脂质组学分析技术及其在发现免疫性疾病和病毒性肝炎相关生物标志物方面的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着科学技术的发展与人们认识水平的提高,大量研究表明,以鞘脂为代表的功能性脂质类化合物不仅参与生物体内的能量代谢、构建细胞质膜结构,还具有广泛的生物学活性,譬如调控细胞增殖、分化、胞内交流和迁徙、胞间(或胞外)的信号传导、膜结构的转运、自噬和细胞凋亡等。因此,脂质类化合物的生物活性成为了近年来的研究热点。随着质谱技术的发展,特别是液相色谱联用质谱技术,脂质类化合物的结构信息被更多的揭示出来,其结构与功能的关系得到了更好的诠释,脂质组学也应运而生。脂质组学分析技术研究成为了分析化学领域的热点。
     内源性的脂质类化合物在机体内的天然丰度差别非常大,生源丰度通常从纳克级到微克级不等。其中,鞘脂类化合物通常在纳克级水平,且离子化效率较低,属于比较难检测的一类化合物。鉴于脂质类化合物自然丰度差异巨大,结合其结构特点,我们采用了不同类型的质谱来研究脂质分析技术,构建了一套组合式的脂质分析平台。本论文首先基于鞘脂代谢网络,采用高效液相色谱串联三重四级杆质谱(HPLC-MS/MS),建立了一套靶向鞘脂质组学的定量分析方法,能够同时分析43个鞘脂代谢网络核心化合物。本论文首先优化了生物样本(血浆、血清或组织匀浆液,0.1mL)前处理方法,采用甲基叔丁基醚-甲醇-水(20:6:5,v/v/v)三元混合溶剂系统对生物样本(血浆、血清或组织匀浆液,0.1mL)进行脂质提取,提取回收率达到60%-80%。液相色谱分析采用反相C8色谱柱,流动相分别为,A相:0.2%甲酸2.0mM甲酸铵水溶液,B相:0.2%甲酸1.0mM甲酸铵甲醇溶液,梯度洗脱模式,质谱检测采用ESI正离子分段多反应离子监测模式,分段检测的引入显著提高了平台的灵敏度。每一个检测分段内均至少有一个非内源性同系物作为内标来保证定量准确性。方法验证表明,最低定量限:1.0pmol/mg protein(所有鞘脂);线性范围:12.5-2000.0pmol/mg protein(鞘磷脂类)、2.5-400.0pmol/mg protein(其他鞘脂类);线性相关系数:r>0.99;日内日间精密度均小于15%;准确度:80%-120%;工作溶液室温放置6小时和-20℃放置60天稳定。上述结果证明方法准确可靠,适合常规生物样品分析。为了更全面的使方法覆盖鞘脂代谢网络的核心化合物,我们依据鞘脂类化合物的结构和质谱裂解规律,推演并增加了多反应监测的离子对的数目,扩充了鞘脂组学分析方法所监测的目标化合物的数量从43个到74个。同时,我们引入了高效液相色谱联用高分辨质谱仪——傅里叶变换离子回旋共振质谱仪(HPLC-LTQ-FTICRMS)建立一套适用于分析高丰度脂质的脂质组学定量分析平台,液相色谱分析采用反相C8色谱柱,流动相分别为,A相:2mM乙酸铵缓冲盐水溶液含有0.1%甲酸,B相:含有2mM乙酸铵和0.1%甲酸的异丙醇/乙腈(2:5,v/v)溶液,梯度洗脱模式。ESI正离子高分辨全扫描模式监测,利用一级高分辨质谱数据,我们采用Lipid Data Analyzer(?)软件对数据进行高内涵高通量的处理。该平台可以同时监测4大类,包括甘油三酯、甘油二酯、甘油磷脂酰胆碱、甘油磷脂酰乙醇胺合计216种脂质类化合物。部分方法验证表明:最低定量限:0.02nmol/mg protein(所有脂质);线性范围:0.02-200nmol/mL;线性相关系数:r>0.95;精密度小于15%,准确度:80%-120%。上述结果证明该平台适合用于生物样品靶向定量脂质组学研究。具有使用样品量少、高内涵、高通量,并具有同时定性和定量分析的特点。
     在进行脂质分析技术平台建立过程中,我们将所建立的分析方法及时应用于实际生物样本的分析以及筛选与疾病相关生物标志物的研究中。首先,我们将鞘脂分析技术用于了寻找2,4-二硝基氟苯诱发的迟发型超敏反应模型小鼠的血浆、肾脏、肝脏和脾脏中与模型相关的生物标志物,及模型小鼠给予治疗剂量雷公藤甲素后的与药效相关的生物标志物。经过所建立鞘脂组学方法分析后,我们对得到的鞘脂组学数据进行了统计分析,发现了23个鞘脂类化合物(12个神经酰胺类化合物,3个鞘胺醇类化合物,3个糖基化神经酰胺类化合物和5个神经鞘磷脂类化合物)为迟发超敏反应和雷公藤甲素治疗的潜在生物标志物。同时,我们发现雷公藤甲素使得迟发超敏反应模型小鼠的肾脏中10个鞘脂类化合物的代谢发生显著变化,可能与雷公藤甲素潜在的肾毒性相关。该研究表明,靶向定量鞘脂组学结合多变量统计方法能够在生物样品中有效的筛选潜在的鞘脂生物标志物。
     已有文献研究结果表明肝炎病毒和丙型肝炎病毒侵入、复制、转录和出芽过程均与鞘脂密切相关,因此本论文首次开展了乙肝及其相关慢性肝病的鞘脂组学研究,利用鞘脂组学分析技术,分析慢性乙肝患者血清中的鞘脂类化合物。该研究总共使用了两个临床队列,合计156例血清样本,由北京佑安医院提供。每个临床队列分为健康对照组、慢乙肝组和慢乙肝导致的慢加急性肝衰竭组(HBV-ACLF)。结果表明,鞘脂代谢网络的紊乱与疾病的发展密切相关,发现并确认了9个鞘脂生物标志物,为慢性乙肝疾病发病机理研究提供线索。此外,发现了血清中dhCer(d18:0/24:0)水平的降低预示着HBV-ACLF患者预后不良,提供了一种新的方法评估HBV-ACLF的预后,进而有助于优化治疗方案,选择保守治疗或者尽早肝移植。
     随着脂质组学分析技术平台的建立完善,我们将脂质组学分析技术应用于研究慢性丙肝患者的血浆脂质组。患者血浆样品由北京佑安医院提供。包括113例慢性丙肝患者和11例健康受试者,其中患者组根据其肝穿活检结果显示的肝内炎症级别分为IG01,IG2,IG34三组。结果表明,各疾病组与健康受试者之间的血浆脂质水平差异显著(检出的117个脂质中,47个脂质水平显著改变),而患者中不同炎症组之间差异较小(只有8个脂质水平显著改变)。说明血浆脂质组的改变与疾病的发生更相关,而不是炎症发展程度。丙肝慢性感染导致的营养不良很可能是一个重要原因。HexCer(d18:1/22:0)、HexCer (d18:1/24:1)、HexCer (d18:1/24:0)、PC(34:4)和PC(40:5)在轻度和重度肝内炎症组之间存在显著差异,显示它们可作为评价肝内炎症的潜在非侵入性指标。
     本论文研究后期探索性的建立脂质组学整体定性筛查和靶向定量分析新技术,首次建立了一套在线串联二维(HILIC×RP)超高效液相色谱串联三重四级杆质谱仪脂质组学平台。三步筛选脂质化合物的策略充分展示了平台的对于各种生物样品都具有普适性,后续的使用MRM模式对筛选出来的化合物进行定量展示了平台准确定量的能力。尤其是该平台可以在线同时区分并准确定量PC和SM类化合物,使得需要前处理去除两类化合物测定干扰的问题得以解决,提高了测定的效率和准确性。我们进一步将所建立的平台用于大鼠血浆脂质组的分析,其中包括雄性和雌性大鼠的血浆和采集于不同位置的血浆(眼缘静脉、腹主动脉、尾静脉)。结果表明,所建立的方法可以同时定量154个脂质类化合物,包括1个ceramide,1个ceramide-1P,1个sphingosine,60个PC,19个SM和72个TG。统计分析表明,雄性和雌性大鼠血浆脂质组差异显著。来自不同取血位置的血浆中的个别脂质也存在显著差异。上述结果可以给我们一个启示,即当我们去重复或者验证一个脂质组学的研究时,重复同样的样品采集方法非常重要,不仅包括实验动物的性别还有样品的采集部位。
     本论文建立了覆盖脂质代谢网络核心脂质的整体定性和靶向定量分析平台,通过分析实际生物样品,充分展示了方法的深度和广度,并将分析结果与生物学意义相关联,表明生命体的脂质组与疾病发生发展息息相关,为疾病的诊断、预后以及疾病机理的研究奠定了基础。由于本论文的研究均属于单一时间点的截面研究类型,无法动态关注脂质的代谢转化,今后可采用药代动力学的原理和手段关注这一方面。
In recent years, many studies demonstrated that lipids, especially sphingolipids are highly bioactive compounds that serve not only as core components of biological structures, such as membranes and lipoproteins, but also as regulators of cell proliferation, differentiation, cellular interactions and migration, intracellular (and extracellular) signaling, membrane trafficking, autophagy, and cell death. Therefore, lipids have become the new focus of biochemistry. Meanwhile, development of new analytical platform for lipids has become the hotspot in the field of analytical chemistry. With the development of modern mass spectrometry, especially mass spectrometry coupled to liquid chromatography, more structural details of lipids have been revealed, which make the connection between structure and function clearer. Based on the strategy of targeted metabolomics, lipidomics was introduced as the large-scale study of pathways and networks of cellular lipids in biological systems.
