喇嘛甸油田北北块河流相储层流动单元划分
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着油田的不断开发,我国东部许多老油田已进入高含水期开采阶段,保持油气产量的稳定面临严竣的挑战,而高含水油田稳产的关键取决于对剩余油分布的认识程度。八十年代以来,随着对储层流动单元研究的不断深入,它越来越广泛地被应到油藏描述和剩余油研究中来,流动单元研究对于认识储层的非均质性、提高油藏描述精度、搞清剩余油分布具有重要的理论意义和实际意义。
     首先,本文以喇嘛甸油田北北块聚合物驱井网葡I1-2砂岩组为研究目的层,应用储层建筑结构解剖的知识和河流-三角洲相油层对比方法,绘制了各沉积单元的沉积相带图,为平面流动单元的划分提供了地质基础,同时,划分了垂向流动单元。
     在划分平面流动单元的多种方法中,经过对比,发现灰色关联法划分的流动单元不但能体现成因特征,而且能较好的与生产动态相吻合,所以选用了灰色关联法作为划分平面流动单元的最佳方法。用此法把研究区储层划分为A、B、C、D四种不同类型的流动单元,并提出了平面流动单元有三种分布形式:独立分布型、平面联合型、垂向复合型。
     在流动单元划分基础上,对研究区储层的非均质性进行了详细的描述。
     结合油藏工程方法,对剩余油在不同流动单元的分布以及同一流动单元不同部位的分布规律进行了研究,揭示了流动单元与剩余油分布的内在联系,总结了研究区剩余油的分布形式,提出了相应挖潜方法,在生产实践中取得了显著的应用效果,有力地验证了流动单元划分的正确性。
With the development of oil fields,many old reservoirs in the east of China enter the high water-bearing development period.Sustaining a high and stable production rate faces severe challenge .The key to preserve oil output in high water cut period is dependent upon the understanding degree to the properties of residual oil distribution.From 1980's,while the study of the reservoir flow unit was proceeded alongside,it has been more widely utilized to characterize reservoir feature and remnant oil distribution .Study of reservoir flow unit plays.both theoretically and practically.an important role in recognizing reservoir heterogeneity.performing a high-definition reservoir delineation and understanding the distribution of the remnant oil in the reservoir.
    Regarding PI1-2 oil bearing group in the polymer flooding well pattern in the north part of the north section in Lamodian Oil Field, as the target pay zone, this paper has firstly drawn the sedimentary microfacies maps of each time unit by means of the principle of architecture-element analysis and correlation method of sand member in fluvial-delta depositional system.lt gives a sound geological foundation for classification of plane flow unit.At the same time, this paper has classified vertical flow unit.
    Among many methods of classifing plane flow unit ,the author find that the flow unit classified by Grey Association Method not only reveal cause of formation.but also better inosculate with production performance by contrast.So the author select the Grey Association Method as the best method to classifing plane flow unit.By it the target beds in this area are divided into four types of flow unit.they are A type,B type.C type and D type. The author put forward three types of plane flow unit distribution,they are isolated distribution type.plane combination type.profile compound type.
    On the basis of classifing flow unit,the heterogeneity of reservoir is particularly described in study area.
    Combining reservoir engineering methods, the distribution laws of remaining oil in different types,or in different part of flow unit are studied. The author reveals the relationship between flow unit and remaining oil distribution.and summarizes the types of remaining oil distribution in study area,and gives the corresponding measures of tapping potential .Good results have been yielded in practice,so this convincingly validates the classification of flow unit.
引文
[1] 刘丁曾,王启民,李伯虎.大庆多层砂岩油田开发.北京:石油工业出版社.1996,1~4
    [2] Hearn C. L, Ebanks W. J, Jr R. S, Tye, V. Ranganathan, Geological Factors Influencing Reservoir Performance of the Hartzog Draw Field, Wyoming. J Petrol Tech, 1984, 36 (8), 1335~1344
    [3] John Kramers W, Integrated Reservoir Characterization: From the Well to the Numerical Model, Increased Primary Recovery, [5]5P~110
    [4] Rodriguez, Maraven S. a, Facies Modeling and the Flow unit Concept as a Sedimentological Tool In Reservoir Description: A Case Study, SPE18154. Presented at the 63th Annual SPE Technical Conference and Exhibition. Houston, Tesas, Oct, 2~5, 1988, 465~472
