碱性岩型稀土矿的浮选理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土元素是镧系元素以及钪和钇等17种元素的合称,在新能源、新材料和尖端科技等领域应用日益广泛,具有“工业味精”的美誉,是不可再生的重要战略资源。至今,世界发现的稀土矿物约有250种,但现在用于工业提取稀土元素的矿物主要有氟碳铈矿、独居石、磷钇矿和风化壳淋积型矿等四种。
     四川牦牛坪碱性岩型稀土矿的稀土资源储量仅次于白云鄂博稀土矿,位居全国第二位。在选矿过程中,普遍采用基于摇床重选粗选的单一或组合工艺,如“摇床粗选-粗精烘干-干式磁选”工艺,只回收稀土矿物,而重晶石、萤石等伴生矿物根本未考虑进行综合回收,随之尾矿排放丢弃;由于分选工艺落后,稀土选矿回收率也仅有50%左右,造成了这一宝贵矿产资源的严重浪费;同时,工艺存在着生产不连续和粉尘作业的缺点。
     针对上述问题,基于矿石工艺矿物学研究,开发了一种全湿式组合选矿新工艺,实现了四川牦牛坪稀土矿资源的高效回收;以氟碳铈矿单矿物为研究对象,系统地进行了浮选理论研究,对氟碳铈矿的浮选回收应用具有一定的借鉴意义。
     在选矿新工艺开发研究方面,首先借助于电子显微镜能谱分析和Mineral Liberation Analyser (MLA)矿物自动检测技术进行了矿石的工艺矿物学研究,查明了稀土矿物和脉石矿物的组成与含量、嵌布关系与状态、解离度和有价元素的赋存状态等工艺特性,结合选矿分级、磁选、重选和浮选探索试验,为合理选矿工艺的原则流程提供了科学依据。
     在充分遵循利用矿石性质的原则基础上,本着资源综合回收的原则,论文提出了必须采用联合工艺流程的技术路线,开发了“强磁抛尾-重选富集-中矿浮选”的联合选矿工艺,不仅能较好的实现了稀土矿物的高效富集回收,大幅度提高了稀土精矿的回收率和品位,而且兼顾考虑到了共伴生组分归队和后续的综合回收。
     细粒稀土矿物的浮选回收效果是提高稀土总回收率的关键。为此,对影响浮选效果的磨矿细度、调整剂、捕收剂和辅助捕收剂的种类及用量、矿浆浓度、作用时间、温度、回水比例以及流程结构等主要因素系统地进行了对比试验研究,最终确定了采用选择性羟肟酸类捕收剂GSH在水玻璃分散抑制调浆的溶液体系中进行浮选闭路回收稀土矿物,取得了浮选稀土精矿REO品位65.11%,回收率17.05%的技术指标。与“磁-重”联合工艺获得的粗粒稀土精矿合并,最终全工艺流程获得了REO品位为65.08%,回收率为84.61%的稀土精矿,精矿中REO和非稀土杂质含量全部符合XB/T103-2010中000165牌号产品要求。
     在氟碳铈矿的浮选理论研究方面,进行了氟碳铈矿在油酸钠和水杨羟肟酸捕收剂作用下的浮选基本行为研究,借助溶液化学计算,动电位、红外光谱、吸附量、溶解量测试和ICP分析等手段系统地对多种调整剂和捕收剂与矿物之间的作用机理进行理论分析,通过对比阐明了调浆的必要性和选择性捕收的相关机理,为进一步的理论研究提供技术参考,也对浮选实际应用具有较好的指导意义。同时,进行了温度对氟碳铈矿的浮选作用机理探讨。
     氟碳铈矿溶液化学计算结果表明,矿物表面阳离子的水解产物影响着其浮选,一、二级水解产物RE(OH)2+和RE(OH)2+吸附在氟碳铈矿表面有利于药剂捕收,是主要的正活性质点;而三、四级水解产物RE(OH)3和RE(OH)4-吸附在氟碳铈矿表面不利于氟碳铈矿的浮游,是主要的负活性质点。
     油酸钠和水杨羟肟酸与氟碳铈矿表面作用机理研究结果表明,在pH=6~9时,油酸根离子在溶液中解离生成的离子-分子缔合物在氟碳铈矿矿物表面发生了以化学吸附为主,静电或分子吸附等物理吸附为辅的共吸附;在pH=8~9时,水杨羟肟酸根离子与矿物表面的羟基络合物发生了键合作用,生成稳定性的五元环螫合物,从而实现了氟碳铈矿选择性捕收。
     无机调整剂的作用机理研究结果表明,碳酸钠的抑制作用与溶液体系中水解的HCO3和CO32-离子和氟碳铈矿表面的CO32-定位离子发生的同离子效应有关;六偏磷酸钠、硅酸钠和氟硅酸钠都在矿物表面发生了吸附作用;碳酸钠、硅酸钠和氟硅酸钠对氟碳铈矿表面的阳离子溶解性基本无作用;六偏磷酸钠对氟碳铈矿的抑制作用明显,可归因于两个方面:(1)六偏磷酸钠吸附在矿物的表面,改变矿物表面的电性质和亲水性,降低了捕收剂吸附作用;(2)六偏磷酸钠电离水解的阴离子与矿物表面的正离子发生络合反应,生成可溶性络合物,使矿物表面的活性质点溶解于矿浆中,降低了矿物表面与捕收剂作用的正活性质点浓度,从而达到抑制效果。
     在油酸钠作捕收剂的浮选溶液体系中,金属阳离子Ca2+和Al3+对氟碳铈矿具有活化作用,可归因于两者及其部分水解产物能吸附在矿物表面,有助于在矿物表面生成油酸盐沉淀,提高矿物的疏水性;而以水杨羟肟酸作捕收剂时,Ca2+的抑制作用可归因于其静电吸附在氟碳铈矿表面,与稀土阳离子RE3+及其羟基络合物对水杨羟肟酸根离子发生无选择性竞争吸附;Al3+的抑制作用可归因于其可与水杨羟肟酸根离子反应生成比稀土阳离子更加稳定的络合物;两者都降低了氟碳铈矿表面的活性质点密度,从而达到抑制效果;Ca2+对氟碳铈矿的溶解度有一定的影响,这可能与Ca2+和CO32-离子对效应有关。
     无论是油酸钠还是水杨羟肟酸作捕收剂的单组分浮选体系中,升温均有助于氟碳铈矿的吸附捕收:而在捕收剂GSH浮选体系中,加温浮选实际矿石的效果却与之完全相反,原因初步确定与氟碳铈矿的溶解性无关,而加温可能与固体颗粒、药剂作用和气泡碰撞负载,以及矿浆的表面张力有关,但具体原因有待对多组分矿物进行分解模型化做进一步的检测分析。
Rare earth elements (REEs) are a set of seventeen chemical elements that comprise the fifteen elements of the lanthanide series as well as yttrium and scandium. These elements, which are praised as "industrial monosodium glutamate", are important strategic resources of non-renewable and increasingly widely required for many different applications in field of new energy, new materials, cutting-edge technology, etc.. There are may be found in approximately250different minerals in the world to date, but the only REE bearing minerals that have been extracted on a commercial scales are bastnasite, monazite, xenotime and ion-adsorbed clays.
