nano-bioballs (80nm-400nm) in cytoplasm. Most of them can be transported tothe outside of cells by exocytosis reported by experiments, then the La~(3+)nano-bioballsmigrated into soil through the roots. Therefore, the accumulation of rare earth in cell wasdecreased, and the damage to cells from the rare earth was also decreased.(5) Meanwhile, itwas found that a little number of La~(3+)nano-bioballs deposited in cell interior, which do notchange with time. These La~(3+)nano-bioballs, which disturbed the identification signals ofbiomolecules and lytic enzyme, can not be dissolved thus permanently accumulated in cellinterior.(6) The deposition of these La~(3+)nano-bioballs induced the decrease of thebiological utilization of biomolecules and then inhibited the growth of the horseradish cells.Meanwhile, it could decrease the damage of the plasma membrane and organelle from La~(3+)atthe high concentration by the La~(3+)nano-bioballs deposited in cell interior, which was also adetoxification mechanism of decrease the cell damage in plants from La~(3+)at the highconcentration.
     5. Plasma membrane is one of the major sites which La~(3+)action on plants.(1) The sitewhich La~(3+)acting on the horseradish cells from outward to inward followed the increase ofLa~(3+)concentration. The distribution, action location, action site and cytochemical behavior ofLa~(3+)in the horseradish leaf cells depended on the concentration of La~(3+). Meanwhile, thepositive effects at the low concentrations and the negative effects at the high concentrations ofLa~(3+)depended on the distribution, location and sites of La~(3+)acting on the plasma membrane.(2) The location and sites of La~(3+)acting on the plasma membrane can directly start the signaltransduction and genetic expression of plasma membrane, lead to induce a series ofintracellular responses and regulate the constitution, structure and function of plasmamembrane. Regardless of the concentration is low or high, the plasma membrane, which is thefirst protective screen that La~(3+)must pass through into cells, and being one of the major siteswhich La~(3+)acts on horseradish.
引文
[1]黄春辉,赵宇飞.稀土配位化学[J].国外科技新书评介.2010,(10):10-11
    [2]徐光宪.稀土[M].北京:冶金工业出版社;1995
    [3]黄春辉.稀土配位化学[M].北京:科学出版社;1997.
    [4] Evans C. Biochemistry of the Lanthanides: Plenum Press New York;1990
    [5]吴炳乾.稀土冶金学[M].湖南:中南工业大学出版社;1997
    [6]倪嘉缵.稀土生物无机化学[M].北京:科学出版社;1995
    [7] Topp NE. The chemistry of the rare-earth elements: Elsevier Amsterdam;1965
    [8]靳添絮.提高我国稀土资源利用率推动多元复合稀土钨电极材料发展[J].新材料产业.2011,(5):16-18
    [9]王红霖.稀土真相报告[J].现代工业经济和信息化.2011
    [10]李文光.微量元素肥料及稀土肥料应用现状与开发前景[J].江西地质.2001,15(3):210-215
    [11] Humphries M. Rare earth elements: The global supply chain: DIANE Publishing;2010
    [12]苏锵.稀土元素[M].北京:清华大学出版社;2001
    [13] Su W. Research on development strategy of rare earth industry in inner Mongolia[J].Journal of the Chinese Rare Earth Society.2005,23:628
    [14] Wee JH, Lee KY. Overview of the effects of rare-earth elements used as additivematerials in molten carbonate fuel cell systems[J]. Journal of materials science.2006,41(12):3585-3592
    [15]马忠普,稀土战:争夺资源定价权访谈[J]..北京电视台《财经峰汇》2004(2):8
    [16] Hu Z, Richter H, Sparovek G et al. Physiological and biochemical effects of rare earthelements on plants and their agricultural significance: a review[J]. Journal of PlantNutrition.2004,27(1):183-220
    [17]黄小卫,李红卫,王彩凤等.我国稀土工业发展现状及进展[J].稀有金属.2007,31(3):279-288.
    [18]李荣昌,杨晓达,王夔等.我国稀土生物无机化学研究进展[J].中国稀土学报.2004,22(1)
    [19]杨晓改,杨晓达,王夔.稀土药用研究的动向和问题[J].化学进展.2007,19(2):201-204
    [20]熊晓晖,曾辉,张仲芳.稀土元素在我国果树生产中的应用[J].江西园艺.2005,(4):4-5
    [21]刘蓉生.稀土基本知识(九):稀土农用[J].四川稀土.2004,(2):30-31
    [22]程智敏,向金友,左娟等.微肥及广江牌微生物制剂培育烤烟健壮苗试验研究[J].农业科技通讯.2010,(002):46-49
    [23]陈祖义.稀土的hormesis效应及其农用对农业生态环境的潜在影响[J].农村生态环境.2004,20(4):1-5
    [24]殷宏章,夏镇澳.我国植物生理学五十年[J];植物学通报;1983(2):1-6
    [25] Chien S, Ostenhout W. Physiological function of Ba, Sr, and Ce on water-floss(Spirogyra)[J]. Baranical Gazette.1917,63:406-409
    [26] Savostin P. The physiological action of rock phosphate (apatit) on plants[J]. TrTomskogo Gos Un-ta.1934,86:30-63
    [27] Wu J, Wang C, Mei X. Stimulation of taxol production and excretion in Taxusspp cellcultures by rare earth chemical lanthanum[J]. Journal of biotechnology.2001,85(1):67-73
    [28] Ouyang J, Wang X, Zhao B et al. Effects of rare earth elements on the growth ofCistanche deserticola cells and the production of phenylethanoid glycosides[J].Journal of biotechnology.2003,102(2):129-134
    [29]潘廷国,王元贞,柯玉琴等.喷施稀土对甘蔗植株ATP酶和根际土壤酶活性的影响[J].ACTAAGRONOMICASINICA.1993,19(2)
    [30]董倍,吴兆明,汤锡珂.氯化镧对缺钙黄瓜根系生理的影响[J].中国稀土学报.1993,11(1):65-68.