     Natural abundance of lipids varies a lot in biological system, ranging from nanogram scale to microgram scale. Among those lipids, sphingolipids belong to one subclass of lipids whose abundance is among nanogram scale. With relatively low ionization efficiency, sphingolipids should be detected in a more sentive mass spectrometer, eg. triple quadruple mass spectrometer. According to the variance of natural abundance and structural characteristics of those lipids, we have built an integrated lipidomics platform to fulfil the detection and quantification. In this thesis, we first developed a targeted sphingolipidomic platform, consisting of a high performance liquid chromatography coupled with tandem triple quadruple mass spectrometry. This platform was capable of quantification of43sphingolipids, covering the core metabolic network of sphingolipids. In the beginning, we optimized the extraction method by introducing methyl-tert-butyl-ether:methanol:water (20:6:5, v/v/v) solvent system. The sample volume was0.1mL for liquid samples (eg. plasma, serum, tissue homogenates) and1mg protein for solid samples (eg. cell). The absolute recovery was among60-80%. A reversed phase C8column in gradient mode was employed in the chromatography part. Mobile Phase A consisted of2mM ammonium formate in water containing0.2%formic acid. Mobile Phase B consisted of1mM ammonium formate in methanol containing0.2%formic acid. In the mass spectrometry, all target compounds were detected in ESI-positive mode. The approach of segmental multiple reaction monitoring improved the sensitivity and accuracy. At least one internal standard was introduced in each segment. The result of method validation demonstrated that the limit of quantification was1.0pmol/mg protein; linear range:12.5-2000.0pmol/mg protein (for sphingomyelins) and2.5-400.0pmol/mg protein (for other sphingolipids) with linear correlation coefficient greater than0.99; The intra-day and inter-day precision was less than15%; the accuracy was among80~120%; The working solution was stable in room temperature for6hours and in-20°for60days. Above results proved this method was accurate and reliable for investigating the sphingolipid levels in biological samples. In order to fully cover whole metabolomic network of sphingolipids, we further expanded the number of target sphingolipids from43to74and integrated the linear ion trap-Fourier transform ion cyclotron resonance (LTQ-FT) mass spectrometer as a complementation to profile the four categories of highly abundant lipids, including glycerophosphocholines, glycerophosphoethanolamines, diacylglycerol and triglycerides, totally216lipids. The LTQ-FT was working in ESI positive full scan mode. A reversed phase C8column in gradient mode was employed in the chromatography part before the mass spectrometry. Mobile phase A was comprised of0.1%formic acid in water containing2mM ammonium acetate. Mobile phase B was comprised of2-propanol/acetonitrile (2:5, v/v) containing2mM ammonium acetate and0.1%formic acid. The Lipid Data Analyzer(?) was used to analyze the raw data file in a high throughout manner. Partial validation demonstrated that the limit of quantification was0.02nmol/mg protein; the linear range was among0.02-200nmol/mL with linear correlation coefficient greater than0.95; the precision was less than15%; the accuracy was among80%-120%. Above results confirmed that this lipidomics platform was accurate and reliable for investigating the lipidome qualitatively and quantitatively in biological sample.
     During the method development, we timely applied the method in real sample analysis. First of all, we used the sphingolipidomic method to profile sphingolipids in the plasma, kidneys, livers and spleens of BALB/c mice from four experimental groups:control, delayed-type hypersensitivity (DTH) model, DTH+triptolide, and control+triptolide. Orthogonal partial least squares discriminant analysis (OPLS-DA) was used to identify potential biomarkers associated with variance between groups. Relationships between the identified biomarkers and disease markers were evaluated by Spearman correlation. The sphingolipidomic result revealed marked alterations in sphingolipid levels between groups that were associated with the effects of the disease and triptolide treatment. Based on this data,23potential biomarkers were identified by OPLS-DA, and seven of them correlated markedly with the disease markers (p<0.05). Restoration of proper sphingolipid levels may attribute to the therapeutic effect of triptolide treatment. Furthermore, these findings demonstrate that targeted sphingolipidomic analysis followed by multivariate analysis presents a novel strategy for the identification of biomarkers in biological samples.
     It is reported that hepatitis viruses rely on constituents of the host cell to provide the energy, macromolecules, and structural organization necessary for survival, and they must cross membranes either by transient local disruption of membrane integrity or by cell lysis. Above processes are related with sphingolipid metabolism. Therefore, we conducted a research on the relationship between serum lipids and chronic HBV infection. The sphingolipidomic platform was used to examine the sphingolipids in156serum samples prospectively collected from two independent cohorts. The training and validation cohorts comprised20and28healthy controls (CTRL),29and23patients with chronic hepatitis B (CHB), and30and26patients with hepatitis B virus related acute on chronic liver failure (HBV-ACLF), respectively. Nine potential biomarkers were found and confirmed between CHB and HBV-ACLF, whereas none was confirmed between CTRL and CHB by multivariate analysis. Such result provided new clues for pathogenesis research for chronic HBV infection. Further, a3-month mortality evaluation of HBV-ACLF patients showed that dhCer(d18:0/24:0) was significantly higher in survivors than in non-survivors (including deceased patients and those undergoing liver transplantation, p<0.05), and showed a prognostic performance similar to that of the MELD score. This preliminary study firstly revealed that the serum sphingolipid composition varies between CTRL and patients with chronic HBV infection and provided new potential method in the prognosis of HBV-ACLF patients.
     Based on our previous study, we further applied the integrated lipidomics platform on plasma samples collected from patients with chronic hepatitis C virus (HCV) infection. The plasma samples were collected by Beijing YouAn Hospital, including11healthy controls and113patients with chronic HCV infection. All the patients were grouped by their intrahepatic inflammation grade (IG) of liver tissue into IG01, IG2and IG34. As a result, the plasma lipid profile varies a lot between healthy controls and patients with chronic HCV infection (47of117quantified lipids significantly changed). Only eight lipids (HexCer (dl8:1/22:0), HexCer (d18:1/24:1), HexCer (d18:1/24:0), PC(34:4) and PC(40:5)) showed significant differences between mild and severe intrahepatic inflammation grades, indicating that they could be useful as novel non-invasive indicators of intrahepatic IG. Based on these results, we speculate that variations in lipid composition arise as a result of HCV infection, and are caused by HCV-related digestive system disorders rather than progression of the disease.