     The alkaline rock type rare earth ore in Maoniuping deposit, Sichuan, of which rare earth reserves after Bayan Obo rare earth ore. The most commonly utilized application of gravity separation with shaking tables as roughing or that combined with magnetic separation is in the beneficiation, such as gravity separation with shaking tables as roughing, drying and then dry magnetic separation. Those techniques just only recovered the rare earth bearing minerals, but a large number of barite, fluorite and other associated minerals are discarded as tailings instead of the comprehensive recovery. Because of the lag in beneficiation techniques, rare earth recovery rate is only about50%, resulted in an enormous waste of the valuable mineral resources. Meanwhile, the disadvantages of the combined beneficiation flowsheet are discontinuous operation and in the situation of full with dusts.
     As previously mentioned, based on a comprehensive study of mineralogy, a new wet combined beneficiation technique is developed to highly-efficiently recover the valuable minerals in this type of rare earth resource; in the meantime, basic theories of the bastnasite monomineral flotation are been systematically researched in order to provide a certain reference to the flotation separation of rare earth ore contains the bastnasite.
     In the beneficiation technique research, firstly, the process mineralogy is studied by means of Electron Microscope Energy Spectrum and Mineral Liberation Analyser, and several process characteristics such as composition as well as contents of the rare earth bearing minerals and gangue minerals, disseminating relationship and its state, degree of mineral liberation, occurrences of valuable elements, are determined. Then, a series of exploratory experiments including classification, magnetic, gravity and flotation separation are conducted. Consequently, a rational beneficiation process flowsheet is determined according to all of the performances above.
     The principle of beneficiation is in full compliance with the ore properties which could also be utilized. This dissertation has proposed that a technical route comprising magnetic separation combined with gravity separation plus flotation must be applied because valuable minerals in the ore should be recovered comprehensively in order to exploit the resource. Accordingly, a combined beneficiation flowsheet designed to concentrate rare earth bearing minerals. In the flowsheet, non-magnetic gangue including large amounts of slimes is discarded via wet high intensity magnetic separation, then gravity separation is used to discard any low specific gravity gangue and the final shaking table concentrate stream can be achieved. The middlings stream from shaking tables that remains contains a portion of the rare earth bearing minerals which are intergrowth as well as gangue minerals which are not removed in the first two steps. A flotation separation is then applied to exploit the different surface properties of the valuable bastnasite and gangue minerals and produce the final flotation concentrate stream. Consequently, it is not only achieved the highly effective recovery of the rare earth minerals and improved the final concentrate recovery, but also to take into account the concentration of barite and fluorite which should be recovered comprehensively in the successive beneficiation flowsheet.
