低剂量~(125)I内照射A549肺癌的有关分子生物学及~(99)Tc~m-AnnexinV与MR-DWI影像学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     观察低剂量~(125)I持续内照射对A549肺癌细胞裸鼠肿瘤的抑瘤作用、可能的机制及其肿瘤分子生物学特性与辐射敏感性相关调节因子表达的影响,并探索用放射性核素~(99)Tc~m-AnnexinV细胞凋亡显像联合磁共振弥散加权成像(MR-DWI)观察~(125)I内照射辐射致肺癌A549细胞凋亡的可行性。
     方法
     制作A549肺癌细胞BALB/c-nu裸鼠肿瘤模型共36只,用随机数字表法随机分为A、B和C三组,每组裸鼠12只,A组进行常规剂量~(125)I放射性粒子(25.5~27.8MBq/粒,平均26.9MBq/粒)瘤体内植入治疗,B组植入极低剂量(4.4~6.3MBq/粒,平均5.1MBq/粒)~(125)I放射性粒子,C组植入无放射性的“冷粒子”作为对照,每只裸鼠每瘤体植入粒子1粒。治疗前、治疗后14d进行~(99)Tc~m-AnnexinV显像和MR-DWI成像,分析各组治疗前、治疗后~(99)Tc~m-AnnexinV显像和MR-DWI成像特征变化,观察~(125)I粒子对A549细胞裸鼠肿瘤的制瘤效果;HE病理切片分析、免疫组化(S-P法)检测A549细胞裸鼠肿瘤细胞核因子κB(NF-κB)、乏氧诱导因子1α(HIF-1α)、细胞凋亡相关蛋白(survivin、caspase-3)、细胞周期调节蛋白(cyclinD1、p27)和热休克蛋白90(HSP90)等的表达,分析~(125)I持续内照射对上述各分子病理指标表达的影响及其各指标之间的相关关系。
     结果
     1抑瘤效果:~(125)I放射性粒子瘤体内植入对A549肺癌细胞裸鼠肿瘤产生抑瘤作用,常规剂量~(125)I放射性粒子植入治疗14d的肿瘤体积抑制率为51.2%,极低剂量~(125)I放射性粒子植入治疗的肿瘤体积抑制率为20.9%,“冷粒子”治疗无抑瘤效果。
     2HE染色病理观察:A组见~(125)I粒子周边部肿瘤细胞损伤严重,呈红染的弥漫性坏死,损伤程度由粒子周边部向外逐渐减弱;B组~(125)I粒子内照射所致坏死程度和范围不如A组;C组见“冷粒子”周围肿瘤细胞轮廓清晰,生长良好,肿瘤细胞核大、深染,部分裸鼠可见肿瘤组织直接浸润到周围肌肉组织中;无论A组还是B组肿瘤瘤体内血管周围的肿瘤细胞生长良好。
     3免疫组化(S-P法)检测:~(125)I粒子治疗后各组A549肺癌细胞NF-κB、HIF-1α、survivin、caspase-3、cyclinD1、p27和HSP90的表达不尽相同,其中HIF-1α和HSP90的表达,A组与B组比较差异显著(P<0.05),survivin、caspase-3和p27的表达,A组与对C组比较差异显著(P <0.05),cyclinD、 p27和HSP90的表达,B组与C组比较差异显著(P<0.05)。各指标之间,部分呈一定程度的正相关(r=0.322~0.591,P <0.05)或负相关(r=-0.339~-0.503,P <0.05)。TUNEL细胞凋亡检测显示A组细胞凋亡指数(AI)显著大于B组和C组(分别为0.39±0.20、0.26±0.15和0.17±0.11,P=0.015)。
     4~(99)Tc~m-Annexin V细胞凋亡显像:A组治疗后A549肺癌裸鼠肿瘤~(99)Tc~m-Annexin V细胞凋亡显像阳性率58.3%(7/12)明显高于治疗前8.1%(1/12)(P<0.05),B、C两组治疗前、后无显著性差异(P>0.05);治疗前A、B和C各组~(99)Tc~m-Annexin V摄取比值(RI)差异无显著性(分别为1.30±0.39,1.72±0.71和1.39±0.42,P>0.05),A组治疗14d后的RI(3.03±1.69)比治疗前显著增高(t=3.346,P=0.007)。
     5MR-DWI成像:治疗前A、B和C组MR-DWI成像表观扩散系数(ADC)分别为(1.35±0.38)×10~(-3)mm~2/s,(1.24±0.28)×10~(-3)mm~2/s和(1.51±0.46)×10~(-3)mm~2/s,各组间无显著性差异(P>0.05)。A组~(125)I粒子治疗后ADC为(2.50±1.08)×10~(-3)mm~2/s,大于治疗前(P <0.05),B组和C组治疗前、后ADC无显著变化(P>0.05)。RI与ADC低度正相关(r=0.310,P <0.05)。治疗后RI与AI中度正相关(r=0.566,P <0.05),ADC与AI和RI低度正相关(r分别为0.311和0.329,P <0.05)。
     结论
     1常规治疗剂量~(125)I放射性粒子(25.5~27.8MBq/粒,平均26.9MBq/粒)对A549肺癌细胞裸鼠肿瘤有明显的抑瘤作用,治疗后14d的肿瘤体积抑制率达51.2%,~(125)I内照射抑瘤作用的机制之一可能是细胞凋亡诱导。
     2~(99)Tc~m-Annexin V细胞凋亡显像和MR-DWI成像可有效观察~(125)I内照射电离辐射致A549肺癌细胞凋亡。
     3不同辐射剂量~(125)I内照射对多个与A549肺癌细胞裸鼠肿瘤分子生物学特性和辐射敏感性密切相关的细胞调节因子(NF-κB、HIF-1α、survivin、caspase-3、cyclinD1、p27和HSP90)表达的影响不尽相同。
Objective:
     To investigate the tumor inhibitory effect, possible mechanism and the influence ofregulatory proteins' expression related to molecular biological characteristics andradiosensitivity of continuous low-dose~(125)I irradiation seeds interstitial brachytherapy onimplanted A549lung adenocarcinoma cells in nude mice, and explore the feasibility ofnoninvasive way detecting apoptosis induced by~(125)I ionization radiation using~(99)Tc~m-AnnexinV combined with diffusion weighted magnetic resonance imaging(MR-DWI).
     Methods:
     36BALB/c-nu nude mice bearing A549cells were randomly stratified into three groups:group A, B and C(control group). One conventional dose~(125)I seed with the apparent activityof (25.5~27.8, mean26.9)MBq was implanted into each tumor in group A,extremelylow-dose~(125)I seed with the apparent activity was (4.4~6.3, mean5.1)MBq was implantedinto group B, while the control group received "cold seeds" treatment. After treatment,the volume of the tumors was measured every two days. Both~(99)Tc~m-Annexin V imaging andMR-DWI were performed before and after14days of the brachytherapy, then all mice weresacrificed for pathological examination, routine pathological slides of tumor tissue wereobserved under light microscope to evaluate the range of tumor tissues damaged induced by~(125)I seeds, the weight of tumors was measured, tumor control rate was calculated, apoptosiswas detected in tumor tissue by TUNEL immunofluorescence, the expression of molecularbiomarkers such as NF-κB, HIF-1α, survivin, caspase-3, cyclinD1, p27and HSP90was alsoassayed by immunohistochemical(S-P)determination.
     Results:
     1The inhibition rate of tumor volume were51.2%and20.9%in group A and group B,respectively, not any inhibitory effect could be found in group C which handled with "coldseeds".
     2Pathological examination showed diffuse necrosis dramatically presented aroundingactive~(125)I seeds both in groups A and B, but damage induced by~(125)I ionization radiation wasmore serious in groups A than groups B with a much larger area of necrosis, no pathologicalchanges but slight fibroplasia were observed at the periphery of dummy seeds("cold seeds"),more over, A549lung cell could be seen infiltrating into the nearing muscle tissue directly.Tumor cells which arounding blood vessels avoided from~(125)I ionization radiation both in the A group and group B.