    [31]杨德俊,冯纪南,李强国等.稀土离子对杏鲍菇菌丝生长促进作用及增产效果的试验[J].食用菌.2007,29(5):9-10
    [32]陈立红,闫伟.稀土对蒙古口蘑(Tricholoma mongolicum)及四种菌根真菌菌丝体生长的影响[J].内蒙古大学学报:自然科学版.2002,33(3):295-297
    [33]何冬兰,温川蓉.镧和铈对灵芝菌丝生长的影响[J].中草药.1997,28(11):684-686
    [34]张金桐,崔德芳,丁起盛.稀土元素对药用灵芝品质影响的研究[J].中国中药杂志.1995,20(9):531-532
    [35]郭丽琼,郭丽青.稀土对灵芝生长影响的初步研究[J].中国药学杂志.1999,34(3):155-157
    [36]李增利.稀土元素镨,钕,铒对红菇多糖深层发酵的影响[J].食品科学.2007,28(12):312-316.
    [37]贾文竹,邸贵田.稀土与农业[M].北京:中国农业出版社.1998:13
    [38] d'Aquino L, Morgana M, Carboni MA et al. Effect of some rare earth elements on thegrowth and lanthanide accumulation in different Trichoderma strains[J]. Soil Biologyand Biochemistry.2009,41(12):2406-2413
    [39]郭伯生.农业中的稀土[M].北京:中国农业科技出版社;1988
    [40]张在德,彭涛.稀土元素对大麦种子萌发及幼菌吸收NO3—和K+的影响[J].稀土.1990,11(002):26-28
    [41]吴兆明,汤锡珂,贾志旺等.稀土元素对农业增产作用的研究——2.稀土元素对作物某些生理过程的影响[J].中国稀土学报.1984,2(2):75-75
    [42]罗连光,万强,张秀菊等.氨基酸螯合稀土微肥(大丰收)的应用效果[J].湖南农业科学.2004(1):5
    [43]黄鹏,安泽山,陈敏等.硝酸稀土对兰州百合植株生长和鳞茎产量的影响[J].中国土壤与肥料.2011,(2):76-79
    [44]王德林.含稀土有机无机肥料试验、示范情况汇报[J].中国肥料信息网.2004,(7):27
    [45]鲁宽科,常振战.稀土元素对植物的激素样作用[J].北京医科大学学报.1997,29(004):289-291
    [46]张杰,刘登义,黄永杰等.镧浸种对水稻种子萌发及幼苗生长的影响[J].生态学杂志.2005,24(8):893-896
    [47]王立丰,李良壁,白克智.高浓度LaCl3抑制黄瓜(Cucu mis sati vus Linn)光系统Ⅱ (PSⅡ)活性[J].中国稀土学报.2005,23(6):770-774
    [48]何跃君,薛立.稀土元素对植物的生物效应及其作用机理[J].应用生态学报.2005,16(10):1983-1989
    [49]李际红.红叶石楠组织培养快繁技术的优化[D]:山东农业大学;2006
    [50]袁晓凡,赵兵,王玉春.稀土元素在药用植物细胞和组织培养中的应用①[J].植物学通报.2005,22(1):115-120
    [51]曾青,朱建国,谢祖彬等.红壤中Λ对油菜的剂量效应和临界浓度[J].环境科学.2001,22(4):77-80
    [52]王军妮,黄艳红,鹿伟等.LaCl3对桑树组培苗生长与分化的影响[J].植物营养与肥料学报.2008,14(2):403-406
    [53] Wang K, Li R, Cheng Yet al. Lanthanides--the future drugs[J]. Coordination chemistryreviews.1999,190:297-308
    [54]姚强,高兴喜,宫志远等.部分稀土元素对灵芝多糖和三萜类物质液体发酵的影响[J].食品科学.2011,32(05)
    [55]赵万勇,杨兆芬,强承魁等.稀土氧化镧对黄粉虫生长发育和繁殖的影响[J].昆虫知识.2005,42(4):444-449
    [56] Diatloff E, Smith FW, Asher CJ. Effects of lanthanum and cerium on the growth andmineral nutrition of corn and mungbean[J]. Annals of Botany.2008,101(7):971-982
    [57] Wahid P, Valiathan M, Kamalam N et al. Effect of rare earth elements on growth andnutrition of coconut palm and root competition for these elements between the palmand Calotropis gigantea[J]. Journal of Plant Nutrition.2000,23(3):329-338
    [58] Xie Z, Zhu J, Chu H et al. Effect of lanthanum on rice production, nutrient uptake, anddistribution[J]. Journal of Plant Nutrition.2002,25(10):2315-2331
    [59] Xu X, Zhu W, Wang Z et al. Accumulation of rare earth elements in maize plants (Zeamays L.) after application of mixtures of rare earth elements and lanthanum[J]. Plantand Soil.2003,252(2):267-277
    [60]曹睿,周青.稀土细胞毒理效应研究进展倡[J].中国生态农业学报.2007,15(4):180-184
    [61]赵贵文,陈为钧.中国稀土科技进展[M].北京:冶金工业出版社.2000:334-340
    [62]周青,黄晓华,曾庆玲等.稀土环境植物学效应[J].自然杂志.2003,25(5):264-267
    [63]沈博礼,戴新宾.稀土对小麦叶绿体光化学反应的效应[J].稀土.1994,15(2):71-72
    [64] Chen W, Tao Y HT, et al. Effect of Ln3+on inhibition of tobacco RuBPcase[J]. J RareEarth.2002,20():71-74
    [65] Andersson I. Large structures at high resolution: The1.6crystal structure of spinachribulose-1,5-bisphosphate carboxylase/oxygenase complexed with2-carboxyarabinitolb is phosphate[J]. Journal of molecular biology.1996,259(1):160-174
    [66] Liu X, Su M, Liu C et al. Effect of4f electron characteristics and alternation valence ofrare earths on photosynthesis: regulating distribution of energy and activities ofspinach chloroplast[J]. Journal of Rare Earths.2007,25(4):495-501
    [67] Tyler G. Rare earth elements in soil and plant systems-A review[J]. Plant and soil.2004,267(1):191-206
    [68]白宝璋,杨玉昌,孟宪局等.稀土元素对甜菜光合产物分配的影响[J].核农学报.1995,9(3):189-192
    [69]储钟稀.氯化铈对高等植物叶绿素形成的影响[J].稀有金属.1988,11(7):17-20
    [70]周正朝,张希彪,上官周平.植物对稀土元素的生理生态响应[J].西北农业学报.2004,13(2):119-123
    [71] Horrocks Jr WD, Wong CP. Lanthanide porphyrin complexes. Evaluation of nuclearmagnetic resonance dipolar probe and shift reagent capabilities[J]. Journal of theAmerican Chemical Society.1976,98(23):7157-7162