     Magnetic and gravity separation are ineffective at separating very fine particles resulting in large losses of rare earths, but flotation separation is commonly applied to the beneficiation of rare earth ores is due to the fact that it is possible to process a wide range of fine particle size. Undoubtedly, flotation separation can be used to beneficiate the fine particles, which is of vital importance to the increase in overall recovery. In this connection, a series of parameters including grinding fineness, types and dosages of regulators, collectors and assistant collectors, pulp density, conditioning time, temperature, ratio of return water to new water and structure of flowsheet are all researched systematically by comparative trials. A selective hydroxamic acid collector, known as GSH, and sodium silicate as regulator are used to produce final flotation rare earth oxide concentrate with grade of65.11%at recovery of17.05%. The two concentration streams from shaking tables and flotation are combined to be the final REO concentration with grade of65.08%at overall recovery of84.61%, of which the contents of both REO and impurity meet No.000165product's requirements in the rare earth industry standards (XB/T103-2010).
     In terms of the basic theory of flotation bastnasite, the basic flotation behaviors for the mineral are completed using sodium oleate and salicylhydroxamic acid as collector, respectively. The mechanisms of action between multiple regulators as well as collectors and minerals is analyzed systematically by means of solution chemistry calculation, zeta potential, infrared spectroscopy, adsorption measurements, dissolution measurements and Inductively Coupled Plasma (ICP) analysis. The necessity of regulating pulp before adding collectors and mechanism of selective adsorption are illuminated by a comparative analysis, which is provide references for further theoretical researches, but also offer guidance for practical application. Meanwhile, the effect of elevated temperatures on flotation is discussed.
     The calculation results of solution chemistry demonstrate that hydroxylated species produced from cations on the surface of bastnasite could influence the flotation. Because of active points, hydroxylated species RE(0H)2+and RE(OH)2+are propitious to the adsorption of collector on the surface of bastnasite. But it is clear that hydroxylated species RE(OH)3and RE(OH)4do not assist flotation and adsorption may be due to they are negative active points.
     The action mechanism research results of sodium oleate adsorbed on the bastnasite surface indicates that chemisorption plays the most important role as well as auxiliary electrostatic or molecular adsorption, which are due to the ion-molecular association originated from dissociated oleic acid radical ion during pH6-9. But in salicylhydroxamic acid terms, the results of this adsorption study indicate a surface reaction mechanism whereby the cations on the mineral surface form hydroxy complexies in solution, readsorb at the surface and then interact with the hydroxamate, namely the salicylhydroxamic acid group bonds with the hydroxylated species to generate stable five chelate ring to realize the selective flotation of bastnasite in the range of pH8-9.
     The investigation results demonstrate that depressing function of sodium carbonate relates to the coions effect of potential determining ions CO32-which originates both from bastnasite surface and the reagent in the water (these ions that can interact with both mineral surface and aqueous phase in forming the electrical double layer). There are adsorption on the bastnasite surface for sodium hexametaphosphate, sodium silicate and sodium hexafluorosilicate. There is no basically effect to increase the degree of solubility of bastnasite in water for sodium carbonate, sodium silicate and sodium hexafluorosilicate. The reasons for sodium hexametaphosphate exhibits significant inhibition are most likely twofold:(1) it adsorbs on the mineral surface that changing the mineral's electrical properties and hydrophilic, directly reducing the collector adsorbs on the bastnasite;(2) the complexation reaction takes place between RE cations hydroxylated species on the mineral surface and hexametaphosphate anion and produces soluble complexes, which reduces the concentration of active points on the surface of minerals, therefore, the suppressing effect is presented.
     Cations Ca2+and Al3+in the solution reveal activation when sodium oleate as the collector, which could be attributed to these ions and their partial hydrolysates have adhered on the minerals surface that is beneficial to produce more oleate precipitates exhibiting hydrophobic. On the contrary, in the flotation solution system adding salicylhydroxamic acid as collector, the investigation demonstrates depressing for these two ions. In terms of Ca2+ion, the depression is attributed to the electrostatic adsorption on the bastnasite surface and the non-selective competitive adsorption among these RE3+ions as well as their hydroxy complexes and Ca2+ions with hydroxamic acid occur. Moreover, Ca2+ions have a certain effect on the solubility of bastnasite, which may be related to the ion pair (Ca2+,CO32-) effect. This inhibition of Al3+is mainly due to the complexes that reacted between salicylhydroxamic group and Al cations, which is more stable than that produced by rare earth cations. Both Ca2+and Al3+in solution may reduce the density of active points on the bastnasite surface, consequently, the mineral is depressed.
     It is established that elevated temperatures in the flotation system of single bastnasite component that using salicylhydroxamic acid or sodium oleate as collector promote selective adsorption of collectors. Just on the contrary, the results of floating the rare earth ore in Maoniuping with modified hydroxamic acid demonstrate that there are obvious drops both in concentrate grade and recovery observed during flotation above50℃. The reasons are preliminarily determined that there is no related to dissolution of minerals such as bastnasite, but may be connected with several parameters including particles movements, reagents action, bubbles collision and load, and surface tension of pulp, etc.. The real reasons are in need of further researches by decomposing the complex flotation system and establishing the models.