     Later on, we further developed an online HILIC×RP2D-lipidomic platform consisted of a3-step strategic approach for screening candidate compounds in an untargeted way and quantitation of those compounds in MRM mode, a targeted way. A triple quadruple mass spectrometry was used in this study. This platform was demonstrate to be especially useful in discrimination of PCs and SMs by resolving those two types of compounds mutually and internally. Mild alkaline hydrolysis, an unstable factor in previous sample preparation was no more needed. The accuracy, precision and limit of detection were evaluated. We further applied this platform in analyzing lipidome of male and female mice plasma obtained from three different positions. Totally,154lipids were correctly quantified in all samples, including1ceramide,1ceramide-1P,1sphingosine,60PCs,19SMs and72TGs. The results demonstrated that male and female mice plasma shows significant distinct lipid profile. The plasma lipidome from retro-orbital sinus/plexus, abdominal aorta and tail vein are also different. Above result provided us a hint that when to repeat a lipidomics experiment, repeating the method of sample collection is very important, which includes not only animal gender but also its originate.
     This thesis work has built a series of qualitative and quantitative lipidomics platforms. By analyzing actual biological samples, the coverage and depth of them was amply demonstrated. Our results showed that lipids are tightly connected with disease progression, providing novel clues for diagnosis, prognosis and mechanism research.
引文
[1]Fahy, E., S. Subramaniam, R. C. Murphy, M. Nishijima, C. R. Raetz, T. Shimizu, F. Spener, G. van Meer, M. J. Wakelam, and E. A. Dennis.2009. Update of the LIPID MAPS comprehensive classification system for lipids. Journal of lipid research 50 Suppl:S9-14.
    [2]Fahy, E., S. Subramaniam, H. A. Brown, C. K. Glass, A. H. Merrill, Jr., R. C. Murphy, C. R. Raetz, D. W. Russell, Y. Seyama, W. Shaw, T. Shimizu, F. Spener, G. van Meer, M. S. VanNieuwenhze, S. H. White, J. L. Witztum, and E. A. Dennis.2005. A comprehensive classification system for lipids. Journal of lipid research 46:839-861.
    [3]Yetukuri, L., K. Ekroos, A. Vidal-Puig, and M. Oresic.2008. Informatics and computational strategies for the study of lipids. Mol Biosyst 4:121-127.
    [4]Zheng, W., J. Kollmeyer, H. Symolon, A. Momin, E. Munter, E. Wang, S. Kelly, J. C. Allegood, Y. Liu, Q. Peng, H. Ramaraju, M. C. Sullards, M. Cabot, and A. H. M. Jr.2006. Ceramides and other bioactive sphingolipid backbones in health and disease:Lipidomic analysis, metabolism and roles in membrane structure,dynamics, signaling and autophagy. Biochimica et Biophysica Acta 1758:1864-1884.
    [5]Berry, C., R. Touyz, A. F. Dominiczak, R. C. Webb, and D. G. Johns.2001. Angiotensin receptors:signaling, vascular pathophysiology, and interactions with ceramide. Am JPhysiol Heart Circ Physiol 281:H2337-2365.
    [6]Chalfant, C. E., and S. Spiegel.2005. Sphingosine 1-phosphate and ceramide 1-phosphate:expanding roles in cell signaling. J. Cell Sci.118:4605-4612.
    [7]Hannun, Y.1994. The sphingomyelin cycle and the second messenger function of ceramide. J. Biol. Chem.269:3125-3128.
    [8]Hannun, Y. A., and L. M. Obeid.2002. The Ceramide-centric Universe of Lipid-mediated Cell Regulation:Stress Encounters of the Lipid Kind. J. Biol. Chem.277: 25847-25850. [9] Senchenkov, A., D. A. Litvak, and M. C. Cabot.2001. Targeting Ceramide Metabolism--a Strategy for Overcoming Drug Resistance. JNatl Cancer Inst 93:347-357.
    [10]Kono, M., J. L. Dreier, J. M. Ellis, M. L. Allende, D. N. Kalkofen, K. M. Sanders, J. Bielawski, A. Bielawska, Y. A. Hannun, and R. L. Proia.2006. Neutral Ceramidase Encoded by the Asah2 Gene Is Essential for the Intestinal Degradation of Sphingolipids. J. Biol. Chem.281:7324-7331.
    [11]Hu, W., R. Xu, G. Zhang, J. Jin, Z. M. Szulc, J. Bielawski, Y. A. Hannun, L. M. Obeid, and C. Mao.2005. Golgi Fragmentation Is Associated with Ceramide-induced Cellular Effects. Mol. Biol. Cell 16:1555-1567.
    [12]Mousley, C. J., K. Tyeryar, K. E. Ile, G. Schaaf, R. L. Brost, C. Boone, X. Guan, M. R. Wenk, and V. A. Bankaitis.2008. Trans-Golgi Network and Endosome Dynamics Connect Ceramide Homeostasis with Regulation of the Unfolded Protein Response and TOR Signaling in Yeast. Mol. Biol. Cell 19:4785-4803.
    [13]Wenk, M. R.2005. The emerging field of lipidomics. Nature reviews. Drug discovery 4:594-610.
    [14]E, C. A., and F. A. S.2000. Current methods for the identification and quantification of ceramides. Lipids 35:937-945.
    [15]Brasaemle, D. L.2007. Thematic review series:adipocyte biology. The perilipin family of structural lipid droplet proteins:stabilization of lipid droplets and control of lipolysis. Journal of lipid research 48:2547-2559.
    [16]Srivastava, R. A., R. Jahagirdar, S. Azhar, S. Sharma, and C. L. Bisgaier.2006. Peroxisome proliferator-activated receptor-alpha selective ligand reduces adiposity, improves insulin sensitivity and inhibits atherosclerosis in LDL receptor-deficient mice. Molecular and cellular biochemistry 285:35-50.
    [17]Blumberg, P. M.1988. Protein kinase C as the receptor for the phorbol ester tumor promoters:sixth Rhoads memorial award lecture. Cancer research 48:1-8.
    [18]Miller, S. L., J. A. Benjamins, and P. Morell.1977. Metabolism of glycerophospholipids of myelin and microsomes in rat brain. Reutilization of precursors. The Journal of biological chemistry 252:4025-4037.
    [19]PETTUS, B. J., J. BIELAWSKI, A. M. PORCELLI, D. L. REAMES, K. R. JOHNSON, J. MORROW, C. E. CHALFANT, L. M. OBEID, and Y. A. HANNUN. 2003. The sphingosine kinase 1/sphingosine-l-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-{alpha}. FASEB J 17:1411-1421.
    [20]Neumeyer, J., C. Hallas, O. Merkel, S. Winoto-Morbach, M. Jakob, L. Thon, D. Adam, W. Schneider-Brachert, and S. Schuze.2006. TNF-receptor I defective in internalization allows for cell death through activation of neutral sphingomyelinase. Experimental Cell Research 312:2142-2153.
    [21]Teichgraber, V., M. Ulrich, N. Endlich, J. Riethmuller, B. Wilker, C. Conceicao, D. Oliveira-Munding, A. M. v. Heecheren, M. L. Barr, G. v. Kurthy, K. W. Schmid, M. Weller, B. Tummler, F. Lang, H. Grassme, G. Doring, and E. Gulbins.2008. Ceramide accumulation mediates inflammation cell death and infection susceptibility in cystic fibrosis. Nature 14:382-391.
    [22]王立,and汪正范.2008.色谱分析样品处理第二版化学工业出版社,北京.
    [23]Cameron Sullards, M., J. Alfred H. Merrill, and Y. A. Hannun.2000. Analysis of sphingomyelin, glucosylceramide, ceramide, sphingosine, and sphingosine 1-phosphate by tandem mass spectrometry. Methods in Enzymology 312:32-45.
    [24]Carrasco-Pancorbo, A. a., N. Navas-Iglesias, and L. Cuadros-Rodri guez.2009. From lipid analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part I:Modern lipid analysis. Trends in Analytical Chemistry 28: 263-278.
    [25]Folch, J., M. Lees, and G. H. Sloane Stanley.1957. A simple method for the isolation and purification of total lipides from animal tissues. The Journal of biological chemistry 226:497-509.
    [26]Bligh, E. G., and W. J. Dyer.1959. A rapid method of total lipid extraction and purification. Can JBiochem Physiol 37:911-917.
    [27]Ming, J., Alfred H. Merrill, and J. Y. A. Hannun.2000. Analyses of glycosphingolipids by high-performance liquid chromatography. Methods in Enzymology 312:45-64.