    [5] Guangming Ti et al, Use of Flow Units as a Tool for Reservoir Description: A Case Study, SPE Formation Evaluation, 1995, 10 (2), 122~128
    [6] Ebanks W J Jr. Flow unit concept—integrated approach to reservoir description for engineering projects. AAPG Annual Meeting, AAPG Bulletin, 1987, 71 (5), 551~552
    [7] Scott. H, Hamlin, et al, Depositional Contrals on Reservoir Properties in a Braid-Delta Sandstone, Tirrawarra Oil Field, South Australia, AAPG Bulletin V. 80, NO. 2 (February 1996), P139~156
    [8] Amaefule J O, Altunbay M. Enhanced reservoir description: Using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/well SPE26436. Presented at the 68th Annual SPE Conference and Exhibition. Houston, Texas, Oct2~5, 1993, 205~220
    [9] 刘孟慧等编译.第二届国际储层表征技术研讨会译文集.东营:石油大学出版社.1990
    [10] 焦养泉,李祯.河道储层砂体中隔挡层的成因与分布规律.石油勘探与开发.1995,22(4),78~81
    [11] 焦养泉,李思田,李祯等.碎屑岩储层物性非均质性的层次结构.石油与天然气地质.1998,19(2),89~92
    [12] 李思田,李祯,孙永传等.陕甘宁岔地河流砂体露头调查及地质知识库基础研究.中国油气储层研究(85~103)成果报告.1994,60~69
    [13] 裘亦楠,王振彪.油藏描述新技术.中国石油天然气总公司油气田开发会议文集.北京:石油工业出版社.1996,62~72
    [14] 穆龙新,黄石岩,贾爱林.油藏描述新技术.中国石油天然气总公司油气田开发工作会议文集.北京:石油工业出版社.1996,1~10
    [15] 张吉等.碎屑岩储层流动单元的层次结构.断块油气田.2002,9(6),1~4
    [16] 熊琦华,彭仕宓,黄述旺等.岩石物理相研究方法初探—以辽河凹陷冷东-雷家地区为例.石油学报.1994,15(专刊),68~74
    [17] 熊琦华,王志章,纪发华.现代油藏描述技术及其应用.石油学报.1994,15(专刊),1~8
    [18] Maghsood Abbaszadeh, Hidari Fujii, Fujio Fujemoto. Permeability prediction by hydraulic flow units—Theory and applications [J], SPE Formation Evaluation, 1996, 11, 263~271
    [19] 闫伟林,吕晓光,苏洋.岩石物理相研究和神经网络技术在高含水期测井解释中的应用.水驱油田开发测井’96国际学术讨论会论文集.北京:石油工业出版社.1996,99~107
    [20] 姚光庆,赵彦超,张森龙.新民油田低渗细粒储集砂岩岩石物理相研究.地球科学—中国地质大学学报.1995,20(3),355~360
    [21] 赵翰卿.对储层流动单元研究的认识与建议.大庆石油地质与开发.2001.20(3),8~10
    [22] 赵翰卿.储层非均质体系、砂体内部建筑结构和流动单元研究思路探讨.大庆石油地质与开发.2002,21(6),16~18
    [23] 李凤娟等.碎屑岩储层流动单元研究的新进展.世界地质.2001,20(1),13~16
    
    
    [24] 俞启泰.关于剩余油研究的探讨.石油勘探与开发.1997,24(2),46~50
    [25] 巢华庆等.大庆油田持续稳产的开发技术.石油勘探与开发.1997,24(1),34~38
    [26] 吕晓光,田东辉等.高含水期潜力层分布及地质特征.大庆石油地质与开发.1992,11(4)
    [27] 周琦.高宏印等.萨尔图油田河流相储层高含水后期剩余油分布规律研究.石油勘探与开发.1997,24(4),51~53
    [28] 韩大匡.深度开发高含水油田提高采收率问题的探讨.石油勘探与开发.1995,22(5),47~55
    [29] 俞启泰.论提高油田采收率的战略与方法.石油学报.1996,17(2).53~61
    [30] 肖鸿雁等.储层微型构造与剩余油分布关系研究.断块油气田.2003,10(4),8~11
    [31] 付国民等.家川油田河流相储层砂体非均质模型及剩余油分布.长安大学学报(地球科学版).2003,25(1).15~19
    [32] 李忠江等.高含水后期单层剩余油识别方法研究.大庆石油地质与开发.2001,20(6),30~32
    [33] 陈建波,关振良.图版法预测剩余油分布在张天渠油田中的应用.海洋石油.2003,23(4),51~54
    [34] 程丽红等.商河油田商三区沙三上亚段剩余油分布研究.江汉石油学院学报.2003,25(3),84~85
    [35] 郭鸣黎.数值模拟技术表征复杂断块油田剩余油分布的几种方法.断块油气田.2003,10(2),48~50
    [36] 裘亦楠.储层地质模型.石油学报.1991,12(4),55~62
    [37] A.D. Miall. Architecture—Element Analysis: A New Method of Facies Applied to Fluvial Deposits. Earth—Science Review, 1985, 22, 261~308
    [38] Clark J. D & Pickering K. T. Architectural Elements and Growth Patterns of Submarine Channels, Application to Hydrocarbon. Exploration. AAPG Bulletin, 1996, 80(2),194~221
    [39] 赵翰卿.储层地质模型及随机建模技术.大庆油田河流-三角洲相储层研究.北京:石油工业出版社.2000,198~203
    [40] Jian F X, Chork C Y, Taggart I J, et al.A Genetic approach to the prediction of petrophsical properties. Journal of Petroleum Geology, 1994, 17 (1), 71~88
    [41] 张一伟,熊琦华,王志章等.陆相油藏描述.北京:石油工业出版社.1997,127~132
    [42] 桂峰等.利用灰关联聚类法划分并预测流动单元.现代地质.1999,13(3),339~344
    [43] 王会林.层次分析法在煤层气资源开发中的应用.山两科技.2003年第1期,42~44
    [44] 强平.利用主成分分析对储层进行分类和评价.西南石油学院学报.1997,19(1),23~29
    [45] 吴元燕,陈碧珏等.油矿地质学.北京:石油工业出版社.1996,145
    [46] 曹成润等.石油构造地质学.哈尔滨:黑龙江科学技术出版社.1992,179
    [47] 阎伟林等.大庆长垣不同时期测井解释渗透率变化规律探讨.大庆石油地质与开发.2002,21(5)60~63
    [48] 冯增昭.沉积岩石学.北京:石油工业出版社.1993,70
    [49] 王泽中.大型板状交错层理内部沉积物的分异.矿物岩石.1997,17(1),71~76
    [50] Gao Shutang, Li Huabin, Yang Zhenyu, M J. Pitts, Harry Surkalo. Alkaline-Surfactant-Polymer Pilot Performance of the West Central Saertu, Daqing Oil Field. SPE/DOE 35383
    [51] 张梦生,张靖等.《高含水期油田开发地质分析》.哈尔滨:黑龙江科学技术出版社.1996,1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700