     3The results of immunohistochemistry showed, the expression rate of NF-κB, HIF-1α,survivin, caspase-3, cyclinD1, p27and HSP90in A549lung cells were not the same amongthe three groups after treatment.The expression of HIF-1α and HSP90in group A weredifferent from that of group A(P<0.05), the expression of survivin, caspase-3and p27weresignificantly different (P<0.05) between group A and group C, the expression of cyclinD,p27and HSP90were also significantly different(P<0.05)between group B and group C.Positive or nagtive correlation to some degree among these molecular biomarkers were found,cell apoptosis index(AI)detected by TUNEL in group A was significantly higher than that ingroup B and group C (0.39±0.20,0.26±0.15and0.17±0.11repectively, P<0.05).
     4Positive rate of~(99)Tc~m-Annexin V imaging after14days of~(125)I brachytherapy was58.3%(7/12), which was significantly higher than that of before brachytherapy [8.3%(1/12), P<0.05)]. The uptake ratio of~(99)Tc~m-Annexin V(RI)before the treatment in groupsA, B and C was1.30±0.39,1.72±0.71and1.39±0.42, respectively(P>0.05). However, RIafter14days' treatment(3.03±1.69)was increased significantly compared with that of thebefore brachytherapy in groups A(t=3.346, P=0.007).
     5Apparent diffusion coefficient(ADC) value of the tumor in groups A, B and C was(1.35±0.38)×10~(-3)mm~2/s,(1.24±0.28)×10~(-3)mm~2/s and(1.51±0.46)×10~(-3)mm~2/s respectivelybefore the treatment, no significant difference were found among them(P>0.05), ADC ingroup A after the brachytherapy was (2.50±1.08)×10~(-3)mm~2/s, which significantlyincreased compared with that of before the treatment(t=3.924, P=0.007). In all, the value ofADC was correlated with RI(r=0.310, P<0.05). Positive relationship between RI and AI afterthe brachytherapy was found(r=0.566, P<0.05), and ADC was positively correlated with RIand AI in some degree(r=0.311and0.329, repectively, P<0.05).
     Conclusion:
     1The interstitial brachytherapy with~(125)I seeds of the dosage was25.5~27.8MBq in eachseed could significantly inhibit the growth of A549solid tumor in mice, with the inhibitionrate of tumor volume was51.2%after14days' treatment, one of the mechanisms of~(125)Iinterstitial brachytherapy may be the apoptosis induced by~(125)I ionization radiation.
     2~(99)Tc~m-Annexin V imaging combined with magnetic resonance diffusion weightedimaging (MR-DWI)could effectively evaluating the apoptosis of lung adenocarcinoma cellsinduced by~(125)I interstitial brachytherapy in a noninvasive way, hence,~(99)Tc~m-Annexin V combined with MR-DWI is conductive to determining the early efficacy of25I seedsbrachytherapy.
     3Some key molecular proteins such as NF-κ B, HIF-1α, survivin, caspase-3, cyclinD1,p27and HSP90which playing an important role in tumor molecular biological behavior andthe radiosensitivity were expressed diversely under the low dose of~(125)I irradiation on A549lung cancer.
引文
[1] Siegel R, Naishadham D, Jemal A. Cancer statistics,2013[J]. CA: a cancer journal forclinicians,2013,63(1):11-30
    [2]邹小农.中国肺癌流行病学[J].中华肿瘤防治杂志,2007,14(12):881-883.
    [3]白春学,张新.肺癌的治疗现状[J].中华结核和呼吸杂志,2006,29(3):146-148.
    [4] Lam K C, Mok T S. Targeted therapy: An evolving world of lung cancer[J].Respirology,2011,16(1):13-21.
    [5] Wang Z M, Lu J, Liu T,et al.CT-guided interstitial brachytherapy of inoperable non-smallcell lung cancer[J]. Lung Cancer,2011,74(2):253-257.
    [6]曹驰,程隆,于大海,等.CT引导下经皮穿刺125I粒子植入治疗肺转移癌的临床应用[J].中华核医学与分子影像杂志,2013,33(1):46-48.
    [7]王俊杰,袁慧书,王皓,等.CT引导下放射性125I粒子组织间植入治疗肺癌[J].中国微创外科杂志,2008,8(2):119-121.
    [8] Liang J X, Zheng G J, Chai S D, et al.CT-Guided Interstitial Implantation of125I forRecurrent Patients of Postoperative Lung Cancer[J]. Brachytherapy.2011,10(98Suppl):S14-S101.
    [9] Qu A, Wang J J,Zhao Y,et al. More growth inhibition by125I seed continuouslow-dose-rateradiation in A549lung cancer cellline[J].Brachytherapy,2013,12(1Suppl):S76-S77.
    [10]杨帆,周余来,王毅,等.125I粒子组织间植入对肺癌细胞A549的动物实验研究[J].中国实验诊断学,2008,12(12):1485-1487.
    [11]张金山,罗良平,李园,等.低剂量125I内照射A549肺癌的抑瘤效果及对Survivin和NF-κB表达影响的研究[J].实用医学杂志.2013,29(21):3492-3494.
    [12]宋婷婷,刘希光,杜利力,等.125I粒子组织间植入对小鼠Lewis肺癌Egr-1及caspase-3表达的影响[J].临床肿瘤学杂志,2008,13(3):201-204.
    [13] Ma Z H, Yang Y, Zou L, et al.125I seed irradiation induces up-regulation of the genesassociated with apoptosis and cell cycle arrest and inhibits growth of gastric cancerxenografts[J]. J Exp Clin Cancer Res,2012,31:61.
    [14] Ma J X, Jin Z D, Si P R, et al. Continuous and low-energy125I seed irradiation changes DNAmethyltransferases expression patterns and inhibits pancreatic cancer tumor growth[J]. J Exp ClinCancer Res,2011,30(1):35-46.
    [15] Chen H H, Jia R F, Yu L, et al. Bystander effects induced by continuous low-dose-rate125I seeds potentiate the killing action of irradiation on human lung cancer cells invitro[J].Int J Radiat Oncol Biol Phys,2008,72(5):1560-1566.
    [16] Kanwar J R, KamalapuramS K, Kanwar R K. Targeting survivin in cancer: thecell-signalling perspective[J]. Drug Discov Today,2011,16(11/12):485-494.
    [17] Li F, Sethi G. Targeting transcription factor NF-kappaB to overcome chemoresistance andradioresistance in cancer therapy.[J]. Biochim Biophys Acta,2010,1805(2):167-180.
    [18] Semenza G L. Hypoxia and cancer[J]. Cancer Metastasis Rev,2007,26(2):223-224.
    [19] Gautschi O, Ratschiller D, Gugger M, et al. Cyclin D1in non-small cell lung cancer: akey driver of malignant transformation[J]. Lung Cancer,2007,55(1):1-14.
    [20] Powis G, Kirkpatrick L. Hypoxia inducible factor-1alpha as a cancer drug target[J]. MolCancer Ther,2004,3(5):647-654.
    [21]Altieri D C.Targeting survivin in cancer[J]. Cancer Lett,2013,332(2):225-228.
    [22] Gupta S C, Sundaram C, Reuter S.et al. Inhibiting NF-κB activation by small moleculesas a therapeutic strategy[J]. Biochim Biophys Acta,2010,1799(10-12):775-787.
    [23] Nickeleit I, Zender S, Kossatz U, et al. p27kip1: a target for tumor therapies[J]? CellDiv,2007,2:13.
    [24] da Silva VC, Ramos CH.The network interaction of the human cytosolic90kDa heatshock protein Hsp90: A target for cancer therapeutics[J]. JProteomics,2012,75(10):2790-2802.
    [25]黄虎,胡义德,栗娜. NF-κB、cyclin D1和p27在非小细胞肺癌中的表达及意义[J].现代肿瘤医学,2008,16(5):737-739.