    [28]Bielawski, J., J. S. Pierce, J. Snider, B. Rembiesa, Z. M. Szulc, and A. Bielawska. 2009. Sphingolipid Analysis by High Perdormance Liquid Chromatography-Tandem Mass Spectrometry(HPLC-MS/MS) Lands Bioscience.
    [29]Dastgheib, S., S. S. Basu, Z. Li, M. Basu, S. Basu, and J. a. Y. A. H. Alfred H. Merrill.2000. Analyses of glycosphingolipids using clam, mercenaria mercenaria, ceramide glycanase. In Methods in Enzymology. Academic Press.196-205.
    [30]Taketomi, T., E. Sugiyama, and J. a. Y. A. H. Alfred H. Merrill.2000. Extraction and analysis of multiple sphingolipids from a single sample. In Methods in Enzymology. Academic Press.80-101.
    [31]Smith, M., and F. Jungalwala.1981. Reversed-phase high performance liquid chromatography of phosphatidylcholine:a simple method for determining relative hydrophobic interaction of various molecular species. J. Lipid Res.22:697-704.
    [32]Matyash, V., G. Liebisch, T. V. Kurzchalia, A. Shevchenko, and D. Schwudke. 2008. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. Journal of lipid research 49:1137-1146.
    [33]Schiffmann, S., J. Sandnery, K. Birod, I. Wobst, C. Angioni, E. Ruckha"berle, M. Kaufmann, H. Ackermann, J. r. Lo"tsch, H. Schmidt, G. Geisslinger, and S. Gro "sch. 2009. Ceramide synthases and ceramide levels are increased in breast cancer tissue. Carcinogenesis 30:745-752.
    [34]Bektas, M., P. S. Jolly, S. Milstien, and S. Spiegel.2003. A specific ceramide kinase assay to measure cellular levels of ceramide. Analytical Biochemistry 320: 259-265.
    [35]Han, X.2002. Characterization and Direct Quantitation of Ceramide Molecular Species from Lipid Extracts of Biological Samples by Electrospray Ionization Tandem Mass Spectrometry. Analytical Biochemistry 302:199-212.
    [36]Gu, M., J. L. Kerwin, J. D. Watts, and R. Aebersold.1997. Ceramide Profiling of Complex Lipid Mixtures by Electrospray Ionization Mass Spectrometry. Analytical Biochemistry 244:347-356.
    [37]Bartke, N., A. Fischbeck, and H.-U. Humpf.2006. Analysis of sphingolipids in potatoes (Solanum tuberosum L.) and sweet potatoes (Ipomoea batatas (L.) Lam.) by reversed phase high-performance liquid chromatography lectrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Mol. Nutr. Food Res 50:1201-1211.
    [38]Haynes, T.-A. S., P. J. Duerksen-Hughes, M. Filippova, V. Filippov, and K. Zhang.2008. C18 ceramide analysis in mammalian cells employing reversed-phase high-performance liquid chromatography tandem mass spectrometry. Analytical Biochemistry 378:80-86.
    [39]Pettus, B. J., M. Baes, M. Busman, Y. A. Hannun, and P. P. V. Veldhoven.2004. Mass spectrometric analysis of ceramide perturbations in brain and fibroblasts of mice and human patients with peroxisomal disorders. Rapid Commun. Mass Spectrom 18: 1569-1574.
    [40]Pettus, B. J., A. Bielawska, B.-J. Kroesen, P. D. R. Moeller, Z. M. Szulc, Y. A. Hannun, and M. Busman.2003. Observation of different ceramide species from crude cellular extracts by normal-phase high-performance liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry. Rapid Commun. Mass Spectrom 17:1203-1211.
    [41]Pettus, B. J., B.-J. Kroesen, Z. M. Szulc, A. Bielawska, J. Bielawski, Y. A. Hannun, and M. Busman.2004. Quantitative measurement of different ceramide species from crude cellular extracts by normal-phase highperformance liquid chromatography coupled to atmospheric pressure ionization mass spectrometry. Rapid Commun. Mass Spectrom 18:577-583.
    [42]Camera, E., M. Picardo, C. Presutti, P. Catarcini, and S. Fanali.2004. Separation and characterisation of sphingoceramides by high-performance liquid chromatography-electrospray ionisation mass spectrometry. J. Sep. Sci.27:971-976.
    [43]Yaoita, Y., Y. Satoh, and M. Kikuchi.2007. A new ceramide from Ramaria botrytis (Pers.) Ricken Journal of Natural Medicines 61:205-207.
    [44]Lee, M. H., G. H. Lee, and J. S. Yoo.2003. Analysis of ceramides in cosmetics by reversed-phase liquid chromatography/electrospray ionization mass spectrometry with collision-induced dissociation. Rapid Commun. Mass Spectrom 17:64-75.
    [45]Patton, G., J. Fasulo, and S. Robins.1982. Separation of phospholipids and individual molecular species of phospholipids by high-performance liquid chromatography. J. Lipid Res.23:190-196.
    [46]Perry, D. K., A. Bielawska, Y. A. Hannun, and J. a. Y. A. H. Alfred H. Merrill. 2000. Quantitative determination of ceramide using diglyceride kinase. In Methods in Enzymology. Academic Press.22-31.
    [47]Bektas, M., P. S. Jolly, S. Milstien, and S. Spiege.2003. A specific ceramide kinase assay to measure cellular levels of ceramide. Analytical Biochemistry 320: 259-265.
    [48]McHowat, J., J. Jones, and M. Creer.1996. Quantitation of individual phospholipid molecular species by UV absorption measurements. J. Lipid Res.37: 2450-2460.
    [49]A.E., C., and F. A.S.2000. Current methods for the identification and quantification of ceramides:An overview. Lipids 35:937-945.
    [50]Jensen, N. J., K. B. Tomer, and M. L. Gross.1987. FAB MS/MS for phosphatidylinositol,-glycerol,-ethanolamine and other complex phospholipids. Lipids 22:480-489.
    [51]Han, X., and R. W. Gross.1994. Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proceedings of the National Academy of Sciences of the United States of America 91:10635-10639.
    [52]Kim, H. Y, T. C. Wang, and Y. C. Ma.1994. Liquid chromatography/mass spectrometry of phospholipids using electrospray ionization. Anal Chem 66:3977-3982.
    [53]Kerwin, J. L., A. R. Tuininga, and L. H. Ericsson.1994. Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry. Journal of lipid research 35:1102-1114.
    [54]Fenn, J., M. Mann, C. Meng, S. Wong, and C. Whitehouse.1989. Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64-71.
    [55]Wiseman, J. M., D. R. Ifa, Y. Zhu, C. B. Kissinger, N. E. Manicke, P. T. Kissinger, and R. G. Cooks.2008. Mass Spectrometry Special Feature:Desorption electrospray ionization mass spectrometry:Imaging drugs and metabolites in tissues. PNAS 105:18120-18125.
    [56]Ejsing, C. S., J. L. Sampaio, V. Surendranath, E. Duchoslav, K. Ekroos, R. W. Klemm, K. Simons, and A. Shevchenko.2009. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America 106:2136-2141.
    [57]盛龙生,苏焕华,and郭丹滨.2006.色谱质谱联用技术化学工业出版社,北京.
    [58]Han, X., and R. W. Gross.2005. Shotgun lipidomics:electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24:367-412.
    [59]Han, X., and R. W. Gross.2003. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry:a bridge to lipidomics. Journal of lipid research 44:1071-1079.
    [60]Thomas, M. C., T. W. Mitchell, D. G. Harman, J. M. Deeley, J. R. Nealon, and S. J. Blanksby.2008. Ozone-induced dissociation:elucidation of double bond position within mass-selected lipid ions. Anal Chem 80:303-311.
    [61]McAnoy, A. M., C. C. Wu, and R. C. Murphy.2005. Direct qualitative analysis of triacylglycerols by electrospray mass spectrometry using a linear ion trap. J Am Soc Mass Spectrom 16:1498-1509.
    [62]Ho, Y. P., P. C. Huang, and K. H. Deng.2003. Metal ion complexes in the structural analysis of phospholipids by electrospray ionization tandem mass spectrometry. Rapid communications in mass spectrometry:RCM17:114-121.