    [72]唐慧安,赵爱萍,刘妍等.稀土生物无机化学近十年的进展[J].天水师范学院学报.2003,23(2):19-23
    [73]倪嘉缵.稀土生物无机化学[M].北京:科学出版社;2002
    [74]苏国钧,刘江燕,苏应娟等. Ce3+对大鼠体内淀粉酶同工酶的影响[J].中山大学学报(自然科学版).1997(1):2
    [75] Yang JL LH, Yan HT. Studied on the spectrum of the complex of chlorophyll2rareearth elements[J]. Chin R E Soc.1992,10(1):86~88
    [76]张智勇,王玉琦,李福亮等.中子活化法研究叶绿体中的稀土元素[J].北京大学学报(自然科学版).2001,37(2):173-175
    [77] Reuben J. Aqueous lanthanide shift reagents.4. Interaction of praseodymium (3+),neodymium (3+), and europium (3+) ions with xylitol. Origin of induced shifts inpolyols[J]. Journal of the American Chemical Society.1977,99(6):1765-1768
    [78] Brittain HG, Richardson FS, Martin RB. Terbium (III) emission as a probe of calcium(II) binding sites in proteins[J]. Journal of the American Chemical Society.1976,98(25):8255-8260
    [79] Gariepy J, Sykes BD, Hodges RS. Lanthanide-induced peptide folding: variations inlanthanide affinity and induced peptide conformation[J]. Biochemistry.1983,22(8):1765-1772
    [80] Hadad N, Zable AC, Abramson JJ et al. Ca2+binding sites of the ryanodinereceptor/Ca2+release channel of sarcoplasmic reticulum. Low affinity binding site (s)as probed by terbium fluorescence[J]. Journal of Biological Chemistry.1994,269(40):24864-24869
    [81]陈为钧,赵贵文.稀土离子对烟草RuBPcase的抑制作用[J].中国稀土学报.2001,19(4):362-365
    [82]洪法水,陶冶.天然植物铁芒萁体内稀土元素的分布及其叶绿素镧的结构表征[J].植物学报:1999,41(8):851-854
    [83] Wang L, Lu A, Lu T et al.Interaction between lanthanum ion and horseradishperoxidase in vitro[J]. Biochimie.2010,92(1):41-50
    [84] Guo S, Cao R, Lu A et al. One of the possible mechanisms for the inhibition effect ofTb (III) on peroxidase activity in horseradish (Armoracia rusticana) treated with Tb(III)[J]. Journal of Biological Inorganic Chemistry.2008,13(4):587-597
    [85] Wei Z, Hong F, Yin M et al. Subcellular and molecular localization of rare earthelements and structural characterization of yttrium bound chlorophyll in naturallygrown fern Dicranopteris dichotoma [J]. Microchemical Journal.2005,80(1):1-8
    [86]张智勇,王玉琦.稀土超量积累植物铁芒萁中稀土元素的赋存状态[J].稀土.2000,21(3):42-45
    [87]王玉琦,郭繁清.植物体中稀土元素与水溶性多糖结合状态的研究[J].核技术.1999,22(3):160-164.
    [88]钟淑琳,闵蔚宗.茶叶中分离出一种稀土-脂多糖[J].科学通报.1994,9:863-868
    [89]王玉琦,江平,郭繁清等.天然植物体中与稀土元素结合的DNA[J].中国科学(B辑).1999,29(4):373
    [90] Buchanan BB, Gruissem W, Jones RL. Biochemistry and molecular biology of plants:American Society of Plant Physiologists;2000
    [91]王洪春.专题讲座——第二十六讲植物抗性生理[J].植物生理学通讯.1981:6
    [92]陈为钧,顾月华,王圣兵等. Effect of Lanthanum on RuBPCase Activity of TobaccoSeedlings[J].中国稀土学报.2001(2):19
    [93] Petersheim M, Halladay H, Blodnieks J. Tb3+and Ca2+binding to phosphatidylcholine.A study comparing data from optical, NMR, and infrared spectroscopies[J].Biophysical journal.1989,56(3):551-557
    [94]邢金铭,翁莉萍.钙和稀土元素镧,铈对萝卜叶片衰老过程的延缓[J].稀有金属.1991,15(4):262-266
    [95] Gill DL, Grollman E, Kohn L. Calcium transport mechanisms in membrane vesiclesfrom guinea pig brain synaptosomes[J]. Journal of Biological Chemistry.1981,256(1):184
    [96]史萍,曾福礼,邓汝温.镧对黄瓜幼苗叶片细胞透性及膜脂的影响[J].中国稀土学报.2004,22(002):271-274
    [97] Magdy M, Mansour F, Hasselt PR et al. Plasma membrane lipid alterations induced byNaCl in winter wheat roots[J]. Physiologia Plantarum.1994,92(3):473-478
    [98] Shang Y, Yang P, Pei Z. Research at channel level on the effect of LaCl3on Radish(Raphanus satirus L.) vacuolar membrane[J]. Chinese Science Bulletin.2002,47(2):112-115
    [99] Li YH, Liu JC, Hu J. Effects of La3+on ATPase activities of plasma membrane vesiclesisolated from Casuarina equisetifolia seedlings under acid rain stress[J].2003(1):20
    [100]张金红,吴隽平,魏继中等.稀土元素Pr3+,Nd3+)对蚕豆(Vicia feba)叶片原生质膜上Ca2+·Mg2+-ATPase活性的影响[J].中国生物化学与分子生物学报.1992(2):2
    [101]张春光,郑海雷,赵中秋.氯化镧对水稻幼根质膜标准氧化还原系统的影响[J].中国稀土学报.2001,19:465-466.