引文
[1]Stephen B. Castor, James B. Hedrick. Rare Earths Elements. Industrial Minerals and Rocks, US:Society for Mining Metallurgy,1994
    [2]Taylor, S.R., S.M. McClennan. The Continental Crust:Its Composition and Evolution. Oxford, UK:Blackwell Scientific Publications,1985
    [3]Wakita, H., P. Rey, R.A. Schmitt. Abundances of the 14 rare earth elements and 12 other elements in Apollo 12 samples. Proceedings of the Second Lunar ScienceConference,Edited by A.A. Levinson. Cambridge, MA:MIT Press,1971
    [4]黄礼煌,稀土提取技术.北京:冶金工业出版社,2006
    [5]天津大学无机化学教研室编,无机化学(第三版).北京:高等教育出版社,2002
    [6]余永富,车丽萍.稀土矿石选矿.见:当代世界的矿物加工技术与装备-第十届选矿年评.2006
    [7]Yasuo Kanazawa, Masaharu Kamitani. Rare earth minerals and resources in the world. Journal of Alloys and Compounds,2006,408-412:1339-1343
    [8]池汝安,王淀佐.稀土矿的分类和选别及冶炼,国外金属矿选矿,1991,(12):13-20
    [9]XB/T 102-2007,氟碳铈矿-独居石混合精矿
    [10]XB/T 103-2010,氟碳铈镧矿精矿
    [11]XB/T104-2010,独居石精矿
    [12]XB/T105-2011,磷钇矿精矿
    [13]GB/T 20169-2006,离子型稀土矿混合稀土氧化物
    [14]夏宗光,罗家柯.稀土矿选矿,选矿手册(第八卷第三分册).北京:冶金工业出版社,1990
    [15]Zhanheng Chen. Global rare earth resources and scenarios of future rare earth industry. Journal of Rare Earths,2011,29(1):1-6
    [16]Adam Jordens, Ying Ping Cheng, Kristian E. Waters.A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering,2013,41(2):97-114
    [17]Yasuhiro Kato, Koichiro Fujinaga,Kentaro Nakamura,etal. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nature Geoscience,2011,(4):535-539
    [18]四川省地质矿产勘查开发局109地质队.四川省冕宁县牦牛坪稀土矿区稀土矿产资源储量核实报告.2007
    [19]Chen Zhanheng. China Rare Earth Industry:Resources, Domestic Market and Environment, the sixth International Rare Earths Conference, Hong Kong, China, November 2010,Available at http://www.cs-re.org.cn/ChinaRE2010-11-9-ZhanhengWork.pdf
    [20]苏文清,贺海钧,张宏江,等.中国稀土产业概览.稀土信息,2004,(11):28
    [21]侯宗林.我国稀土资源开发利用与可持续发展.见:中国稀土资源综合开发利用与可持续发展学术研讨会论文集,2004
    [22]余永富,车丽萍.稀土矿石选矿.见:当代世界的矿物加工技术与装备-第十届选矿年评.2006
    [23]李芳积,曾兴兰.氟碳铈矿粗细分选新工艺.稀有金属,2003,(04):482-485
    [24]池汝安,徐景明,何培炯,等.川西某氟碳稀土矿矿泥浸取稀土研究.有色金属(选矿部分),1995,(10):1-4
    [25]高海洲.白云鄂博矿区稀土稀有矿产资源综合评述(一).包钢科技,2009,(10):1-6
    [26]车丽萍,余永富.我国稀土矿选矿生产现状及选矿技术发展,稀土,2006,27(01):95-102
    [27]杜泰康,黄应南.包头低品位稀土精矿提高品位小型试验报告.广州有色金属研究院科研专题档案,1973-1976
    [28]杜泰康,黄应南.羟肟酸和羟肟酸铵浮选包头稀土粗精矿半工业试验简报.广州有色金属研究院科研专题档案,1973-1976
    [29]余永富.我国稀土矿选矿技术及其发展.中国矿业大学学报,2001,(06):537-542
    [30]余永富,邓育民.白云鄂博中贫氧化矿石选矿综合回收铁、稀土选别新工艺工业试生产实践.金属矿山,1992,(1):39-44
    [31]余永富,朱超英.包头稀土选矿技术进展.金属矿山,1999,(11):18-22
    [32]张永,马鹏起,车丽萍,等.包钢尾矿回收稀土的试验研究.稀土,2010,(02):93-96
    [33]高海洲.白云鄂博矿区稀土稀有矿产资源综合评述(二).包钢科技,2009,(12):1-5
    [34]张永,马鹏起,车丽萍,等.包钢尾矿回收稀土的试验研究.稀土,2010,(02):93-96
    [35]张文华,郑煜,秦永启.包钢选矿厂尾矿的稀土选矿.湿法冶金,2002,(01):36-38
    [36]徐金球,李芳积,曾兴兰.从尾矿中回收氟碳铈矿和独居石的浮选研究.稀土,2006,27(5):68-72
    [37]于秀兰,安磊,舒燕,等.包钢选矿厂尾矿中稀土提取的研究.沈阳化工学院学报,2008,(06):100-103
    [38]Pradip, D.W. Fuerstenau.The Role of Inorganic and Organic Reagents in the Flotation Separation of Rare-Earth Ores.International Journal of Mineral Processing,1991,32:1-22
    [39]B.Merker,李云龙.越南都巴奥强风化型稀土矿分选工艺.国外金属矿选矿,1993,(05):23-27