    [63]Hsu, F. F., A. Bohrer, and J. Turk.1998. Formation of lithiated adducts of glycerophosphocholine lipids facilitates their identification by electrospray ionization tandem mass spectrometry. J Am Soc Mass Spectrom 9:516-526.
    [64]Afonso, C., A. Riu, Y. Xu, F. Fournier, and J. C. Tabet.2005. Structural characterization of fatty acids cationized with copper by electrospray ionization mass spectrometry under low-energy collision-induced dissociation. J Mass Spectrom 40: 342-349.
    [65]Astarita, G., and D. Piomelli.2009. Lipidomic analysis of endocannabinoid metabolism in biological samples. J Chromatogr B Analyt Technol Biomed Life Sci 877:2755-2767.
    [66]Mesaros, C., S. H. Lee, and I. A. Blair.2009. Targeted quantitative analysis of eicosanoid lipids in biological samples using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 877:2736-2745.
    [67]Rainville, P. D., C. L. Stumpf, J. P. Shockcor, R. S. Plumb, and J. K. Nicholson. 2007. Novel application of reversed-phase UPLC-oaTOF-MS for lipid analysis in complex biological mixtures:a new tool for lipidomics. JProteome Res 6:552-558.
    [68]Sokol, E., R. Almeida, H. K. Hannibal-Bach, D. Kotowska, J. Vogt, J. Baumgart, K. Kristiansen, R. Nitsch, J. Knudsen, and C. S. Ejsing.2013. Profiling of lipid species by normal-phase liquid chromatography, nanoelectrospray ionization, and ion trap-orbitrap mass spectrometry. Analytical biochemistry 443:88-96.
    [69]wikipedia.org.2009. Atmospheric pressure chemical ionization. In http://en.wikipedia.org/wiki/Atmospheric pressure chemical ionization.
    [70]Huang, L., R. Estrada, M. C. Yappert, and D. Borchman.2006. Oxidation-induced changes in human lens epithelial cells.1. Phospholipids. Free radical biology & medicine 41:1425-1432.
    [71]Jackson, S. N., M. Ugarov, J. D. Post, T. Egan, D. Langlais, J. A. Schultz, and A. S. Woods.2008. A study of phospholipids by ion mobility TOFMS. JAm Soc Mass Spectrom 19:1655-1662.
    [72]Ma, X., G. Liu, S. Wang, Z. Chen, M. Lai, Z. Liu, and J. Yang.2007. Evaluation of sphingolipids changes in brain tissues of rats with pentylenetetrazol-induced kindled seizures using MALDI-TOF-MS. J Chromatogr B Analyt Technol Biomed Life Sci 859:170-177.
    [73]Caprioli, R. M., T. B. Farmer, and J. Gile.1997. Molecular imaging of biological samples:localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69: 4751-4760.
    [74]Schiller, J., R. Suss, M. Petkovic, O. Zschornig, and K. Arnold.2002. Negative-ion matrix-assisted laser desorption and ionization time-of-flight mass spectra of complex phospholipid mixtures in the presence of phosphatidylcholine:a cautionary note on peak assignment. Analytical biochemistry 309:311-314.
    [75]Petkovic, M., J. Schiller, M. Muller, S. Benard, S. Reichl, K. Arnold, and J. Arnhold.2001. Detection of individual phospholipids in lipid mixtures by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: phosphatidylcholine prevents the detection of further species. Analytical biochemistry 289:202-216.
    [76]Jackson, S. N., and A. S. Woods.2009. Direct profiling of tissue lipids by MALDI-TOFMS. J Chromatogr B Analyt Technol Biomed Life Sci Sci 2822-2829.
    [77]Rujoi, M., R. Estrada, and M. C. Yappert.2004. In situ MALDI-TOF MS regional analysis of neutral phospholipids in lens tissue. Anal Chem 76:1657-1663.
    [78]Schiller, J., R. Suss, J. Arnhold, B. Fuchs, J. Lessig, M. Muller, M. Petkovic, H. Spalteholz, O. Zschornig, and K. Arnold.2004. Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research. Progress in lipid research 43:449-488.
    [79]Cooks, R. G., Z. Ouyang, Z. Takats, and J. M. Wiseman.2006. Detection Technologies. Ambient mass spectrometry. Science 311:1566-1570.
    [80]Wiseman, J. M., S. M. Puolitaival, Z. Takats, R. G. Cooks, and R. M. Caprioli. 2005. Mass Spectrometric Profiling of Intact Biological Tissue by Using Desorption Electrospray Ionization. Angewandte Chemie International Edition 44:7094-7097.
    [81]Wu, C., D. R. Ifa, N. E. Manicke, and R. G. Cooks.2009. Rapid, direct analysis of cholesterol by charge labeling in reactive desorption electrospray ionization. Anal Chem 81:7618-7624.
    [82]Schafer, K.-C., J. Denes, K. Albrecht, T. Szaniszlo, J. Balog, R. Skoumal, M. Katona, M. Toth, L. Balogh, and Z. Takats.2009. In Vivo, In Situ Tissue Analysis Using Rapid Evaporative Ionization Mass Spectrometry. Angewandte Chemie International Edition 48:8240-8242.
    [83]Hsu, F. F., and J. Turk.2009. Electrospray ionization with low-energy collisionally activated dissociation tandem mass spectrometry of glycerophospholipids:mechanisms of fragmentation and structural characterization. J Chromatogr B Analyt Technol Biomed Life Sci 877:2673-2695.
    [84]Hsu, F. F., and J. Turk.2005. Studies on phosphatidylserine by tandem quadrupole and multiple stage quadrupole ion-trap mass spectrometry with electrospray ionization:structural characterization and the fragmentation processes. J Am Soc Mass Spectrom 16:1510-1522.
    [85]Khaselev, N., and R. C. Murphy.2000. Electrospray ionization mass spectrometry of lysoglycerophosphocholine lipid subclasses. J Am Soc Mass Spectrom 11:283-291.
    [86]Han, X., and R. W. Gross.1995. Structural determination of picomole amounts of phospholipids via electrospray ionization tandem mass spectrometry. J Am Soc Mass Spectrom 6:1202-1210.
    [87]Deeley, J. M., M. C. Thomas, R. J. Truscott, T. W. Mitchell, and S. J. Blanksby. 2009. Identification of abundant alkyl ether glycerophospholipids in the human lens by tandem mass spectrometry techniques. Anal Chem 81:1920-1930.
    [88]Hsu, F. F., and J. Turk.2007. Differentiation of 1-O-alk-1'-enyl-2-acyl and 1-O-alkyl-2-acyl glycerophospholipids by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom 18:2065-2073.
    [89]Zemski Berry, K. A., and R. C. Murphy.2004. Electrospray ionization tandem mass spectrometry of glycerophosphoethanolamine plasmalogen phospholipids. J Am Soc Mass Spectrom 15:1499-1508.
    [90]Cole, M. J., and C. G. Enke.1991. Direct determination of phospholipid structures in microorganisms by fast atom bombardment triple quadrupole mass spectrometry. Anal Chem 63:1032-1038.
    [91]Brugger, B., G. Erben, R. Sandhoff, F. T. Wieland, and W. D. Lehmann.1997. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America 94:2339-2344.
    [92]Cui, Z., and M. J. Thomas.2009. Phospholipid profiling by tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 877:2709-2715.
    [93]Stahlman, M., C. S. Ejsing, K. Tarasov, J. Perman, J. Boren, and K. Ekroos.2009. High-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 877:2664-2672.
    [94]Ekroos, K., I. V. Chernushevich, K. Simons, and A. Shevchenko.2002. Quantitative profiling of phospholipids by multiple precursor ion scanning on a hybrid quadrupole time-of-flight mass spectrometer. Anal Chem 74:941-949.
    [95]Ejsing, C. S., E. Duchoslav, J. Sampaio, K. Simons, R. Bonner, C. Thiele, K. Ekroos, and A. Shevchenko.2006. Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal Chem 78:6202-6214.
    [96]He, H., C. L. Nilsson, M. R. Emmett, Y. Ji, A. G. Marshall, R. A. Kroes, J. R. Moskal, H. Colman, F. F. Lang, and C. A. Conrad.2010. Polar lipid remodeling and increased sulfatide expression are associated with the glioma therapeutic candidates, wild type p53 elevation and the topoisomerase-1 inhibitor, irinotecan. Glycoconj J21: 27-38.