    [102] Wang L, Zhou Q, Zhao B et al. Toxic effect of heavy metal terbium ion on cellmembrane in horseradish[J]. Chemosphere.2010,80(1):28-34
    [103]陈为钧,陶冶,胡天斗等. Effect of Ln3+on inhibition of tobacco RuBPcase[J].中国稀土学报:英文版.2002,20(001):71-74
    [104]魏幼璋.稀土元素钕对油菜光合作用的影响及作用机制[J].浙江大学学报:农业与生命科学版.2000,26(3):271-273
    [105]胡勤海,叶畅.稀土元素镧对金鱼藻生长生理及细胞叶绿体结构的影响[J].环境科学学报.1997,17(1):82-86
    [106] Brown PH, Rathjen AH, Graham RD et al. Rare earth elements in biologicalsystems[J]. Handbook on the physics and chemistry of rare earths.1990,13:423-452
    [107] Pantoja O, Gelli A, Blumwald E. Voltage-dependent calcium channels in plantvacuoles[J]. Science.1992,255(5051):1567-1570
    [108] Leonard RT, Nagahashi G, Thomson WW. Effect of lanthanum on ion absorption incorn roots[J]. Plant physiology.1975,55(3):542
    [109] Zeng F, Tian HE, Wang Z et al. Effect of rare earth element europium on amaranthinsynthesis in Amarathus caudatus seedlings[J]. Biological trace element research.2003,93(1):271-282
    [110]周晓波,魏幼璋.稀土离子与Ca2+在生物体内的相互作用机制及应用[J].生命科学.1999,11(6):70-70
    [111] Squier T, Bigelow D, Fernandez-Belda F et al. Calcium and lanthanide binding in thesarcoplasmic reticulum ATPase[J]. Journal of Biological Chemistry.1990,265(23):13713-13720
    [112] Diatloff E, Smith F, Asher C. Rare earth elements and plant growth: II. Responses ofcorn and mungbean to low concentrations of lanthanum in dilute, continuouslyflowing nutrient solutions[J]. Journal of Plant Nutrition.1995,18(10):1977-1989
    [113] Ogurusu T, Wakabayashi S, Shigekawa M. Functional characterization of lanthanidebinding sites in the sarcoplasmic reticulum calcium-ATPase: do lanthanide ions bindto the calcium transport site[J]. Biochemistry.1991,30(41):9966-9973
    [114] Hodick D, Sievers A. The action potential of Dionaea muscipula Ellis[J]. Planta.1988,174(1):8-18
    [115]翁莉萍,寥辉,邢金铭.缺钙时镧,铈对黄瓜白菜的生长及根系碱性磷酸酶活性的影响[J].华北农学报.1990,5(2):55-55
    [116]张金红,魏继中,吴隽平等.几种镧系元素离子对人红细胞膜Ca2+-Mg2+ATPase活性影响的研究[J].中国稀土学报.1993,11(3):163-167
    [117]王笑笑,葛水莲,陈建中等.植物体内钙离子的感受器类型及功能研究[J].河北农业科学.2008,12(11):57-58
    [118]林旭辉,李荣.辣根挥发油化学成分的研究[J].食品科学.2001,22(3):73-75
    [119] Govere EM, Tonegawa M, Bruns MA et al. Deodorization of swine manure usingminced horseradish roots and peroxides[J]. Journal of agricultural and food chemistry.2005,53(12):4880-4889
    [120] Veitch NC. Horseradish peroxidase: a modern view of a classic enzyme[J].Phytochemistry.2004,65(3):249-259
    [121]布坎南,格鲁依森姆等.植物生物化学与分子生物学[M].北京:科学出版社;2004:20
    [122]翟中和,王喜忠,生物学等.细胞生物学[M].北京:高等教育出版社;2000
    [123]陈祖义.稀土元素的脑部蓄积性,毒性及其对人群健康的潜在危害[J].农村生态环境.2005,21(4):72-73
    [124]徐光宪倪.神奇之土[M].长沙:湖南科技出版社.1995:20