    [40]Schmz,G. Development of a wet-mechanical processing technique for RE-ores from Vietnam. Report of FIA Freiborg,1988
    [41]李芳积,曾兴兰.一种氟碳铈矿选矿工艺.中国专利:CN1403203,2001
    [42]熊述清.四川某地稀土矿重浮联合选矿试验研究.矿产综合利用,2002,(05):4-6
    [43]熊文良,陈炳炎.四川冕宁稀土矿选矿试验研究.稀土,2009,(03):89-92
    [44]李芳积,曾兴兰,朱英江.L102捕收剂在昌兰稀土选矿厂的应用.稀土,2002,(12):1-5
    [45]田俊德.四川牦牛坪氟碳铈矿选矿工艺的探讨.有色矿冶,1997,(08):18-22
    [46]肖越信,田俊德,车丽萍.四川牦牛坪稀土矿选矿工艺研究.稀土,1989,(03):26-32
    [47]冯婕,吕大伟.微山稀土矿原生矿选矿试验研究.稀土,1999,(06):5-8
    [48]池汝安,罗家珂.西南某稀土矿有价元素的综合利用探讨.稀土,1996,(12):1-5
    [49]池汝安,田君.风化壳淋积型稀土矿评述.中国稀土学报,2007,(12):641-650
    [50]王永志,吴延熹.离子吸附型稀土矿堆法浸出工艺.CN:89102377.1,1989
    [51]吕广文,顾庆和,胡海兵,等.离子型稀土矿原地浸取工艺.CN:1048564A.1989
    [52]袁忠信,白鸽.中国碱性侵入岩的空间分布及有关金属矿床.地质与勘探,1997,(02):42-48
    [53]张泾生,阚煊兰.矿用药剂.北京:冶金工业出版社,2008
    [54]任俊,王文梅.稀土矿物浮选的主要影响因素.有色矿冶,1998,(02):17-37
    [55]邱京旺.氟碳铈矿型稀土矿石的浮选.矿产综合利用,1992,(10):52-56
    [56]罗家珂,任俊,唐芳琼,等.我国稀土浮选药剂研究进展.中国稀土学报,2002,(05):385-391
    [57]池汝安,王淀佐.浮选氟碳铈矿捕收剂.有色矿冶,1992,(06):16-20
    [58]徐雪芳.氟碳酸盐稀土矿物新捕收剂及选别效果初步分析.中国稀土学报,1985,(04):6
    [59]兰玉成,徐雪芳,黄风兰,等.用邻苯二甲酸从山东微山矿浮选高纯氟碳酸盐稀土精矿的研究.稀土,1983,(04):27-32
    [60]罗家珂,陈祥涌.从包头共生铁矿中回收优质稀土精矿的研究.见:选矿及提取冶金国际会议文集.北京:中国选矿情报网,1984
    [61]张泾生,阚煊兰,见百熙.有机磷酸类药剂对微山稀土矿的捕收作用.稀土,1985(3):1
    [62]任俊.稀土含氮捕收剂及其应用.有色金属(选矿部分),1998,(1):23
    [63]王淀佐.浮选药剂作用原理及应用.北京:冶金工业出版社,1981
    [64]T. Sreenivas, N.P.H. Padmanabhan. Surface chemistry and flotation of cassiterite with alkyl hydroxamates. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002, 205(1-2):47-59
    [65]Pradip, Beena Rai.Molecular modeling and rational design of flotation reagents. International Journal of Mineral Processing,2003,72(1-4):95-110
    [66]Jan D. Miller, Xuming Wang, Minhua Li. Selective flotation of phosphate minerals with hydroxamate collectors. United states patent:US 6341697 B 1,2002
    [67]张新民.提高包头高品位稀士精矿技术经济指标的探讨.稀土,1987,(2):25
    [68]王灿,龚文琪,梅光军,等.羟肟酸类捕收剂2-羟基-3-萘甲羟肟酸的生物降解研究.环境污染与防治,2011,(1):8-11
    [69]张新民.用H205捕收剂分选高品位稀土精矿的研究.矿山,1987,3(3):1
    [70]任俊,卢寿慈,池汝安.1-羟基-2-蔡羟肟酸浮选稀土作用机理.中国有色金属学报,1996,7(4):24
    [71]任俊,黄林旋,黄成新,等.新型表面活性剂H316浮选稀土工业生产试验的研究.稀土,1995,16(5):14
    [72]XBT 902-2000,H316稀土矿物捕收剂
    [73]任俊.H316和H205对稀土浮选的性能研究.有色金属(季刊),1998,50(2):29
    [74]古映莹,朱玉霜.F802分选氟碳铈矿和独居石的作用机理.矿冶工程,1988,(04):29
    [75]任俊,卢寿慈.N-羟基邻苯二甲酰亚胺与萘羟肟酸对氟碳铈矿的浮选性能研究.矿冶,1997,(4):48
    [76]Ren Jun. Flotation behaviour and Mechanism of Bastneasite with N-hydroxyl Phthalicimide. Acta Matallugica Sinica,1993,29(6):432
    [77]古映莹,朱玉霜.F802的原子化常数及其与La(Ⅲ)等离子络合物稳定常数的测定.稀有金属,1988,7(2):81
    [78]兰玉成,徐雪芳,黄风兰,等.用邻苯二甲酸从山东微山矿浮选高纯氟碳酸盐稀土精矿的研究.稀土,1983,(04):27-32
    [79]张新民.提高包头高品位稀土精矿技术经济指标的探讨.稀土,1987,(2):25
    [80]秦奇武,胡岳华.半可溶盐类矿物溶液化学行为及其对矿物可浮性的影响.矿冶工程,1999,(02),30-33
    [81]王景伟.氟碳铈矿及伴生矿物浮选行为的研究.稀土,1991,12(2):33-37
    [82]任俊,王文梅.稀土矿物浮选的主要影响因素.有色矿冶,1998,(02):17-37
    [83]池汝安,王淀佐.稀土选矿与提取技术.北京:科学出版社,1996
    [84]Schuberth.Ⅺ th IMPC, meeting7 paper 1,1977
    [85]罗家珂,周高云.中国稀土学会第三届学术年会会议论文.中国稀土学会,第一分册,1994,133-138