    [26] Saitoh Y, Javier V, Bruyn M, et al.Overexpression of NF-κB inducing kinase underliesconstitutive NF-κB activation in lung cancer cells [J].Lung Cancer,2010,70(3):263-270.
    [27] Atikcana S K, U’nsala E, Demiragb F,et al.Correlation between survivin expression andprognosis in non-small cell lung cancer[J]. Respir Med,2006,100(12):2220-2226.
    [28] Liu C F, Song T T, Du L L, et al. The influence of interstitial brachytherapy with125Iseeds on Caspase-3and Egr-1expressions of Levis lung carcinoma in C57BL mice[J].Chin-Germ J Clin Oncol,2010,9(12):688-691.
    [29] Wen W, Ding J, Sun W, et al.Suppression of Cyclin D1by Hypoxia-Inducible Factor-1viaDirect Mechanism Inhibits the Proliferation and5-Fluorouracil-Induced Apoptosis ofA549Cells[J]. Cancer Res,2010,70(5):2010-2019.
    [30] Rohwer N, Dame C, Haugstetter A, et al. Hypoxia-inducible factor1alpha determinesgastric cancer chemosensitivity via modulation of p53and NF-κB[J]. PLoS,2010,5(8):e12038.
    [31] Li Z, Xue J P, Giovanna E. et al. Antibodies to HSP70and HSP90in serum in non-smallcell lung cancer patients[J]. Cancer Detection Prev,2003;27(4):285-290.
    [32] Wahl R L, Jacene H, Kasamon Y, et al. From RECIST to PERCIST: EvolvingConsiderations for PET response criteria in solid tumors[J]. J Nucl Med,2009,50(1Suppl): S122-S150.
    [33]徐建明.肿瘤靶向药物治疗的疗效评价[J].中国实用外科杂志,2010,30(7):529-531.
    [34] Padhani AR. Diffusion magnetic resonance imaging in cancer patient management[J].Semin Radiat Oncol,2011,21(2):119-140.
    [35]钟伟邦,李园,李永平,等.125I粒子植入近距离治疗视网膜母细胞瘤小鼠移植瘤[J].实用医学杂志,2011,27(5):754-756.
    [36] Blankenberg FG. Imaging the molecular signatures of apoptosis and injury withradiolabeled annexin V[J]. Proc Am Thorac Soc,2009,6(5):469-476.
    [37] Corsten M F, Hofstra L,Narula J,et al. Counting heads in the war against cancer:defining the role of Annexin A5imaging in cancer treatment and surveillance[J].CancerRes,2006,66(3):1255-1260.
    [38] Chen D L, Kinahan P E. Multimodality molecular imaging of the lung[J].Magn ResonImaging,2010,32(6):1409-1420.
    [39] Estorch M,Carrio I.Future challenges of multimodality imaging[J].Recent Results CancerRes,2013,187:403-415.
    [1] Qu A, Wang J J,Zhao Y,et al. More growth inhibition by125I seed continuouslow-dose-rateradiation in A549lung cancer cellline[J].Brachytherapy,2013,12(1Suppl):S76-S77.
    [2]杨帆,周余来,王毅,等.125I粒子组织间植入对肺癌细胞A549的动物实验研究[J].中国实验诊断学,2008,12(12):1485-1487.
    [3]岳麓,桂律,陈红红,等.125I植入对小鼠移植性实体瘤抑制效果[J].中华放射医学与防护杂志,2003,23(5):314-316.
    [4] Ebara S, Katayama N, Tanimoto R, et al. Iodine-125seed implantation (permanentbrachytherapy) for clinically localized prostate cancer[J]. Acta MedOkayama,2008,62(1):9-13.
    [5] Vargas C, Swartz D, Vashi A, et al.Long-term outcomes and prognostic factors in patientstreated with intraoperatively planned prostate brachytherapy[J].Brachytherapy,2013,12(2):120-125.
    [6] Colonias A, Betler J, Trombetta M, et al. Mature follow-up for high-risk stage Inon-small-cell lung carcinoma treated with sublobar resection and intraoperativeiodine-125brachytherapy[J]. Int J Radiat Oncol Biol Phys,2011,79(1):105-109.
    [7] Wang Z M, Lu J, Liu T,e t al.CT-guided interstitial brachytherapy of inoperablenon-small cell lung cancer[J]. Lung Cancer,2011,74(2):253-257.
    [8] Zhang S C, Zheng Y H, Yu P P, et al. The combined treatment of CT-guidedpercutaneous125I seed implantation and chemotherapy for non-small-cell lung cancer[J].J Cancer Res Clin Oncol,2011,137(12):1813-1822.
    [9] Mohler J L, Armstrong A J, Bahnson R R, et al. Prostate cancer, Version3.2012: featuredupdates to the NCCN guidelines[J]. J Natl Compr Canc Netw,2012,10(9):1081-1087.
    [10] Tselis N, Ferentinos K, Kolotas C, et al. Computed tomography-guided interstitialhigh-dose-rate brachytherapy in the local treatment of primary and secondaryintrathoracic malignancies[J]. J Thorac Oncol,2011,6(3):545-552.
    [11]宋婷婷,刘希光,杜利力,等.125I粒子组织间植入对小鼠Lewis肺癌Egr-1及caspase-3表达的影响[J].临床肿瘤学杂志,2008,13(3):201-204.
    [12] Ma Z H, Yang Y, Zou L, et al.125I seed irradiation induces up-regulation of the genesassociated with apoptosis and cell cycle arrest and inhibits growth of gastric cancerxenografts[J]. J Exp Clin Cancer Res,2012,31:61.
    [13] Ma J X, Jin Z D, Si P R, et al. Continuous and low-energy125I seed irradiation changesDNA methyltransferases expression patterns and inhibits pancreatic cancer tumorgrowth[J]. J Exp Clin Cancer Res,2011,30(1):35-46.
    [14] Chen H H, Jia R F, Yu L, et al. Bystander effects induced by continuous low-dose-rate125I seeds potentiate the killing action of irradiation on human lung cancer cells invitro[J].Int J Radiat Oncol Biol Phys,2008,72(5):1560-1566.
    [15] Prise K M, Folkard M, Michael B D. A review of the bystander effect and its implicationsfor low-dose exposure[J]. Radiat Prot Dosimetry,2003,104(4):347-355.
    [16]贾荣飞,陈红红,于雷,等.125I籽源持续低剂里率照射诱导人肺癌细胞的旁效应[J].辐射研究与辐射工艺学报,2007,25(6):363-367.
    [17] Lee W, Daly B D, Dipetrillo T A, et al. Limited resection for non-small cell lung cancer:observed local control with implantation of I-125brachytherapy seeds[J]. Ann ThoracSurg,2003,75(1):238-242.
    [18] Fernando H C,Santos R S, Benfield J R,etal. Lobar and sublobar resection with andwithout brachytherapy for small stage IA non–small cell lung cancer[J]. J ThoracCardiovasc Surg,2005,129(2):261-267.
    [19] Odell D D, Kent M S, Fernando H C.Sublobar resection with brachytherapy mesh forstage I non-small cell lung cancer[J]. Semin Thoracic Surg,2010,22(1):32-37.
    [20]曹驰,程隆,于大海,等. CT引导下经皮穿刺125I粒子植入治疗肺转移癌的临床应用[J].中华核医学与分子影像杂志,2013,33(1):46-48.
    [21]王俊杰,袁慧书,王皓,等.CT引导下放射性125I粒子组织间植入治疗肺癌[J].中国微创外科杂志,2008,8(2):119-121.
    [22]骆红蕾,喻晓娟,李进,等.125I粒子植人联合化疗治疗同期放化疗后局部复发的Ⅲ期非小细胞肺癌[J].中华核医学与分子影像杂志,2013,33(3):195-198.
    [23]岳麓,程文英,罗伟华,等.125I籽源离体照射细胞平面剂量率分布研究[J].中华放射肿瘤学杂志,2005,14(5):435-438.