    [125]陈祖义.核素示踪技术研究稀土元素Pm, Ce和Nd的环境毒理与安全性[J].核农学报.2004,18(1):36-42
    [126]陈祖义,刘玉,程薇等.稀土元素Pm, Ce, Nd的环境毒理研究[J].农村生态环境.2002,18(4):52-55
    [127]刘帅帅,李烨,王旻.茶叶中稀土元素含量的研究进展[J].中国茶叶.2011,(1):13-15
    [128]王蘷,杨晓改.稀土的生物效应及药用研究(细胞无机化学研究)[M].北京:北京大学医学出版社;2011
    [129]潘廷国,王元贞.喷施稀土对甘蔗植株ATP酶和根际土壤酶活性的影响[J].作物学报.1993,19(2):133-138
    [130]郭伯生,竺伟民,熊炳昆等.农业中的稀土[M].北京:中国农业科学技术出版社;1988:20
    [131]张美萍,江玉珍,于光辉等.稀土元素对增强UV-B辐照下小麦抗氧化酶的影响[J].核农学报.2009,23(2):316-319
    [132]白书农,瞿礼嘉,顾红雅.植物生物化学与分子生物学[M].北京:科学出版社;2004:20
    [133] Adak S, Bandyopadhyay U, Bandyopadhyay D et al. Mechanism of horseradishperoxidase catalyzed epinephrine oxidation: Obligatory role of endogenous O-2(-) andH2O2[J]. Biochemistry.1998,37(48):16922-16933
    [134]韩凤,林茂祥,李娟.辣根的使用栽培技术[J].特种经济动植物.2004,12:24
    [135] Guo X, Zhou Q, Lu T et al. Distribution and Translocation of141Ce (III) inHorseradish[J]. Annals of botany.2007,100(7):1459-1465
    [136] Chen HH, Shen ZY, Li P. Adaptability of crop plants to high temperature stress[J].Crop science.1982,22(4):719-724
    [137] Hammerschmidt R, Nuckles E, Ku J. Association of enhanced peroxidase activitywith induced systemic resistance of cucumber to Colletotrichum lagenarium [J].Physiological Plant Pathology.1982,20(1):73-82
    [138]宓容钦李锦树王洪春.生物膜组分对膜功能和膜脂相变的调控Ⅲ·磷脂脂质体对玉米根端线粒体[J].植物生理学报.1983,9(3):217-222
    [139] Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Betavulgaris[J]. Plant physiology.1949,24(1):1
    [140] Sarhan F, Cesar D. High yield isolation of mesophyll protoplasts from wheat, barleyand rye[J]. Physiologia Plantarum.1988,72(2):337-342
    [141] Arnold WN, Pringle AT. Scanning electron microscopy of cells and protoplasts ofSaccharomyces rouxii[J]. Current Microbiology.1980,3(5):283-285
    [142]张志良,瞿伟菁,李小方.植物生理学实验指导[M].北京:高等教育出版社;2003
    [143]周青,黄晓华,张光生等.污染生态学领域的稀土应用研究进展[J].中国稀土学报.2004,22(2)
    [144]吴兆明,王全球,高小霞.镧,铈对谷丙转氨酶和谷氨酸脱氢酶活性的影响[J].植物学通报.1997,14:64-67
    [145]曹涤环.农用稀土的几种用法[J].农业知识:瓜果菜.2009,(7):11
    [146]陆晓民,盛伟,杨吉.模拟酸雨下氯化镧处理对小麦发芽及幼苗生长的影响[J].核农学报.2008,22(6):851-855
    [147]严重玲,洪业汤.稀土元素对酸雨胁迫小麦活性氧清除系统响应的应用[J].作物学报.1999,25(4):504-507
    [148]高利利,张晨,邱琳等.酸雨胁迫下镧对冬小麦种子萌发的影响[J].麦类作物学报.2008,28(1):129-133
    [149]刘双平,李迪,陶丽华等.酸雨胁迫下镧对水稻种子萌发及呼吸作用的影响[J].杂交水稻.2008,23(5):69-72
    [150]邱琳,王娜,周青.镧对酸雨胁迫下高粱种子萌发及POD活性和MDA含量的影响[J].中国生态农业学报.2009,17(2):343-347
    [151]亓昭鹏,周青,杜江燕等. Tb3+离子与植物辣根过氧化物酶的作用方式探讨[J].化学学报.2005,63(1):1-4
    [152]陈君,梁超,黄晓华.稀土元素与辣根过氧化物酶相互作用机理的论述[J].安全.健康和环境.2011,11(2):27-29
    [153]王文刚,李灵芝,张惠等.镧对UV-C胁迫下番茄幼苗抗氧化酶活性的影响[J].山西农业科学.2011,39(6):532-534
    [154]柯世省,陈贤田.浙江天台山七子花等6种阔叶树光合生态特性[J].植物生态学报.2002,26(3):363-371
    [155]金进,叶亚新,夏正祥.镧对酸雨胁迫下敏感植物幼苗的影响[J].湖北农业科学.2010,49(4):851-854
    [156]马孝慧,阿不来提,赵清等.微肥,稀土对苜蓿产量和品质的影响[J].草业科学.2006,23(2):47-49.