    [86]Gerdel, M.A. Smith, R.W.. The role of lignin sulfonate in flotation of bastnaesite from barite. Rare Earth Extraction, Preparation and Application, (R. G. Bautista & M. M. Wong eds), The Minerals, Metals & Materials Society, Warrendale, UK,35 (1988)
    [87]Viswanathan, K.V., Majumdar, K.K., Infrared adsorption studies on beach sand minerals under conditions of soap flotation, Bhabha At. Res. Cent.391, Bombay, India,12 (1969)
    [88]Zakharov, A.E.,Ilie, P., Pol'kin, S.I.,SoInyshkin, V.I., Reaction of sodium sulfide with pyrochlore, zircon, and monazite in flotation with sodium oleate, Flotation Properties of Rare Metals Minerals, (I. N. Plaksin ed.), Primary Sources, New York, USA,71 (1967)
    [89]Bogdanov, O.S., Reagents chemisorption on minerals as a process of formation of surface compounds with a coordination, Ⅻ International Mineral Processing Congress, MME/DNPM,Sao Paulo, Brasil,2,280 (1977)
    [90]S. Raghavan, D.W Fuerstenau, The Adsorption of Aqueous Octylhydroxamate on Ferric Oxide, J. Colloid and Interface Science,1975,50:319-330
    [91]Fuerstenau, D.W., Pradip, Mineral flotation with hydroxamate collectors, Reagents in Mineral Industry, (M. J. Jones & R. Oblatt eds), IMM, London, UK,161 (1984)
    [92]Jiake, L. Xiangyong, C., Research into the recovery of high grade rare-earth concentrate from Baotou complex iron ore, China, Minerals Processing and Extractive Metallurgy, (M. J. Jones &P. Gill eds), IMM, London, UK,663 (1984)
    [93]O.Pavez, P.R.G.Brandao, A.E.C. Peres,Adsorption of oleate and octyl-hydroxamate on to rare-earths minerals. Minerals Engineering,1996,9(3):357-366
    [94]梁国兴,池汝安,朱国才.氟碳铈矿羧基与羟肟基浮选捕收剂性能比较.化工冶金,1998,19(1):25-30
    [95]黄林旋,吴样林.异羟肟酸类型捕收剂的研制与浮选稀土矿物试验.稀土,1985,(3):1
    [96]胡朋.国外稀土资源开发与利用现状.世界有色金属,2009,(09):72-74
    [97]中华人民共和国国务院新闻办公室.中国的稀土状况与政策.中国金属通报,2012
    [98]陈健,吴楠.世界稀土资源现状分析与我国稀土资源可持续发展对策.农业现代化研究,2012,33(1):74-77
    [99]刘跃,谢丽英.全球稀土消费现状及前景.稀土,2008,29(4):98-101
    [100]Wang Guoxin, Francisco J. Sotillo, George M. Lilley. Froth flotation process with pH modification. United States Patent:US2008/0197053 Al,2008
    [101]梁冬云,邹霓,李波.MLA自动检测技术在低品位钼矿石工艺矿物学研究中的应用.中国钼业,2010(01):32-34
    [102]施泽民,叶幼兰.四川牦牛坪稀土矿区的氟碳铈矿.矿物岩石,1993,(3):42-47
    [103]张培善,陶克捷.白云鄂博矿物学.北京:科学出版社,1986
    [104]中国科学院贵阳地球化学研究所,稀有元素矿物鉴定手册.北京,科学出版社,1992
    [105]吴澄宇,袁忠信,白鸽,等.四川冕宁氟碳铈矿晶体的成分变化及其意义.中国稀土学报,1996,14(1):1-5
    [106]蒋昊.铝土矿浮选脱硅过程中阳离子捕收剂与铝矿物和含铝硅酸矿物作用的溶液化学研究[博士学位论文].中南大学,2004
    [107]恒川昌美,李兴.关于萤石、方解石等盐类矿物在水溶液中的界面性状与可浮性.矿产综合利用,1984,(1):71-80
    [108]A·尤卡尔,袁小云,林森.萤石浮选中捕收剂的吸附机理.国外金属矿选矿,2003,(7):20-23
    [109]Pradip, D.W Fuerstenau,The adsorption of hydroxamate on semi-soluble minerals.Part I:Adsorption on barite,calcite and bastnaesite,Colloids and surfaces,1983, (8):103-109
    [110]张忠汉,张先华,叶志平,等.柿竹园多金属矿GY法浮钨新工艺研究.矿冶工程,1999,(04):22-25
    [111]朱玉霜,朱建光.浮选药剂的化学原理(修订版).长沙:中南工业大学出版社,1996
    [112]Kurochlin,M.G.etal..Izv.Vyssh.Ucheb.Zaved.,Gom.Zh.,1968,11(3):319-323
    [113]Miroslav Paera, Miroslav Brozek. Sb. Pr. Vyzk. Ustavu ZDHE,1966, (7):43-56