    [24] Wolff S. Aspects of the adaptive response to very low doses of radiation and otheragents[J]. Mutat Res,1996,358(2):135-142.
    [25] Ahmed K M, Li J J. NF-κB-mediated adaptive resistance to ionizing radiation[J]. FreeRadic Biol Med,2008,44(1):1-13.
    [26] Zhao Y, Cui Y, Han J, et al. Cell division cycle25homolog c effects on low-dosehyper-radiosensitivity and induced radioresistance at elevated dosage in A549cells[J]. JRadiat Res,2012,53(5):686-694.
    [27] Ahmed K M,Fan M, Nantajit D. CyclinD1in low-dose radiation-induced adaptiveresistance[J].Oncogene,2008,27(53):6738-6748.
    [28]李福宝,于洪升.低剂量辐射对荷S180肉瘤小鼠肿瘤组织HIF-1α和P53表达的影响[J].齐鲁医学杂志,2009,24(3):189-191.
    [29]张占春,贾廷珍,朱应葆.低剂量照射诱导A549和2BS细胞适应性反应的研究[J].中华放射医学与防护杂志,2001,21(2):107-110.
    [30] Rodriguez E, Lilenbaum R C.Small cell lung cancer: past, present, and future[J].CurrOncol Rep,2010,12(5):327-334.
    [31] Yang P, Allen M S, Aubry M C, et al. Clinical features of5,628primary lung cancerpatients: experience at Mayo Clinic from1997to2003[J]. Chest,2005,128(1):452-462.
    [32] Siegel R, Naishadham D, Jemal A. Cancer statistics,2013[J]. CA: a cancer journal forclinicians,2013,63(1):11-30
    [33] Spiro S G, Tanner N T, Silvestri G A, et al. Lung cancer: Progress in diagnosis, stagingand therapy[J]. Respirology,2010,15(1):44-50.
    [34]李鸿宝.2002~2004年上海市普陀区肺癌发病率及死亡率分析[J].上海预防医学杂志,2006,18(2):60.
    [35]周洁,何丹丹,张金玲,等.上海市闵行区2002~2005年肺癌发病情况[J].中国肿瘤,2010,19(8):531-533.
    [36]廖江,杜其筠,贾勇,等.成都市恶性肿瘤和肺癌发病率及死亡率分析[J].中国慢性病预防与控制,2006,14(4):286.
    [37]曹卡加,吴一龙,刘奕龙,等.广州市2000~2002年肺癌发病率与死亡率分析[J].中国肿瘤,2008,17(4):281-283.
    [38] Mitsudomi T, Takahashi T. Genetic abnormalities in lung cancer and their prognosticimplications[J]. Gan To Kagaku Ryoho,1996,23(8):990-996.
    [39] Nimako K, Popat S. Management of lung cancer[J]. Medicine,2012,40(4):202-207.
    [40] Miura S, Yamamoto N. Combined-modality therapy for lung cancer[J].NihonRinsho.2010,68(6):1121-1128.
    [41] Stoelben E, Huber R M, Muller R P, et al.Multimodality therapy for lung cancer[J].Internist (Berl),2010,51(11):1348-1357.
    [42] HermesaA, Waschkib B, Gatzemeiera U. et al. Characteristics, treatment patterns andoutcomes of patients with small cell lung cancer-A retrospective single institutionanalysis[J]. Lung Cancer.2011,71(3):363-366.
    [43]卢红阳,蔡菊芬,马胜林,等.2011年美国临床肿瘤学会年会—小细胞肺癌治疗研究进展[J].中国肺癌杂志,2011,14(11):870-873.
    [44] Gaspar L E, McNamara E J, Gay E G. et al. Small-cell lung cancer: prognostic factors andchanging treatment over15years[J]. Clin Lung Cancer,2012,13(2):115-122.
    [45] Lam K C, Mok T S. Targeted therapy: An evolving world of lungcancer[J].Respirology,2011,16(1):13-21.
    [46] Bezjak A, Rumble R B, Rodrigues G, et al. Intensity-modulated radiotherapy in thetreatment of lung cancer[J]. Clin Oncol,2012,24(7):508-520.
    [47] Liao Z X, Komaki R R, Thames HD Jr, et al. Influence of technologic advances onoutcomes in patients with unresectable,locally advanced non-small-cell lung cancerreceiving concomitant chemoradiotherapy[J]. Int J Radiat Oncol Biol Phys2010,76(3):775-781.
    [48]Oertel S, Debus J, Hof H, et al. Radiation therapy of lungcarcinoma[J].Radiologe.2010,50(8):669-674.
    [49] Chen S, Flower A, Ritchie A, et al. Oral Chinese herbal medicine (CHM) as an adjuvanttreatment during chemotherapy for non-small cell lung cancer: A systematic review[J].Lung Cancer,2010,68(2):137-145.
    [50] Azuma K, Nakagawa K. Molecular targeted therapy in lung cancer[J].NihonRinsho,2010,68(10):1848-1853.
    [51] Mitsudomi T. Advances in target therapy for lung cancer[J]. Jpn J Clin Oncol,2010,40(2):101-106.
    [52]Thomas R, Wolf J. Personalized therapy of lung cancer[J].Onkologie,2012,35(1Suppl):S14-S19.
    [53] Pickles T, Morris W J, Kattan M W, et al.Comparative5-year outcomes of brachytherapyand surgery for prostate cancer[J].Brachytherapy,2011,10(1):9-14.
    [54] Liang J X, Zheng G J, Chai S D, et al.CT-Guided interstitial implantation of125I forrecurrent patients of postoperative lung cancer[J]. Brachytherapy,2011,10(1Suppl): S98.
    [1] Kanwar J R, KamalapuramS K, Kanwar R K. Targeting survivin in cancer: thecell-signalling perspective[J]. Drug Discov Today,2011,16(11/12):485-494.
    [2] Li F, Sethi G. Targeting transcription factor NF-kappaB to overcome chemoresistance andradioresistance in cancer therapy.[J]. Biochim Biophys Acta,2010,1805(2):167-180.
    [3] Semenza G L. Hypoxia and cancer[J]. Cancer Metastasis Rev,2007,26(2):223-224.
    [4] Gautschi O, Ratschiller D, Gugger M, et al. Cyclin D1in non-small cell lung cancer: a keydriver of malignant transformation[J]. Lung Cancer,2007,55(1):1-14.
    [5] Powis G, Kirkpatrick L. Hypoxia inducible factor-1alpha as a cancer drug target[J]. MolCancer Ther,2004,3(5):647-654.
    [6]Altieri D C.Targeting survivin in cancer[J]. Cancer Lett,2013,332(2):225-228.
    [7] Coumar M S, Tsai F Y, Kanwar J R.Treat cancers by targeting survivin: Just a dream orfuture reality[J]? Cancer Treat Rev,2013,39(7):802-811.
    [8] Dean E J, Ranson M, Blackhall F, et al. Novel therapeutic targets in lung cancer:Inhibitor of apoptosis proteins from laboratory to clinic[J].Cancer Treat Rev,2007,33(2):203-212.
    [9] Nickeleit I, Zender S, Kossatz U, et al. p27kip1: a target for tumor therapies[J]? CellDiv,2007,2:13.
    [10]黄虎,胡义德,栗娜. NF-κB、cyclin D1和p27在非小细胞肺癌中的表达及意义[J].现代肿瘤医学,2008,16(5):737-739.
    [11]王伯,李玉松,黄高,等.病理学技术[M].人民卫生出版社,2000年,第1版,366.
    [12] Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancersequences[J]. Cell,1986,46(5):705-716.
    [13] Thu Y M, Richmond A.NF-κB inducing kinase: A key regulator in the immunesystem and in cancer[J]. Cytokine Growth Factor Rev,2010,21(4):213-226.
    [14] Gupta S C, Sundaram C, Reuter S.et al. Inhibiting NF-κB activation by small moleculesas a therapeutic strategy[J]. Biochim Biophys Acta,2010,1799(10-12):775-787.