    [97]He, H., C. A. Conrad, C. L. Nilsson, Y. Ji, T. M. Schaub, A. G. Marshall, and M. R. Emmett.2007. Method for lipidomic analysis:p53 expression modulation of sulfatide, ganglioside, and phospholipid composition of U87 MG glioblastoma cells. Anal Chem 79:8423-8430.
    [98]Hein, E. M., L. M. Blank, J. Heyland, J. I. Baumbach, A. Schmid, and H. Hayen. 2009. Glycerophospholipid profiling by high-performance liquid chromatography/mass spectrometry using exact mass measurements and multi-stage mass spectrometric fragmentation experiments in parallel. Rapid communications in mass spectrometry:RCM 23:1636-1646.
    [99]Koulman, A., G. Woffendin, V. K. Narayana, H. Welchman, C. Crone, and D. A. Volmer.2009. High-resolution extracted ion chromatography, a new tool for metabolomics and lipidomics using a second-generation orbitrap mass spectrometer. Rapid communications in mass spectrometry:RCM 23:1411-1418.
    [100]Schwudke, D., J. T. Hannich, V. Surendranath, V. Grimard, T. Moehring, L. Burton, T. Kurzchalia, and A. Shevchenko.2007. Top-down lipidomic screens by multivariate analysis of high-resolution survey mass spectra. Anal Chem 79:4083-4093.
    [101]Kingsley, P. J., and L. J. Marnett.2009. Analysis of endocannabinoids, their congeners and COX-2 metabolites. J Chromatogr B Analyt Technol Biomed Life Sci 877:2746-2754.
    [102]Cole, M. J., and C. G. Enke.1991. Fast atom bombardment tandem mass spectrometry employing ion-molecule reactions for the differentiation of phospholipid classes. J Am Soc Mass Spectrom 2:470-475.
    [103]Van Pelt, C. K., and J. T. Brenna.1999. Acetonitrile chemical ionization tandem mass spectrometry to locate double bonds in polyunsaturated fatty acid methyl esters. Anal Chem 71:1981-1989.
    [104]Devakumar, A., D. K. O'Dell, J. M. Walker, and J. P. Reilly.2008. Structural analysis of leukotriene C4 isomers using collisional activation and 157 nm photodissociation. J Am Soc Mass Spectrom 19:14-26.
    [105]Zubarev, R. A., D. M. Horn, E. K. Fridriksson, N. L. Kelleher, N. A. Kruger, M. A. Lewis, B. K. Carpenter, and F. W. McLafferty.2000. Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem 72:563-573.
    [106]Syka, J. E., J. J. Coon, M. J. Schroeder, J. Shabanowitz, and D. F. Hunt. 2004. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America 101:9528-9533.
    [107]Katajamaa, M., J. Miettinen, and M. Oresic.2006. MZmine:toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22:634-636.
    [108]Schwab, U., T. Seppanen-Laakso, L. Yetukuri, J. Agren, M. Kolehmainen, D. E. Laaksonen, A. L. Ruskeepaa, H. Gylling, M. Uusitupa, M. Oresic, and G. S. Group. 2008. Triacylglycerol fatty acid composition in diet-induced weight loss in subjects with abnormal glucose metabolism--the GENOBIN study. PloS one 3:e2630.
    [109]Deeley, J. M., T. W. Mitchell, X. Wei, J. Korth, J. R. Nealon, S. J. Blanksby, and R. J. Truscott.2008. Human lens lipids differ markedly from those of commonly used experimental animals. Biochimica et biophysica acta 1781:288-298.
    [110]Arruda, J. E., M. D. Weiler, D. Valentino, W. G. Willis, J. S. Rossi, R. A. Stern, S. M. Gold, and L. Costa.1996. A guide for applying principal-components analysis and confirmatory factor analysis to quantitative electroencephalogram data. International journal ofpsychophysiology:official journal of the International Organization of Psychophysiology 23:63-81.
    [111]Laaksonen, R., M. Katajamaa, H. Paiva, M. Sysi-Aho, L. Saarinen, P. Junni, D. Lutjohann, J. Smet, R. Van Coster, T. Seppanen-Laakso, T. Lehtimaki, J. Soini, and M. Oresic.2006. A systems biology strategy reveals biological pathways and plasma biomarker candidates for potentially toxic statin-induced changes in muscle. PloS one 1:e97.
    [112]Oresic, M.2009. Bioinformatics and computational approaches applicable to lipidomics. European Journal of Lipid Science and Technology 111:99-106.
    [113]Sud, M., E. Fahy, D. Cotter, A. Brown, E. A. Dennis, C. K. Glass, A. H. Merrill, Jr., R. C. Murphy, C. R. Raetz, D. W. Russell, and S. Subramaniam.2007. LMSD:LIPID MAPS structure database. Nucleic Acids Res35:D527-532.
    [114]Watanabe, K., E. Yasugi, and M. Oshima.2000. How to Search the Glycolipid data in & ldquo;LIPIDBANK for Web”, the Newly Developed Lipid Database in Japan. Trends in Glycoscience and Glycotechnology 12: 175-184.
    [115]Yang, K., H. Cheng, R. W. Gross, and X. Han.2009. Automated lipid identification and quantification by multidimensional mass spectrometry-based shotgun lipidomics. Anal Chem 81:4356-4368.
    [116]Haimi, P., A. Uphoff, M. Hermansson, and P. Somerharju.2006. Software tools for analysis of mass spectrometric lipidome data. Anal Chem 78:8324-8331.
    [117]Graessler, J., D. Schwudke, P. E. Schwarz, R. Herzog, A. Shevchenko, and S. R. Bornstein.2009. Top-down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients. PloS one 4:e6261.
    [118]Song, H., J. Ladenson, and J. Turk.2009. Algorithms for automatic processing of data from mass spectrometric analyses of lipids. J Chromatogr B Analyt Technol Biomed Life Sci 877:2847-2854.
    [119]Leavell, M. D., and J. A. Leary.2006. Fatty acid analysis tool (FAAT):An FT-ICR MS lipid analysis algorithm. Anal Chem 78:5497-5503.
    [120]Tana, A., S. Hussaina, A. Musukub, and R. Masse.2009. Internal standard response variations during incurred sample analysis by LC-MS/MS:Case by case trouble-shooting. Journal of Chromatography B 877:3201-3209.
    [121]汪正范.2007.色谱的定性与定量化学工业出版社,北京.
    [1]Sullards, M. C., J. C. Allegood, S. Kelly, E. Wang, C. A. Haynes, H. Park, Y. Chen, and A. H. Merrill, Jr.2007. Structure-specific, quantitative methods for analysis of sphingolipids by liquid chromatography-tandem mass spectrometry:"inside-out" sphingolipidomics. Methods in enzymology 432:83-115.
    [2]Merrill, A. H., Jr., M. C. Sullards, J. C. Allegood, S. Kelly, and E. Wang.2005. Sphingolipidomics:high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods 36:207-224.
    [3]Bielawski, J., Z. M. Szulc, Y. A. Hannun, and A. Bielawska.2006. Simultaneous quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods 39:82-91.
    [4]Matyash, V., G. Liebisch, T. V. Kurzchalia, A. Shevchenko, and D. Schwudke. 2008. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. Journal of lipid research 49:1137-1146.
    [5]Hartler, J., M. Trotzmuller, C. Chitraju, F. Spener, H. C. Kofeler, and G. G. Thallinger.2011. Lipid Data Analyzer:unattended identification and quantitation of lipids in LC-MS data. Bioinformatics 27:572-577.
    [6]Han, X., and X. Jiang.2009. A review of lipidomic technologies applicable to sphingolipidomics and their relevant applications. European journal of lipid science and technology:EJLST 111:39-52.
    [7]Bielawski, J., J. S. Pierce, J. Snider, B. Rembiesa, Z. M. Szulc, and A. Bielawska. 2009. Comprehensive quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods Mol Biol 579:443-467.