    [114]Fuerstenau, D.W., Raghavan, S.. Some aspects of the thermodynamics of flotation. In: Fuerstenau,M.C. (Ed.), Flotation, A.M. Gaudian Memorial, Vol.1. AIME, New York,1976,21-65
    [115]O'Connor, C.T., Dunne, R.C., Botelho de Sousa, A.M.R., J. S. Afr. Inst. Min. Metall.84 (12):389-394
    [116]Lazarov, D., Alexandrova, L., Nishkov, I.,1994. Effect of temperature on the kinetics of froth flotation.Miner. Eng.7 (4):503-509
    [117]钱天任.国外加温浮选概况.有色金属(冶炼部分),1974,(03):59-61
    [118]World Mining,1973, (3):74-76
    [119]邱显扬,董天颂.现代钨矿选矿.北京:冶金工业出版社,2012
    [120]Pradip. The surface properties and floatation of rare-earth minerals, Ph D dissertation, University of California, Berkeley, CA.,1981
    [121]任俊,王文梅.稀土矿物浮选的主要影响因素.有色矿冶,1998,(02):17-37
    [122]肖越信,田俊德,车丽萍.四川牦牛坪稀土矿选矿工艺研究.稀土,1989,(03):26-31
    [123]李芳积,曾兴兰.一种氟碳铈矿选矿工艺.中国专利,CN1403203
    [124]李新泉.温度对磁铁矿浮选行为的影响.国外选矿快报,1996
    [125]Pradip, Fuerstenau, D.W.. The adsorption of hydroxamate collectors on semi-soluble minerals, part II:effect of temperature on adsorption. Colloids Surf.,1985,15:137-146
    [126]O'Connor, C.T., Mills, P.J.T.. The effect of temperature on the pulp and froth phases in the flotation of pyrite. Miner. Eng.1990,3 (6):615-624
    [127]Ananthapadmanabhan K. P. et al. Colloids Surf.1985,13:151-167
    [128]Pugh R, Int J Miner Process,1985,15:193-218
    [129]J. Kragten, L.G. Decnop-Weever. Hydroxide complexes of cerium(Ⅲ),1978,25(3):147-150
    [130]Ren J, Lu S, Song S X, Niu J. A new collector for rare earth mineral flotation, Mineral Engineering,1997,10:1395-1404
    [131]J.Kragten,Atlas of metal-ligand equilibrium in aqueous solution,John Wiley and Sons,1978
    [132]Somasundaran, P. Ananthapadmanabhan, K.P., Solution Chemistry of surfactants and the role of it in adsorption and froth flotation in mineral-water systems, In:K.L. Mittal (Ed.), Solution Chemistry of Surfactants,2, Plenum Press, New York, N.Y.,1979,17-38
    [133]Somasundaran.以离子分子络合物为基础的浮选机理.中南矿冶学院学报,1983,8(S2):59-68
    [134]S.Raghavan, D.W.Fuerstenau. J.of colloid and interface Science,1975,50(2):319-330
    [135]刘光华,吴华彬,刘军,等.希土(Ⅲ)-异羟肟酸配合物的稳定常数.无机化学学报,1989,5(2):30-36
    [136]刘光华,刘军,时显群.稀土-水杨羟肟酸配合物的研究.江西大学学报(自然科学版),1988,12(4):22-26
    [137]Charlet, Laurent, Manceau, et al. X-ray absorption spectroscopic study of the sorption of Cr(Ⅲ) at the oxide-water interface Ⅱ. Journal of Colloid and Interface Science,1992,148 (2):443-458
    [138]Hromadova M, Levie R. A sodium-specific condensed film of a-cyclodextrin at the mercury water interface. Journal of Electroanalytical Chemistry,1999,465(1):51-62
    [139]杜希文,原续波.材料分析方法.天津:天津出版社,2006
    [140]Y.K.Agrawal, J.P.Shukla, J.Indian, Chem.soc.51,1974,373
    [141]刘光华,刘军,时显群.稀土-水杨羟肟酸配合物的研究.江西大学学报(自然科学版),1988,12(4):22-26
    [142]Xiaofang Yang, Payman Roonasi, Allan Holmgren, A study of sodium silicate in aqueous solution and sorbed by synthetic magnetite using in situ ATR-FTIR spectroscopy. Journal of colloid and interface science,2008,328:41-47
    [143]Fwersleman D.W.国际矿业药剂会议论文集(罗马).1984