    [15] Moretti M, Bennett J, Tornatore L, et al. Cancer: NF-kappaB regulates energymetabolism[J]. Int J Biochem Cell Biol,2012,44(12):2238-2243.
    [16] Tang X, Liu D, Shishodiai S, et al. Nuclear factor-kappa B (NF-kappa B) is frequentlyexpressed in lung cancer and pre-neoplastic lesions[J]. Cancer,2006,107(11):2637-2646.
    [17] Stathopoulos T G, Sherrill T P, Han W, et al. Host Nuclear Factor-κB activationpotentiates lung cancer metastasis[J]. Mol Cancer Res,2008,6(3):364-371.
    [18] Ahmed KM, Li J J. NF-kappa B-mediated adaptive resistance to ionizing radiation[J].Free Radic Biol Med,2008,44(1):1-13.
    [19] Estabrook N C, Sinex H C, Borgmann A J,et al. Inhibition of NF-κB and DNAdouble-strand break repair by DMAPT sensitizes non-small-cell lung cancers toX-rays[J].Free Radic Biol Med.2011,51(12):2249-2258.
    [20] Saitoh Y, Javier V, Bruyn M, et al.Overexpression of NF-κB inducing kinase underliesconstitutive NF-κB activation in lung cancer cells [J].Lung Cancer,2010,70(3):263-270.
    [21] Zhang Z, Ma J, Li N, et al.Expression of Nuclear Factor-κB and Its ClinicalSignificance in Nonsmall-Cell Lung Cancer[J].Ann Thorac Surg,2006,82(1):243-248.
    [22] Semenza G L,Nejfeh M K,Chi S M,et a1.Hypoxia-inducible nuclear factors bind toan enhancer element located3to the human erythro-protein gene[J]. Proc Natl Acad SciUSA,1991,88(13):5680.
    [23] Kizaka-Kondoh S, Inane M, Harada H,et al. Tumor hypoxia:A target for selective cancertherapy[J].Cancer Sci,2003,94(12):1021-1028.
    [24] Semenza G L. Hypoxia-inducible factor1: regulator of mitochondrial metabolism andmediator of ischemic preconditioning[J]. Biochim BiophysActa,2011,1813(7):1263-1268.
    [25] Semenza G L. Hypoxia-inducible factors: mediators of cancer progression and targets forcancer therapy[J]. Trends Pharmacol Sci,2012,33(4):207-212.
    [26] Diebold I, Petry A, Sabrane K.The HIF1target gene NOX2promotes angiogenesisthrough urotensin-II[J]. J Cell Sci,2012,125(4):956-964.
    [27] Rohwer N, Cramer T. Hypoxia-mediated drug resistance: novel insights on the functionalinteraction of HIFs and cell death pathways[J]. Drug Resist Updat,2011,14(3):191-201.
    [28] Semenza G L. HIF-1: upstream and downstream of cancer metabolism[J]. Curr OpinGenet Dev,2010,20(1):51-56.
    [29] Semenza G L. Intratumoral hypoxia, radiation resistance, and HIF-1[J]. Cancercell,2004,5(5),405-406.
    [30] Goda N,Ryan H E,Khadivi B,et a1.Hypoxia-inducible factor-1alpha is essential forcell cycle arest during hypoxia[J]. Mol Cell Biol,2003,23(1):359-369.
    [31] Han S H, Kim M, Park K, et al. Blockade of processing/activation of caspase-3byhypoxia[J]. Biochem Biophys Res Commun,2008,375(4):684-688.
    [32] Moeller B J. Hypoxia and radiotherapy: opportunities for improved outcomes in cancertreatment[J]. Cancer Metastasis Rev,2007,26(2),241-248.
    [33] Moeller B J, Cao Y, Li CY, et al. Radiation activates HIF-1to regulate vascularradiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules[J].Cancer Cell,2004,5(5):429-441.
    [34] Dewhirst M W, Cao Y T, Li C Y, et al. Exploring the role of HIF-1in earlyangiogenesis and response to radiotherapy[J]. Radiother Oncol,2007,83(3):249-255.
    [35] Ryan B M, O’Donovan N, Duffy M J. Survivin:A new target for anti-cancer therapy[J].Cancer Treat Rev,2009,35(7):553-562.
    [36] Capalbo G, Rodel C, Stauber R H, et al. The role of survivin forradiation-therapy-prognostic and predictive factor and therapeutic Target[J]. StrahlentherOnkol,2007,183(11):593-599.
    [37] Altieri D C. Survivin and IPA proteins in cell-death mechanisms[J]. BiochemJ,2010,430(2):199-205.
    [38] Akyurek N, Memis L, Ekinci O, et al. Survivin expression in preinvasive lesions andnon-small cell lung carcinoma[J]. VirchowsArch,2006,449(2):164-170.
    [39] Yie S M, Lou B, Ye S R, et al. Clinical significance of detecting surviving expressingcirculating cancer cells in patients with non-small cell lung cancer[J].Lung Cancer.2009,63(2):284-290.
    [40] Atikcana S K, U’nsala E, Demiragb F, et al. Correlation between survivin expressionand prognosis in non-small cell lung cancer[J]. Respir Med,2006,100(12):2220-2226.
    [41] Fan J,Wang L,Jiang J N,et al. The role of survivin on overall survival of non-small celllung cancer, a meta-analysis of published literatures[J]. Lung Cancer.2008,61(1):91-96.
    [42]Tanga X P, Lia J, Yu L C, et al. Clinical significance of survivin and VEGF mRNAdetection in the cell fraction ofthe peripheral blood in non-small cell lung cancer patientsbefore and aftersurgery[J]. Lung Cancer,2013,81(2):273-279.
    [43] Brentnal M, Rodriguez-Menocal L, De Guevara R L, et al. Caspase-9, caspase-3andcaspase-7have distinct roles during intrinsic apoptosis[J]. BMC Cell Biol,2013,14:32.
    [44] Roy S, Bayly C I, Gareau Y, et al.Maintenance of caspase-3proenzyme dormancyby an intrinsic “safety catah” regulatory tripeptide [J]. Proc Natl Acad SciUSA,2001,98(11):6132-6137.
    [45] Oyaizu H, Adachi Y, Taketani S, et al, A crucial role of caspase3and caspase8inpaclitaxel-induced apoptosis[J]. Mol Cell Bio Res Commun,1999,2(1):36-41.
    [46]王来芳.肺癌组织中Survivin和Caspase-3基因的表达[J].临床和实验医学杂志,2007,6(6):23-25.
    [47]王滋宗,魏煜程,沈毅,等.非小细胞肺癌组织Survivin和Caspase基因表达及其关系[J].青岛大学医学院学报,2008,44(4):319-321.
    [48] Ye M X, Zhao Y L, Li Y, et al. Curcumin reverses cisplatin resistance and promoteshuman lung adenocarcinoma A549/DDP cell apoptosis through HIF-1α and caspase-3mechanisms[J]. Phytomedicine,2012,19(8-9):779-787.
    [49] Wadhawan S, Gautam S, Sharma AA component of gamma-radiation-induced cell deathin E. coli is programmed and interlinked with activation of caspase-3and SOSresponse[J].Arch Microbiol,2013,195(8):545-557.
    [50] Soares D C F, de Barros A L B, dos Santos R G, et al. Apoptosis mediated by caspase-3and p53-dependent anticancer effects of159GD-DTPA-BMA complex[J]. J RadioanalNucl Chem,2013,295(1):63-66.
    [51] Liu C F, Song T T, Du L L, et al. The influence of interstitial brachytherapy with125Iseeds on Caspase-3and Egr-1expressions of Levis lung carcinoma in C57BL mice[J].Chin-Germ J Clin Oncol,2010,9(12):688-691.
    [52] KleinE A,Assoian R K.Transcriptional regulation of the cyclinD1gene at a glance[J]. JCell Sci,2008,121(23):3853-3857.