    [8]Wang, J., A. Aubry, M. S. Bolgar, H. Gu, T. V. Olah, M. Arnold, and M. Jemal. 2010. Effect of mobile phase pH, aqueous-organic ratio, and buffer concentration on electrospray ionization tandem mass spectrometric fragmentation patterns: implications in liquid chromatography/tandern mass spectrometric bioanalysis. Rapid communications in mass spectrometry:RCM24:3221-3229.
    [9]Yoo, H. H., J. Son, and D. H. Kim.2006. Liquid chromatography-tandem mass spectrometric determination of ceramides and related lipid species in cellular extracts. J Chromatogr B Analyt Technol Biomed Life Sci 843:327-333.
    [10]Liang, Y., A. Kang, T. Xie, X. Zheng, C. Dai, H. Hao, J. A, L. Sheng, L. Xie, and G. J. Wang.2010. Influence of segmental and selected ion monitoring on quantitation of multi-component using high-pressure liquid chromatography-quadrupole mass spectrometry:Simultaneous detection of 16 saponins in rat plasma as a case. Journal of chromatography. A 1217:4501-4506.
    [11]Folch, J., M. Lees, and G. H. Sloane Stanley.1957. A simple method for the isolation and purification of total lipides from animal tissues. The Journal of biological chemistry 226:497-509.
    [12]Bligh, E. G., and W. J. Dyer.1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911-917.
    [13]Luberto, C., and Y. A. Hannun.2000. Use of short-chain ceramides. In Methods in enzymology. J. Y. A. H. Alfred H. Merrill, editor. Academic Press.407-420.
    [14]Zhu, Q. Y, Z. Wang, C. Ji, L. Cheng, Y. L. Yang, J. Ren, Y. H. Jin, Q. J. Wang, X. J. Gu, Z. G. Bi, G. Hu, and Y. Yang.2011. C6-ceramide synergistically potentiates the anti-tumor effects of histone deacetylase inhibitors via AKT dephosphorylation and alpha-tubulin hyperacetylation both in vitro and in vivo. Cell death & disease 2:el 17.
    [15]Yu, T., J. Li, and H. Sun.2010. C6 ceramide potentiates curcumin-induced cell death and apoptosis in melanoma cell lines in vitro. Cancer chemotherapy and pharmacology 66:999-1003.
    [16]Qu, F., C.-S. Wu, J.-F. Hou, Y. Jin, and J.-L. Zhang.2012. Sphingolipids as New Biomarkers for Assessment of Delayed-Type Hypersensitivity and Response to Triptolide. PloS one 7:e52454.
    [17]Ejsing, C. S., E. Duchoslav, J. Sampaio, K. Simons, R. Bonner, C. Thiele, K. Ekroos, and A. Shevchenko.2006. Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal Chem 78:6202-6214.
    [18]Katajamaa, M., J. Miettinen, and M. Oresic.2006. MZmine:toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22:634-636.
    [19]Quehenberger,O., A. M. Armando, A. H. Brown, S. B. Milne, D. S. Myers, A. H. Merrill, S. Bandyopadhyay, K. N. Jones, S. Kelly, R. L. Shaner, C. M. Sullards, E. Wang, R. C. Murphy, R. M. Barkley, T. J. Leiker, C. R. Raetz, Z. Guan, G. M. Laird, D. A. Six, D. W. Russell, J. G. McDonald, S. Subramaniam, E. Fahy, and E. A. Dennis.2010. Lipidomics reveals a remarkable diversity of lipids in human plasma. Journal of lipid research 51:3299-3305.
    [20]Bird, S. S., V. R. Marur, M. J. Sniatynski, H. K. Greenberg, and B. S. Kristal. 2011. Lipidomics profiling by high-resolution LC-MS and high-energy collisional dissociation fragmentation:focus on characterization of mitochondrial cardiolipins and monolysocardiolipins. Analytical chemistry 83:940-949.
    [1]Hawthorne, K. M., R. Dana, and J. Chodosh.2011. Delayed type hypersensitivity in the pathogenesis of recurrent herpes stromal keratitis. Semin Ophthalmol 26:246-250.
    [2]Adam, J., W. J. Pichler, and D. Yerly.2011. Delayed drug hypersensitivity: models of T-cell stimulation. Br J Clin Pharmacol 71:701-707.
    [3]Steenholdt, C., M. Svenson, K. Bendtzen, O. O. Thomsen, J. Brynskov, and M. A. Ainsworth.2012. Acute and delayed hypersensitivity reactions to infliximab and adalimumab in a patient with Crohn's disease. J Crohns Colitis 6:108-111.
    [4]Gu, W. Z., R. Chen, S. Brandwein, J. McAlpine, and N. Burres.1995. Isolation, purification, and characterization of immunosuppressive compounds from tripterygium:triptolide and tripdiolide. International journal of immunopharmacology 17:351-356.
    [5]Zeng, R., L. Zeng, Y. Chen, F. Zhao, R. Li, L. Wen, and C. Zhang.2011. Triptolide-induced apoptosis by inactivating nuclear factor-kappa B apoptotic pathway in multiple myeloma in vitro. Journal of Huazhong University of Science and Technology. Medical sciences= Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban 31:446-451.
    [6]Tao, R., L. Lu, R. Zhang, J. Hu, J. Ni, and W. Shen.2011. Triptolide inhibits rat vascular smooth muscle cell proliferation and cell cycle progression via attenuation of ERK1/2 and Rb phosphorylation. Experimental and molecular pathology 90:137-142.
    [7]Hailong, G., Z. Yujie, M. Hanying, L. Lei, L. Xiaoli, W. Zhijian, Y. Shiwei, N. Bin, and D. Jia.2011. Effectiveness of triptolide-coated stent on decreasing inflammation and attenuation of intimal hyperplasia in a pig after coronary angioplasty. Angiology 62:265-269.
    [8]He, M. F., Y. H. Huang, L. W. Wu, W. Ge, P. C. Shaw, and P. P. But.2010. Triptolide functions as a potent angiogenesis inhibitor. International journal of cancer. Journal international du cancer 126:266-278.
    [9]Zhang, G., Y. Liu, H. Guo, Z. Sun, and Y. H. Zhou.2009. Triptolide promotes generation of FoxP3+T regulatory cells in rats. Journal of ethnopharmacology 125: 41-46.
    [10]van Eden, W.2009. Protective and therapeutic effect of triptolide in EAE explained by induction of major stress protein HSP70. Journal of neuroimmunology 217:10-11.
    [11]Liou, J. T., Z. Y. Chen, L. J. Ho, S. P. Yang, D. M. Chang, C. C. Liang, and J. H. Lai.2008. Differential effects of triptolide and tetrandrine on activation of COX-2, NF-kappaB, and AP-1 and virus production in dengue virus-infected human lung cells. European journal of pharmacology 589:288-298.
    [12]Liang, M., and J. Fu.2008. Triptolide inhibits interferon-gamma-induced programmed death-1-ligand 1 surface expression in breast cancer cells. Cancer letters 270:337-341.
    [13]Leuenroth, S. J., N. Bencivenga, P. Igarashi, S. Somlo, and C. M. Crews.2008. Triptolide reduces cystogenesis in a model of ADPKD. Journal of the American Society of Nephrology:JASN 19:1659-1662.
    [14]Aoyagi, Y., Y. Hitotsuyanagi, T. Hasuda, S. Matsuyama, H. Fukaya, K. Takeya, R. Aiyama, T. Matsuzaki, and S. Hashimoto.2008. Fluorination of triptolide and its analogues and their cytotoxicity. Bioorganic & medicinal chemistry letters 18:2459-2463.
    [15]Dan, H., R. X. Peng, Y. Ao, and Y. H. Liu.2008. Segment-specific proximal tubule injury in tripterygium glycosides intoxicated rats. Journal of biochemical and molecular toxicology 22:422-428.
    [16]Yang, F., L. Ren, L. Zhuo, S. Ananda, and L. Liu.2011. Involvement of oxidative stress in the mechanism of triptolide-induced acute nephrotoxicity in rats. Experimental and toxicologic pathology:official journal of the Gesellschaft fur Toxikologische Pathologie.
    [17]Merrill, A. H., Jr., T. H. Stokes, A. Momin, H. Park, B. J. Portz, S. Kelly, E. Wang, M. C. Sullards, and M. D. Wang.2009. Sphingolipidomics:a valuable tool for understanding the roles of sphingolipids in biology and disease. Journal of lipid research 50 Suppl:S97-102.