    [144]Jun Ren,Shaoxian Song. Selective flotation of bastnaesite from monazite in rare earth concentrates using potassium alum as depressant. Internal journal mineral processing,2000,59:237-245
    [145]Purcell, G., Sun, S.C.. Significance of double bonds in fatty acid flotation-an electrokinetic study.Trans.1963,226,6-12
    [146]Wiese, G.R., Healy, T.W.. Coagulation and electrokinetic behavior of TiO2 and Al2O3 colloidal dispersion. Colloid Interface Sci.1975,51 (3),427-433
    [147]LI C G, LU Y X. The mechanism of the interaction between phosphate modifiers and minerals. International Journal of Mineral Processing,1983(10):219-235
    [148]冯其明,周清波,张国范,等.六偏磷酸钠对方解石的抑制机理.中国有色金属学报,2011,21(02):436-441
    [149]Yi-ping LU, Ming-qiang ZHANG, Qi-ming FENG, etal.Effect of sodium hexametaphosphate on separation of serpentine from pyrite. Transactions of Nonferrous Metals Society of China,2011,2(1):208-213
    [150]Fernanda Andreola, Elena Castellini, Tiziano Manfredini, et al. The role of sodium hexametaphosphate in the dissolution process of kaolinite and kaolin,Journal of the European Ceramic Society,2004,24(7):2113-2124
    [151]Elena Castellini, Gigliola Lusvardi, Gianluca Malavasi, et al. Thermodynamic aspects of the adsorption of hexametaphosphate on kaolinite.Journal of Colloid and Interface Science, 2005,292(2):322-329
    [152]Hao Ding, Hai Lin, Yanxi Deng, Depressing effect of sodium hexametaphosphate on apatite in flotation of rutile,Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material,2007,14(3):200-203
    [153]王德燕,戈保梁.硫化铜镍矿浮选中蛇纹石脉石矿物的行为研究.有色矿冶,2003,19(4):15-17
    [154]胡岳华,陈湘清,王毓华.磷酸盐对一水硬铝石和高岭石浮选的选择性作用.中国有色金属学报,2003,13(1):222-227
    [155]张国范,冯其明,卢毅屏,等.六偏磷酸钠在铝土矿浮选中的作用.中南工业大学学报:自然科学版,2001,32(2):127-130
    [156]丁浩,任瑞晨,邓雁希,等.金红石与石榴石浮选分离及调整剂作用机理.辽宁工程技术大学学报,2007,26(5):787-790
    [157]完颜辉,杭连科,杨汝栋.六偏磷酸钠与Ce(Ⅲ)及Ce(Ⅳ)的作用.稀土,1985,(3):21-27
    [158]Ananthapadmanabhan, K., Somasundaran, P., Healy, T.W., Chemistry of Oleate and Amine Solutions in Relation to Flotation, Trans. Society of Mining Engineers of AIME,1979, 266:2003-2009
    [159]Read, A.D. Manser, R.M., Surface polarizability and flotation:study of the effect of cation type on the oleate flotation of three orthosilicates, Trans, btst. Mitt. Metall.,1972, 81:C69-C78
    [160]Powney, J. Jordan, D.O., The hydrolysis of Soap as Determined by Glass Electrode pH Measurements, Transactions of the Fara. Soc.,1938,34:366-371
    [161]Dixit, S.G. Biswas, A.K., pH-Dependence of the Flotation and Adsorption Properties of Some Beach Sand Minerals, Trans., AIME,1969,244:173-178
    [162]Tran, T., Cheng, Ta-Wui, et al. The adsorption of oleate and its effect on the flotation of monazite, Rare Earths '93 Processing & Utilisation Workshop,Australian Nuclear Science & Technology Organisation (ANSTO), Lucas Heights, October,1993
    [163]Parkins, E.J.,Shergold, H.L., The effect of temperature on the conditioning and flotation of an ilmenite ore, In:Flotation-A.M. Gaudin memorial volume, ed., M.C. Fuerstenau, AIME,New York, chapter 20,1976

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700