    [53] Gautschi O, Ratschiller D, Gugger M, et al.Cyclin D1in non-small cell lung cancer: Akey driver of malignant transformation[J]. Lung Cancer,2007,55(1):1-14.
    [54] Kim J K, Diehl J A, Nuclear cyclin D1: an oncogenic driver in human cancer[J]. J CellPhysiol,2009,220(2):292-296.
    [55] Chu M, Guo J J, Chen C Y. Long-term Exposure to Nicotine, via Ras Pathway, InducesCyclin D1to Stimulate G1Cell Cycle Transition[J]. J Bio Chem,2005,280(8):6369-6379.
    [56] Ding J, He G P, Gong W F, et al. Effects of Nickel on Cyclin Expression, Cell CycleProgression and Cell Proliferation in Human Pulmonary Cells[J]. Cancer EpidemiolBiomarkers Prev,2009,18(6):1920-1729.
    [57] Taylor M D, Smith P W, Brix W K. Fluorodeoxyglucose positron emission tomographyand tumor marker expression in non-small cell lung cancer[J], Thorac CardiovascSurg,2009,137(1):43-48.
    [58]Ayed AK, Adesin A. Prognostic significance of cyclin D1expression in resected stage I,II non-small cell lung cancer in Arabsb[J]. Interact Cardiovasc ThoracSurg,2006,5(1):47-51.
    [59] Wen W, Ding J, Sun W, et al.Suppression of Cyclin D1by Hypoxia-Inducible Factor-1viaDirect Mechanism Inhibits the Proliferation and5-Fluorouracil-Induced Apoptosis ofA549Cells[J]. Cancer Res,2010,70(5):2010-2019.
    [60]李尊岭,邵淑红,谢书阳,等.CyclinD1反义核酸诱导肺腺癌细胞A549的凋亡[J].生理学报,2011,63(3):261-266.
    [61] Li W, Sanki A, Karim RZ, et al. The role of cell cycle regulatory proteins in thepathogenesis of melanoma [J]. Pathology,2006,38(4):287-301.
    [62] Alkarain A, Jordan R, Slingerland J. p27Deregulation in Breast Cancer: PrognosticSignificance and Implications for Therapy[J]. J Mammary Gland BiolNeoplasia,2004,9(1):67-80.
    [63] Hsieh F F,Barnett L A,Green W F,et a1.Cell cycle exit during terminal erythroiddifferentiation is associated with accumulation of p27Kip1and inactivation of cdk2kinase[J].Blood,2009,96(8):2746-2754.
    [64] Pateras I S, Apostolopoulou K, Koutsami M, et al. Downregulation of the KIP familymembers p27(KIP1) and p57(KIP2) by SKP2and the role of methylation in p57(KIP2)inactivation in nonsmall cell lung cancer[J]. Int J Cancer,2006,119(11):2546-2556.
    [65] Leung K C, Hsin M K Y, Chan J S Y, et al. Inhibition of thromboxane synthase induceslung cancer cell death via increasing the nuclear p27[J]. Exp CellRes,2009,315(17):2974-2981.
    [66] Hayashi H, Ogawa N, Ishiwa N et al. High cyclin E and low p27/Kip1expressions arepotentially poor prognostic factors in lung adenocarcinoma patients[J]. LungCancer,2001,34(1):59-65.
    [67] Dutu T, Michiels S,Fouret P, et al. Differential expression of biomarkers in lungadenocarcinoma:a comparative study between smokers and never-smokers[J]. AnnOncol,2005,16(12):1906-1914.
    [68] Ishihara S, Minato K, Hoshino H, et al. The cyclin-dependent kinase inhibitor p27as aprognostic factor in advanced non-small cell lung cancer: its immunohistochemicalevaluation using biopsy specimens[J]. Lung Cancer.1999,26(3):187-194.
    [69] Zolota V G, Tzelepi V N, Leotsinidis M, et al. Histologic-Type Specific Role of CellCycle Regulators in Non-Small Cell Lung Carcinoma[J]. J SurgRes,2010,164(2):256-265.
    [70] Tsukamoto S, Sugio K, Sakada T, et al. Reduced expression of cell-cycle regulatorp27Kip1correlates with a shortened survival in non-small cell lung cancer[J]. LungCancer,2001,34(1):83-90.
    [71] Takahashi S, Kamata Y, Tamo W, et al. Relationship between postoperative recurrenceand expression of cyclin E,p27, and Ki-67in non-small cell lung cancer without lymphnodemetastases[J]. Int J Clin Oncol,2002,7(6):349-355.
    [72]王琴,展平,宋勇. p27表达水平与非小细胞肺癌预后关系的Meta分析[J].临床肿瘤学杂志,2008,13(11):988-991.
    [73] Zhuang Y, Yin H T, Yin X L,et al. High p27expression is associated with a betterprognosis in East Asian non-small cell lung cancer patients[J]. Clin ChimActa,2011,412(23-24):2228-2231.
    [74]方华,戴少军,方伟. p27kip1及相关分子skp2在肺癌组织中的表达及其临床意义[J].中华实验外科杂志,2010,27(2):1913-1914.
    [75]张智,李亚红,张珍,等.p27kip1在非小细胞肺癌中的表达及意义[J].广东医学,2013,34(7):1057-1058.
    [76] Tong Q, Zhang W G, Jin S, et al.The relationship between p27kip1expression and thechange of radiosensitivity of esophageal carcinoma cells[J]. Scand JGastroenterol,2011,46(2):173-176.
    [77] Guan X X, Chen L B, Ding G X, et al.Transfection of p27kip1enhances radiosensitivityinduced by60Co γ-irradiation in hepatocellular carcinoma HepG2cell line[J].World JGastroenterol,2004,10(21):3103-3106.
    [78]黄虎,胡义德,栗娜.NF-κB、cyclin D1和p27在非小细胞肺癌中的表达及意义[J].现代肿瘤医学,2008,l6(5):737-739.
    [79] Sreedhar A S, Kalmar E, Csermely P, et al. Hsp90isoforms: functions, expression andclinical importance[J]. FEBS Lett,2004,562(1-3):11-15.
    [80] Khalil A A, Kabapy N F, Deraz S F, et al. Heat shock proteins in oncology: Diagnosticbiomarkers or therapeutic targets[J]? Biochimica et Biophysica Acta,2011,1816(2):89-104.
    [81] Neckers L. Heat shock protein90: The cancer chaperone[J]. J Biosci,2007,32(3):517-530.
    [82] Eustace B K, Sakurai T, Stewart J K, et al. Functional proteomic screens reveal anessential extracellular role for hsp90alpha in cancer cell invasiveness[J]. Nat Cell Biol2004,6(6):507-514.
    [83]张洁,田波,葛名欢,等.不同热休克蛋白在肾细胞癌组织中的表达及其意义[J].中国组织化学与细胞化学杂志,2003,12,(3):272-274.
    [84]张文利,高雪芹,韩金祥,等.HSP60、HSP70、HSP90α在结直肠癌组织中的表达及其与病理组织学分级的关系[J].癌症,2009,28(6):612-618.
    [85]白晓霞,陈亚琼,辛晓燕,等.热休克蛋白70、90在子宫内膜癌中的表达[J].细胞与分子免疫学杂志,2003,19(1):38-40.
    [86]刘涛,梁传余,田聆,等.鼻咽癌HSP70和HSP90β的表达及临床意义[J].临床耳鼻咽喉科杂志,2005,19(14):640-645.
    [87]殷操,沈丽佳,谢思明,等.热休克蛋白70,90在口腔鳞癌及癌前病变中的表达及意义[J].第四军医大学学报,2006,27(19):1792-1794.
    [88]綦俊,张在空,余畅.survivin蛋白在人非小细胞肺癌中的表达及其与bcl-2、HSP90蛋白表达和细胞凋亡的关系[J].肿瘤防治研究,2009,36(10):851-854.