    [157]朱根海,张荣铣.叶片含氮量与光合作用[J].植物生理学通讯.1985,2(9):12
    [158]吕成群,黄宝灵.稀土对巨尾桉苗木生长的影响及生理效应研究[J].中南林学院学报.2001,21(003):61-64
    [159]胡瑞芝,王惠群.离子稀土对水稻叶片脂质过氧化作用和细胞透性及产量的影响[J].湖南农学院学报.1995,21(3):231-234
    [160] Furie B, Mann K, Furie B. Substitution of lanthanide ions for calcium ions in theactivation of bovine prothrombin by activated factor X. High affinity metal-bindingsites of prothrombin and the derivatives of prothrombin activation[J]. Journal ofBiological Chemistry.1976,251(11):3235
    [161]洪法水,魏正贵,赵贵文.镧元素与菠菜体内叶绿素的作用关系[J].中国科学C辑.2001,31(5):392-400
    [162]黄晓华,周青.稀土在农肥中的应用[J].自然杂志.2001,23(3):160-163
    [163]晏文武,杨利民,王秋泉.镧在菠菜叶绿体中的分布及其对光合作用的影响[J].科学通报.2005,50(12):1195-1200
    [164] Hong F, Wang X, Liu C et al. Effect of Ce3+on spectral characteristic ofD1/D2/Cytb559complex from spinach[J]. Science in China Series B: Chemistry.2003,46(1):42-50
    [165]刘世名,梁世中.镧对发菜细胞培养及氨基酸成分的影响[J].中国稀土学报.1999,17(1):60-64
    [166]庞欣,王东红.镧对铅胁迫下小麦幼苗抗氧化酶活性的影响[J].环境化学.2002,21(4):318-32
    [167]张福锁.环境胁迫与植物营养[M].北京:北京农业大学出版社.1993:79
    [168] Felipe A, Vicente R, Villalonga N et al. Potassium channels: new targets in cancertherapy[J]. Cancer detection and prevention.2006,30(4):375-385
    [169] Liu M, Hasenstein KH. La3+uptake and its effect on the cytoskeleton in rootprotoplasts of Zea mays L[J]. Planta.2005,220(5):658-666
    [170]杨频,,魏春英.稀土与细胞、器官、组织的作用及其生理生化效应[J].化学通报.1996,7:14-17
    [171]聂毓秀,陈玉兰,王晓辉等.镧、钐、铕及镱化合物对体外培养HeLa细胞的作用[J].中国稀土学报.1989,7(4):58-64
    [172] Amemiya S, Bard AJ. Scanning electrochemical microscopy.40. Voltammetricion-selective micropipet electrodes for probing ion transfer at bilayer lipidmembranes[J]. Analytical chemistry.2000,72(20):4940-4948
    [173]魏正贵,洪法水,赵贵文等.叶绿素稀土配位结构的EXAFS研究[J].化学学报.2000,58(5):559-563
    [174] Cavalli A, Carloni P, Recanatini M. Target-related applications of first principlesquantum chemical methods in drug design[J]. Chemical reviews.2006,106(9):3497
    [175] Frisch M, Trucks G, Schlegel H. etal. Gaussian03, Revision B.01. Pittsburgh, PA:Gaussian. In: Inc;2003
    [176] Becke A. Density-functional thermochemistry. III. The role of exact exchange[J].Chem. Phys.1993,98(1):5648–5652
    [177] Cundari TR, Stevens WJ. Effective core potential methods for the lanthanides[J]. TheJournal of chemical physics.1993,98:5555
    [178] Jin F, Conrad JC, Gibiansky ML et al. Bacteria use type-IV pili to slingshot onsurfaces[J]. Proceedings of the National Academy of Sciences.2011,108(31):12617
    [179]翟中和.细胞生物化学(第三版)[M].北京:高等教育出版社;2007
    [180] Levine IN. Quantum chemistry: Prentice Hall;1991:20
    [181] Wang LH, Zhou Q, Zhao B et al. Toxic effect of heavy metal terbium ion on cellmembrane in horseradish[J].45-6535.2010,80(1):28-34
    [182] Jiachen W, Xiangsheng L, Jun Y et al. Development and prospect of rare earthfunctional biomaterials for agriculture in China[J]. Journal of Rare Earths.2006,24(1):427-431
    [183] Housecroft C, Sharpe AG. Inorganic Chemistry[J]. Prentice Hall, London.2008
    [184] Buchmann JH, de Souza Sarkis JE, Rodrigues C. Determination of metals in plantsamples by using a sector field inductively coupled plasma mass spectrometer[J]. TheScience of the Total Environment.2000,263(1-3):221-229
    [185] amaj J, Balu ka, F.&Menzel D. Plant Enddocytosis, in Plant Cell Monographs.2006:1
    [186] Miyauchi K, Kim Y, Latinovic O et al. HIV enters cells via endocytosis anddynamin-dependent fusion with endosomes[J]. Cell.2009,137(3):433-444
    [187]赵凯,卫涛涛.溶酶体与细胞凋亡[J].生命科学.2011,23(11):1063-1068
    [188] Yin W, Chen M, Lu T et al. Properties of complex of Tb (III) and polyisopropylacrylamide poly isopropylacrylamide styrene) core-shell nanoparticles[J].Journal of alloys and compounds.2007,432(1): L18-L21
    [189] Gupta P, Pattnaik N. Interaction between lanthanum and lipid moieties of biologicalmembranes[J]. Cytobios.1986,46(184):17
    [190] Wang LH, Jiang N, Zhao B et al. Structural basis for the decrease in the outwardpotassium channel current induced by lanthanum[J]. Journal of Biological InorganicChemistry.2010,15(7):989-993
    [191] Wang ZJ, Ren LX, Zhao YQ et al. Metal ions-induced conformational change of P byusing TNS as fluorescence probe[J]. Spectrochimica Acta Part A: Molecular andBiomolecular Spectroscopy.2007,66(4):1323-1326
    [192] Bazykina N, Nikolaevskii A, Filippenko T et al. Optimization of conditions for theextraction of natural antioxidants from raw plant materials[J]. PharmaceuticalChemistry Journal.2002,36(2):46-49