    [89]高姗,王琳,吴卫东,等.热化联合对肺癌A549细胞生长、c-Jun N-末端激酶磷酸化及热休克蛋白70表达的影响[J].卫生研究,2008,37(5):520-531.
    [90] Li Z, Xue J P, Giovanna E. et al. Antibodies to HSP70and HSP90in serum in non-smallcell lung cancer patients[J]. Cancer Detection Prev,2003;27(4):285-290.
    [91] Holzbeierlein J M, Windsperger A,Vielhauer G. Hsp90: A Drug Target[J]?Curr Oncol Rep,2010,12(2):95-101.
    [92] Hwang M, Moretti L, Lu B. Hsp90inhibitors: multi-target antitumor effects and novelcombinatorial therapeutic approaches in cancer therapy[J]. Curr MedChem,2009,16(24):3081-3092.
    [93] Kim W Y, Oh S H, Woo J K, et al. Targeting Heat Shock Protein90overrides theresistance of lung cancer cells by blocking radiation-induced stabilization ofHypoxia-Inducible Factor-1α[J]. Cancer Res,2009,69(4):1624-1632.
    [94] Kabakov AE, Kudriavtsev VA, Makarova I, et al. Inhibitors of the heat shock protein90activity: a novel class of tumor radiosensitizers[J]. Radiats BiolRadioecol,2010,50(5):528-535.
    [95] da Silva VC, Ramos C H.The network interaction of the human cytosolic90kDa heatshock protein Hsp90: A target for cancer therapeutics[J]. Jproteomics,2012,75(10):2790-2802.
    [96] Fujiwara S,Nakagawa K,Harada H,et a1.Silencing hypoxia-inducible Factor-l alphainhibits cell migration and invasion under hypoxic environment inmalignant gliomas[J]. Int J Oncol,2007,30(4):793-802.
    [97] Rey S, Semenza G L. Hypoxia-inducible factor-1-dependent mechanisms ofvascularization and vascular remodelling[J]. Cardiovasc Res,2010,86(2):236-242.
    [98] Schoppmann S F,Fenzl A,Sehindl M,eta1. Hypoxia inducible Factor-1alphacorrelates with VEGF-C expression and lymphangio-genesis in breast cancer[J].Breast Cancer Res Treat,2006,99(2):135.
    [99] Xia S,Yu S Y,Yuan X L,et a1.Effects of hypoxia on expression of P-glycoprotein anmulti-drug resistance protein in human lung adenocarcinoma A549cell line[J].Chin MedJ,2004,84(8):663-666.
    [100] Semenza G L. Regulation of cancer cell metabolism by hypoxia-inducible factor1[J].Semin Cancer Biol,2009,19(1):12-16.
    [101] Rohwer N, Dame C, Haugstetter A, et al. Hypoxia-inducible factor1alpha determinesgastric cancer chemosensitivity via modulation of p53and NF-κB[J]. PLoS,2010,5(8):e12038.
    [102] Xia Y, Choi H K, Lee K. Recent advances in hypoxia-inducible factor (HIF)-1inhibitors[J].Eur J Med Chem,2012,49:24-40.
    [103] Liu Y V, Baek J H, Zhang H F, et al. RACK1competes with HSP90for binding toHIF-1a and is required for O2-independent and HSP90inhibitor-induced degradation ofHIF-1a[J]. Mol Cell,2007,25(2),207-217.
    [104] Yuan X L, Yu S Y, Xia S, et al. Effects of hypoxia on expression of HIF-1alpha,P53,and cyclin D1in human lung adenocarcinoma cell line A549[J]. AiZheng,2004,23(9):1031-1035.
    [105] Dewhirst M W, Cao Y T, Li C Y, et al. Exploring the role of HIF-1in early angiogenesisand response to radiotherapy[J].Radiother Oncol,2007,83(3):249-255.
    [106] Sah N K, Khan Z, Khan G J, et al. Structural, functional and therapeutic biology ofsurviving[J]. Cancer Lett,2006,244(2):164-171.
    [107] Tang L, Ling L, Liu W S, et al. Transcriptional inhibition of p21WAF1/CIP1gene(CDKN1) expression by surviving is at least partially p53-dependent: Evidence forsurvivin acting as a transcription factor or co-factor[J]. Biochem Biophys ResCommun,2012,421(2):249-254.
    [108] Altieri D C, Survivin, cancer networks and pathway-directed drug discovery[J]. Nat RevCancer,2008,8(1):61-70.
    [109] Dai C H, Li J, Shi S B, et al.Survivin and Smac Gene Expressions but not Livin ArePredictors of Prognosis in Non-small Cell Lung Cancer Patients Treated with AdjuvantChemotherapy Following Surgery[J]. Jpn J Clin Oncol2010,40(4):327-335.
    [110] Kapellos G, Alevizopoulos N, Polonyfi A. Survivin levels in small and non smalllung cancer patients. Is an important or conflicting predictive marker? Preliminary resultsof our centre[J]. Lung Cancer,2012,77(1Suppl): S28-S43.
    [111] Fawzy A, Gaafar R, Kasem F, et al. Importance of serum levels of angiopoietin-2andsurvivin biomarkers in non-small cell lung cancer[J]. J Egypt Natl CancInst,2012,24(1):41-45.
    [112] Xie Y L, An L, Jiang H, et al. Nuclear survivin expression is associated with a poorprognosis in Caucasian non-small cell lung cancer patients[J]. Clin ChimActa,2012,414:41-43.
    [1] Wahl R L, Jacene H, Kasamon Y, et al. From RECIST to PERCIST: EvolvingConsiderations for PET response criteria in solid tumors[J]. J Nucl Med,2009,50(1Suppl): S122-S150.
    [2]徐建明.肿瘤靶向药物治疗的疗效评价[J].中国实用外科杂志,2010,30(7):529-531.
    [3] Blasberg R G. Molecular Imaging and Cancer[J]. Mol Cancer Ther,2003,2(3):335-343.
    [4] Cassidy P J, Radda G K. Molecular imaging perspectives[J]. J R SocInterface,2005,2(3):133-144.
    [5] Padhani AR. Diffusion magnetic resonance imaging in cancer patient management[J].Semin Radiat Oncol,2011,21(2):119-140.
    [6] Patterson D M, Padhani A R, Collins D J. Technology insight: Water diffusion MRI-Apotential new biomarker of response to cancer therapy[J]. Nat Clin PractOncol,2008,5(4):220-233.
    [7] Gallagher F A. An introduction to functional and molecular imaging with MRI[J]. ClinRadiol,2010,65(7):557-566.
    [8] Kircher MF, Hricak H, Larson SM. Molecular imaging for personalized cancer care[J].Mol Oncol,2012,6(2):182-195.
    [9]张欣,李亚明,张延军,等.单次化疗后肿瘤内99mTc-AnnexinⅤ的分布与bcl-2、bax蛋白表达的相关性研究[J].同位素,2007,20(1):36-40.
    [10]钟伟邦,李园,李永平,等.125I粒子植入近距离治疗视网膜母细胞瘤小鼠移植瘤[J].实用医学杂志,2011,27(5):754-756.
    [11] Yamamoto Y, Kameyama R, Murota M, et al. Early Assessment of Therapeutic Responseusing FDG PET in Small Cell Lung Cancer[J]. Mol Imaging Biol,2009,11(6):467-472.
    [12] van LoonJ, GruttersJ PC, WandersR, etal.18FDG-PET-CT in the follow-up ofnon-small cell lung cancer patients after radical radiotherapy with or withoutchemotherapy[J]:An economic evaluation. Eur J Cancer,2010,46(1):110-119.
    [13]任树华,赵军,管一晖,等.18F-FDG PET/CT显像对肺癌临床治疗决策的影响[J].中华核医学杂志,2009,29(5):289-292.
    [14] Belkacemi Y, Tsoutsou P, Magne N. Metabolic functional imaging for tumorradiosensitivity monitoring[J]. Crit Rev Oncol Hematol,2007,62:(3)227-239.