    [193] Buchanan BB, Gruissem W, Jones RL. Biochemistry and molecular biology of plants:American Society of Plant Physiologists;2000
    [194] Buchanan B, Gruissem W, Jones R. Biochemistry&molecular biology of plants.Wiley: John Wiley&Sons Inc.;2000
    [195]杨福愉.生物膜[M].北京:科学出版社;2005:285-297
    [196]郭绍芬.镧(III),铽(III)对体内外辣根过氧化物酶活性与结构的影响研究[D]:江南大学;2008:21-32
    [197]王丽红.稀土铽离子作用于辣根过氧化物酶的细胞毒理[D]:江南大学;2010:60-68
    [198] SEEDLINGS R.氢化镧对水稻幼苗耐冷性的影响(简报)李美茹刘鸿先王以柔[J].热带亚热带植物学报.1997,5(4):62-64
    [199]王洪春,植物抗性生理[J].植物生理学通讯.1981,6:72
    [200]潘登奎,王玉国,张金桐,LaCl3和PrCl3对菠菜离体叶绿体光合磷酸化作用的影响[J].中国稀土学报.2003,21(1):77-80
    [201] Chen Weijun,Gu Yuehua,Wang Shengbing et al. Effect of Lanthanum on RuBPCaseActivity of Tobacco Seedlings[J]. J. Rare Earths2001,19(2)
    [202] Janovjak H, Kedrov A, Cisneros DAet al. Imaging and detecting molecularinteractions of single transmembrane proteins[J]. Neurobiology of aging.2006,27(4):546-561
    [203] Betz T, Bakowsky U, ller MRet al. Conformational change of membrane proteinsleads to shape changes of red blood cells[J]. Bioelectrochemistry.2007,70(1):122-126
    [204] Oesterhelt F, Oesterhelt D, Pfeiffer Met al. Unfolding pathways of individualbacteriorhodopsins[J]. Science.2000,288(5463):143-146
    [205] Cr vecoeur M, Lesniewska E, Vi Vet al. Atomic-force microscopy imaging of plasmamembranes purified from spinach leaves[J]. Protoplasma.2000,212(1):46-55
    [206] Kaftan D, Brumfeld V, Nevo Ret al. From chloroplasts to photosystems: in situscanning force microscopy on intact thylakoid membranes[J]. The EMBO journal.2002,21(22):6146-6153
    [207]焦根林,汤锡珂,吴兆明.氯化钕对玉米根切段钾离子外渗影响的动力学研究[J].植物学报.199335(4):286-290
    [208]郜红建,常江,张自立等.镧对水稻根质膜透性和根分泌物中几种营养离子含量的影响[J].应用生态学报.2004,15(4):651-654
    [209]徐秋曼,元英近,程景胜等.稀土元素铈对红豆杉细胞膜透性的影响[J].稀土.2004,25(2):50-53
    [210]邢金铭,翁莉萍.钙和稀土元素镧、铈对萝卜叶片衰老过程的延缓[J].稀有金属.1991,15(4):262-266
    [211] Li X, Ni J, Chen J et al. Interaction lanthanum and calcium with human erythrocytemembranes[J]. J Rare Earths.1995,13(3):212-216
    [212]田文勋,赵景阳,白宝璋.稀土元素对甜菜种子萌发、幼苗生长及块根产量的影响[J].植物学通报.1990,7(2):37-40
    [213] Shen H, Yan X. Membrane permeability in roots of crotalaria seedlings as affected bylow temperature and low phosphorus stress[J]. Journal of Plant Nutrition.2002,25(5):1033-1047
    [214]宁加贲.稀土对作物增效因子的研究[J].稀土.1994,15(1):63-65
    [215] Yermiyahu U, Rytwo G, Brauer D et al. Binding and electrostatic attraction oflanthanum (La3+) and aluminum (Al3+) to wheat root plasma membranes[J]. Journal ofMembrane Biology.1997,159(3):239-252
    [216] Xue S W. Effects of La3+on outward K+channels at plasma membrane in Viciamesophyll cells[J]. Chem J Chinese U.2005,26:16-18
    [217]商艳芳,杨频,铕离子对萝卜液泡通道影响的膜片钳法研究[J].安徽农业科学.2008,36(17):7111-7112
    [218] Li. YH, Yan. CL, Liu.J Cet al. Effects of La3+on ATPase activities of plasmamembrane vesicles isolated from Casuarina equisetifolia seedlings under acid rainstress[J]. J Rare Earth..2003,21:675-679
    [219]张金红,吴隽平,魏继中.稀土元素Pr3+、Nd3+对蚕豆叶片原生质膜上Ca2+-Mg2+-ATPase的影响[J].生物化学杂志.1992,8:195-199
    [220]张春光,郑海雷,赵中秋.氯化镧对水稻幼根质膜标准氧化还原系统的影响[J].中国稀土学报.2001,19:465-466
    [221] Zheng HL, Zhang CG, Zhao ZQ et al. Effects of La3+on H+transmembrane gradientand membranepotential in rice seedling roots[J]. J Rare Earth.2002,20:234-237
    [222] Butt HJ, Wolff E, Gould S et al. Imaging cells with the atomic force microscope[J].Journal of structural biology.1990,105(1-3):54-61
    [223] Stryer L. The interaction of a naphthalene dye with apomyoglobin and apohemoglobin:a fluorescent probe of non-polar binding sites[J]. Journal of Molecular Biology.1965,13(2):482-495
    [224] Seetharamappa J, Kamat BP. Spectroscopic studies on the mode of interaction of ananticancer drug with bovine serum albumin[J]. Chemical and pharmaceutical bulletin.2004,52(9):1053-1057
    [225] Maxwell K, Johnson GN.Chlorophyll fluorescence: A practical guide[J]. Journal ofExperimental Botany.2000,51(345):659-668
    [226] Krause G, Weis E. Chlorophyll fluorescence and photosynthesis: the basics[J]. Annualreview of plant biology.1991,42(1):313-349
    [227]张金超,李晓新,许善锦等.稀土离子对体外培养的成骨细胞增殖,分化和功能表达的影响[J].自然科学进展.2004,14(4):404-409
    [228]嵇庆,张锡然.三价铕对蚕豆根尖细胞的遗传毒性研究[J].环境科学学报.1995,15(4):454-460
    [229]杨频,魏春英.稀土与细胞,器官,组织的作用及其生理效应[J].化学通报.1996,7:14-17
    [230]杨福愉.生物膜结构研究的一些进展[J].生物化学与生物物理进展.2003,30(4):495-502
    [231]任吉民,张喜荣,王英姿.稀土离子与红细胞作用的133Cs NMR[J].科学通报.1995,40(13):1-9.
    [232]程驿,刘峁子,李友等.经消化道吸收的氯化铈诱导Wistar大鼠红细胞膜“畴”结构的形成[J].科学通报.1999,44(14):1520
    [233] Anni H, Vanderkooi J, Sharp Ket al. Electric field and conformational effects ofcytochrome c and solvent on cytochrome c peroxidase studied by high-resolutionfluorescence spectroscopy[J]. Biochemistry.1994,33(12):3475-3486
    [234] Heremans K, Smeller L. Protein structure and dynamics at high pressure1[J].Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology.1998,1386(2):353-370
    [235] Lakowicz JR, Masters BR. Principles of fluorescence spectroscopy[J]. Journal ofBiomedical Optics.2008,13:299
    [236]李伟国,祁超,杜丽等.稀土离子诱导钙调蛋白构象变化的单克隆抗体制备(摘要)[J].细胞与分子免疫学杂志.2001(5):17
    [237]孙德兰,王红,简令成.抗寒剂R-4对冬小麦质膜钙泵(Ca2+-ATPase)的稳定作用[J].植物学通报.1998,15(2):50-54
    [238] Valley F, DeRose J, Dietler G et al. AFM structural study of the molecular chaperoneGroEL and its two-dimensional crystals: aAn ideal living calibration sample[J].Ultramicroscopy.2002,93(1):83-89
    [239]红枫,王夔,李荣昌等.稀土离子对BEL-7402细胞蛋白质构象变化的影响[J].首都医科大学学报.2003,24(3):225-227
    [240]李家旭,刘杰文,孙大业.玉米根尖细胞内钙调素的胶体金免疫电镜研究[J].植物生理学通报.1989(6):44-45
    [241] Roberts DM, Lukas TJ, Watterson DMet al. Structure, function, and mechanism ofaction of calmodulin[J]. Critical Reviews in Plant Sciences.1986,4(4):311-339
    [242] Chafouleas JG, Riser ME, Lagac L et al.[9] Production of polyclonal and monoclonalantibodies to calmodulin and utilization of these immunological probes[J]. Methods inEnzymology.1983(102):104-110
    [243] Chafouleas JG, Dedman JR, Munjaal RP et al. Calmodulin. Development andapplication of a sensitive radioimmunoassay[J]. Journal of Biological Chemistry.1979,254(20):10262-10267
    [244] Marme D, Dieter P. Role of Ca2+and calmodulin in plants[J]. Calcium and cellfunction.1983,4:263-311
    [245] Da-ye LJS. Comparative studies on immunore activity of antibodies against plant andanimal calmodulin [J]. Acta Botanica sinica.1992:04
    [246]董愚得.潘瑞炽,植物生理学(第三版)[M].北京:高等教育出版社;1995:20
    [247]周晓波,魏幼璋.稀土离子与Ca2+在生物体内的相互作用机制及应用[J].生命科学研究.1999,11(6):70-70
    [248] Ayers PW, Parr RG, Pearson RG. Elucidating the hard/soft acid/base principle: Aperspective based on half-reactions[J]. The Journal of chemical physics.2006(124):194
    [249] Bligh EG, Dyer WJ. A rapid method of total lipid extration and purification[J]. Can JBiochem Physiol.1959,37(8):911-917
    [250] Christie WW. Gas chromatography and lipids, A practical guide. In. Ayr, Scotland,UK;1989
    [251]卢绮萍,史陈让,吴笑春等.用Fluo-2和显微荧光术定量检测活性肝细胞内游离钙离子[J].中国病理生理杂志.1996,12(4):446-448
    [252] Cai C, Tong Y, Mirkin MV. Probing rapid ion transfer across a nanoscopicliquid-liquid interface[J]. The Journal of Physical Chemistry B.2004,108(46):17872-17878
    [253] Yuan Y, Shao Y. Systematic investigation of alkali metal ion transfer across themicro-and nano-water/1,2-dichloroethane interfaces facilitated bydibenzo-18-crown-6[J]. The Journal of Physical Chemistry B.2002,106(32):7809-7814
    [254] Liu B, Mirkin MV. Potential-independent electron transfer rate at the liquid/liquidinterface[J]. Journal of the American Chemical Society.1999,121(36):8352-8355
    [255]王夔,韩万书.中国生物无机化学十年进展[M].北京:高等教育出版社;1997
    [256] Ito K, Sato T, Yura T. Synthesis and assembly of the membrane proteins in Ecoli[J].Cell.1977,11(3):551
    [257] Murata N, Los DA. Membrane fluidity and temperature perception[J]. PlantPhysiology.1997,115(3):875-879
    [258] Wu J, Zhao Z, An Let al. Inhibition of glutathione synthesis decreases chillingtolerance in chorispora bungeana callus[J]. Cryobiology.2008,57(1):9-17
    [259] Chaffai R, Seybou TN, Marzouk Bet al. Effects of cadmium on polar lipidcomposition and unsaturation in maize (Zea mays) in hydroponic culture[J]. Journal ofIntegrative Plant Biology.2007,49(12):1693-1702
    [260]叶亚新,金进,王金虎等.稀土镧对镉胁迫小麦遗传学防护效应的研究倡[J].中国生态农业学报.2007,15(3):97-99
    [261]王丽红.稀土铽离子作用于辣根过氧化物酶的细胞毒理[D].江南大学博士论文.2010:61-68
    [262] Covington AK. Ion-selective electrode methodology: Boca Raton;1979(1):20
    [263] Senda M, Kakiuchi T, Osaka T. Electrochemistry at the interface between twoimmiscible electrolyte solutions[J]. Electrochimica acta.1991,36(2):253-262
    [264] Liu B, Rotenberg SA, Mirkin MV. Scanning electrochemical microscopy of livingcells: different redox activities of nonmetastatic and metastatic human breast cells[J].Proceedings of the National Academy of Sciences.2000,97(18):9855
    [265]梁晚益,杨宗城.线粒体Ca2+转运与细胞代谢调节[J].生理科学进展.2000,31(4):357-360
    [266]李楠,尹岭,苏振伦.激光共聚焦扫描技术[M].北京:人民军医出版社;1997:21-31
    [267]王树荣,王欣,王旸.细胞内Ca2+浓度的调节[J].中华现代中西医杂志.2004,2(8):692-694

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700