    [15] Ungethum L, Kenis H, Nicolaes G A, et al. Engineered annexin A5variants haveimpaired cell entry for molecular imaging of apoptosis using pretargeting strategies[J].J Biol Chem,2011,286(3):1903-1910.
    [16] Blankenberg FG. Imaging the molecular signatures of apoptosis and injury withradiolabeled annexin V[J]. ProcAm Thorac Soc,2009,6(5):469-476.
    [17] Corsten M F, Hofstra L, Narula J, et al. Counting heads in the war against cancer:defining the role of Annexin A5imaging in cancer treatment and surveillance[J].CancerRes,2006,66(3):1255-1260.
    [18] Marina K, Nico van Z, Sjaak B, et al. Prognostic Significance of99mTcHynic-rh-Annexin V Scintigraphy During Platinum-Based Chemotherapy in AdvancedLung Cancer [J]. J Clincal Oncol,2007,25(18):2534-2539.
    [19] Koh D M, Collins D J, David J. Diffusion-weighted MRI in the body: applications andchallenges in oncology[J].Am J Roentgenol,2007,188(6):1622-1635.
    [20] Matoba M, Tonami H, Kondou T, et al. Lung Carcinoma: Diffusion weighted MRImaging-Preliminary Evaluation with Apparent Diffusion Coefficient[J]. Radiology,2007,243(2):570-577.
    [21] Regier M, Derlin T, Schwarz D,et al. Diffusion weighted MRI and18F-FDG PET/CTin non-small cell lung cancer(NSCLC): Does the apparent diffusion coefficient (ADC)correlate with tracer uptake (SUV)[J]? Eur J Radiol,2012,81(10):2913-2918.
    [22] Kim H, Morgan D E, Zeng H, et al: Breast tumor xenografts: Diffusionweighted MRimaging to assess early therapy with novel apoptosis inducing anti-DR5antibody[J].Radiology,2008,248(3):844-851.
    [23] Blankenberg F G, Tait J F, Strauss H W. Apoptotic cell death: its implications forimaging in the next millennium[J]. Eur J Nucl Med,2000,27(3):359-367.
    [24] Scabini M, Stellari F, Cappella P, et al. In vivo imaging of early stage apoptosis bymeasuring real-time caspase-3/7activation[J].Apoptosis,2011,16(2):198-207.
    [25] Nguyen Q D, Lavdas I, Gubbins J, et al. Temporal and spatial evolution oftherapy-induced tumor apoptosis detected by caspase-3-selective molecular imaging[J].Clin Cancer Res,2013,19(14):3914-3924.
    [26] PichlerBJ, WehrlHF, JudenhoferMS. Latest Advances in Molecular ImagingInstrumentation[J].J Nucl Med,2008,49(2Suppl):S5-S23.
    [27] Chen D L, Kinahan P E. Multimodality molecular imaging of the lung[J].Magn ResonImaging,2010,32(6):1409-1420.
    [28] Estorch M, Carrio I. Future challenges of multimodality imaging[J]. Recent ResultsCancer Res,2013,187:403-415.
    [29]陈智毅,罗良平,张金山.分子影像学—基础与应用[M].广东高等教育出版社,2013年,第1版,4-5.
    [30] Fendler W P, Philippe Tiega D B, Ilhan H, et al.Validation of Several SUV-BasedParameters Derived from18F-FDG PET for Prediction of Survival After SIRT of HepaticMetastases from Colorectal Cancer[J].J Nucl Med,2013,54(8):1202-1208.
    [31] Wahl R L, Jacene H, Kasamon Y, et al. From RECIST to PERCIST: EvolvingConsiderations for PET response criteria in solid tumors[J]. J NuclMed,2009,50(1Suppl):S122-S150.
    [32] Gomes C M, Abrunhosa A J, Ramos P, et al. Molecular imaging with SPECT as a tool fordrug development[J].Adv Drug Deliv Rev,2011,63(7):547-554.
    [33] Hunt K. Nuclear medicine: the cornerstone of molecular imaging[J]. J Nucl MedTechnol,2010,38(4):A6-A7.
    [34] Brandon D, Alazraki A, Halkar RK, et al. The role of single-photon emission computedtomography and SPECT/computed tomography in oncologic imaging[J]. SeminOncol,2011,38(1):87-108.
    [35] Arabi M, Piert M. Hypoxia PET/CT imaging: implications for radiation oncology[J]. Q JNucl Med Mol Imaging,2010,54(5):500-509.
    [36] Bettinardi V, Picchio M, Di Muzio N, et al. PET/CT for radiotherapy: image acquisitionand data processing[J].Q J Nucl Med Mol Imaging,2010,54(5):455-75.
    [37] Tsui B M, Kraitchman D L. Recent advances in small-animal cardiovascular imaging[J]. JNucl Med,2009,50(5):667-670.
    [38]张金山.放射性核素细胞凋亡显像[J].国外医学·放射医学核医学分册,2004,28(1):6-7.
    [39] Blankenberg F G. In vivo detection of apoptosis[J]. J Nucl Med,2008,49(2Suppl):S81-S95.
    [40] Grosse J, Grimm D, Westphal K, et al. Radiolabeled annexin V for imaging apoptosis inradiated human follicular thyroid carcinomas--is an individualized protocol necessary[J]?Nucl Med Biol,2009,36(1):89-98.
    [41] Yagle K J, Eary J F, Tait J F, et al. Evaluation of18F-annexin V as a PET imaging agent inan animal model of apoptosis[J]. J Nucl Med,2005,46(4):658-666.
    [42] Bauwens M, De Saint-Hubert M, Devos E, et al. Site-specific68Ga-labeled Annexin A5as a PET imaging agent for apoptosis[J]. Nucl Med Biol,2011,38(3):381-392.
    [43] Coppola J M, Ross B D, Rehemtulla A. Noninvasive imaging of apoptosis and itsapplication in cancer therapeutics[J]. Clin Cancer Res,2008,14(8):2492-2501.
    [44] Tait J F. Imaging of apoptosis[J]. J Nucl Med,2008,49(10):1573-1576.
    [45] Nguyen Q D, Challapalli A, Smith G, et al. Imaging apoptosis with positron emissiontomography:'bench to bedside' development of the caspase-3/7specific radiotracer
    [(18)F]ICMT-11[J]. Eur J Cancer,2012,48(4):432-440.
    [46] Gajewicz W, Grzelak P, Gorska-Chrzastek M, et al. The usefulness of fused MRI andSPECT images for the voxel positioning in proton magnetic resonance spectroscopy andplanning the biopsy of brain tumors: presentation of the method[J]. Neurol NeurochirPol,2006,40(4):284-290.
    [47] Zhao M, Beauregard D A, Loizou L, et al. Non-invasive detection of apoptosis usingmagnetic resonance imaging and a targeted contrast agent[J]. NatMed,2001,7(11):1241-1244.
    [48] Hamstra D A, Rehemtulla A, Ross B D. Diffusion magnetic resonance imaging: abiomarker for treatment response in oncology[J]. J Clin Oncol,2007,25(26):4104-4109.
    [49] Sibtain N A, Howe F A, Saunders D E. The clinical value of proton magnetic resonancespectroscopy in adult brain tumours[J]. Clin Radiol,2007,62(2):109-119.
    [50]郭启勇,辛军,张新,等. MRI水扩散加权成像分子机理研究进展[J].中国临床医学影像杂志,2013,24(7):496-500.
    [51] Ding T, Zhou Y, Sun K, et al. Knockdown a water channel protein, aquaporin-4,induced glioblastoma cell apoptosis.PLoSOne,2013,8(8):e66751(doi:10.1371/journal.pone.0066751).
    [52] Jablonski E M, Mattocks M A, Sokolov E, et al. Decreased aquaporin expression leads toincreased resistance to apoptosis in hepatocellular carcinoma[J].CancerLett,2007,250(1):36-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700