    [18]Dyatlovitskaya, E. V, and A. G. Kandyba.2006. Sphingolipids in tumor metastases and angiogenesis. Biochemistry (Mosc) 71:347-353.
    [19]Napolitano, G., and M. Karin.2010. Sphingolipids:the oil on the TRAFire that promotes inflammation. Science signaling3:pe34.
    [20]Jyonouchi, S., V. Abraham, J. S. Orange, J. M. Spergel, L. Gober, E. Dudek, R. Saltzman, K. E. Nichols, and A. Cianferoni.2011. Invariant natural killer T cells from children with versus without food allergy exhibit differential responsiveness to milk- derived sphingomyelin. The Journal of allergy and clinical immunology 128:102-109 e113.
    [21]Jana, A., and K. Pahan.2010. Sphingolipids in multiple sclerosis. Neuromolecular medicine 12:351-361.
    [22]Lalazar, G., S. Preston, E. Zigmond, A. Ben Yaacov, and Y. Ilan.2006. Glycolipids as immune modulatory tools. Mini reviews in medicinal chemistry 6: 1249-1253.
    [23]Mouritsen, O. G.2011. Lipidology and lipidomics-quo vadis? A new era for the physical chemistry of lipids. Physical chemistry chemical physics:PCCP.
    [24]Bucci, M.2011. Lipidomics:A viral egress. Nature chemical biology 7:577-577.
    [25]de Grauw, J. C., C. H. van de Lest, and P. R. van Weeren.2011. A targeted lipidomics approach to the study of eicosanoid release in synovial joints. Arthritis research & therapy 13:R123.
    [26]Sullards, M. C., J. C. Allegood, S. Kelly, E. Wang, C. A. Haynes, H. Park, Y. Chen, and A. H. Merrill, Jr.2007. Structure-specific, quantitative methods for analysis of sphingolipids by liquid chromatography-tandem mass spectrometry:"inside-out" sphingolipidomics. Methods in enzymology 432:83-115.
    [27]Merrill, A. H., Jr., M. C. Sullards, J. C. Allegood, S. Kelly, and E. Wang.2005. Sphingolipidomics:high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods 36:207-224.
    [28]Bradford, M. M.1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254.
    [29]Umetrics. Simca-P and multivariate analysis Frequently Asked Questions. In Version 1.01. Umetrics.
    [30]Jia, W.2009. Medical Metabonomics Shanghai Scientific & Technical Publishers, Shanghai.
    [31]Feng, Y. H., W. L. Zhou, Q. L. Wu, X. Y. Li, W. M. Zhao, and J. P. Zou.2002. Low dose of resveratrol enhanced immune response of mice. Actapharmacologica Sinica 23:893-897.
    [32]Wang, T., F. Fu, L. Zhang, B. Han, M. Zhu, and X. Zhang.2009. Effects of escin on acute inflammation and the immune system in mice. Pharmacological reports:PR 61:697-704.
    [33]Lin, L., Z. Huang, Y. Gao, X. Yan, J. Xing, and W. Hang.2011. LC-MS based serum metabonomic analysis for renal cell carcinoma diagnosis, staging, and biomarker discovery. JProteome Res 10:1396-1405.
    [34]Ullrich, S. E.1999. Dermal application of JP-8 jet fuel induces immune suppression. Toxicological sciences:an official journal of the Society of Toxicology 52:61-67.
    [35]Yang, F., L. Zhuo, S. Ananda, T. Sun, S. Li, and L. Liu.2011. Role of reactive oxygen species in triptolide-induced apoptosis of renal tubular cells and renal injury in rats. Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban= Huazhong keji daxue xuebao. Yixue Yingdewen ban 31:335-341.
    [36]Wang, Z., H. Jin, C. Li, Y. Hou, Q. Mei, and D. Fan.2009. Heat shock protein 72 protects kidney proximal tubule cells from injury induced by triptolide by means of activation of the MEK/ERK pathway. International journal of toxicology 28:177-189.
    [37]Ye, X., W. Li, Y. Yan, C. Mao, R. Cai, H. Xu, and X. Yang.2010. Effects of cytochrome P4503A inducer dexamethasone on the metabolism and toxicity of triptolide in rat. Toxicology letters 192:212-220.
    [1]Ganem, D., and A. M. Prince.2004. Hepatitis B virus infection--natural history and clinical consequences. NEngl JMed 350:1118-1129.
    [2]Organization, W. H.2012. World Health Organization Fact Sheet 204 dex. (Revised July 2012). In http://www.who.int/mediacentre/factsheets/fs204/en/index.html.
    [3]Jalan, R., and R. Williams.2002. Acute-on-chronic liver failure: pathophysiological basis of therapeutic options. Blood Purif 20:252-261.
    [4]Jalan, R., P. Gines, J. C. Olson, R. P. Mookerjee, R. Moreau, G. Garcia-Tsao, V. Arroyo, and P. S. Kamath.2012. Acute-on chronic liver failure. JHepatol 57:1336-1348.
    [5]Sarin, S. K., A. Kumar, J. A. Almeida, Y. K. Chawla, S. T. Fan, H. Garg, H. J. de Silva, S. S. Hamid, R. Jalan, P. Komolmit, G. K. Lau, Q. Liu, K. Madan, R. Mohamed, Q. Ning, S. Rahman, A. Rastogi, S. M. Riordan, P. Sakhuja, D. Samuel, S. Shah, B. C. Sharma, P. Sharma, Y. Takikawa, B. R. Thapa, C. T. Wai, and M. F. Yuen. 2009. Acute-on-chronic liver failure:consensus recommendations of the Asian Pacific Association for the study of the liver (APASL). Hepatology international 3:269-282.
    [6]Marrero, J., F. J. Martinez, and R. Hyzy.2003. Advances in critical care hepatology. American journal of respiratory and critical care medicine 168:1421-1426.
    [7]Moles, A., N. Tarrats, A. Morales, M. Dominguez, R. Bataller, J. Caballerfa, C. Garcia-Ruiz, J. C. Fernandez-Checa, and M. Mari.2010. Acidic Sphingomyelinase Controls Hepatic Stellate Cell Activation and in Vivo Liver Fibrogenesis. CORD Conference Proceedings 177:1214-1224.
    [8]Llacuna, L., M. Mari, C. Garcia-Ruiz, J. C. Fernandez-Checa, and A. Morales. 2006. Critical role of acidic sphingomyelinase in murine hepatic ischemia-reperfusion injury. Hepatology 44:561-572.
    [9]Morales, A., M. Mari, C. Garcia-Ruiz, A. Colell, and J. C. Fernandez-Checa. 2012. Hepatocarcinogenesis and ceramide/cholesterol metabolism. Anti-cancer agents in medicinal chemistry 12:364-375.
    [10]Tagaram, H. R., N. A. Divittore, B. M. Barth, J. M. Kaiser, D. Avella, E. T. Kimchi, Y. Jiang, H. C. Isom, M. Kester, and K. F. Staveley-O'Carroll.2011. Nanoliposomal ceramide prevents in vivo growth of hepatocellular carcinoma. Gut 60:695-701.
    [11]Aizaki, H., K. Morikawa, M. Fukasawa, H. Hara, Y. Inoue, H. Tani, K. Saito, M. Nishijima, K. Hanada, Y. Matsuura, M. M. Lai, T. Miyamura, T. Wakita, and T. Suzuki.2008. Critical role of virion-associated cholesterol and sphingolipid in hepatitis C virus infection. Journal of virology 82:5715-5724.
    [12]Umehara, T., M. Sudoh, F. Yasui, C. Matsuda, Y. Hayashi, K. Chayama, and M. Kohara.2006. Serine palmitoyltransferase inhibitor suppresses HCV replication in a mouse model. Biochemical and biophysical research communications 346:67-73.
    [13]Tatematsu, K., Y. Tanaka, M. Sugiyama, M. Sudoh, and M. Mizokami.2011. Host sphingolipid biosynthesis is a promising therapeutic target for the inhibition of hepatitis B virus replication. Journal of medical virology 83:587-593.
    [14]Brice, S. E., and L. A. Cowart.2011. Sphingolipid metabolism and analysis in metabolic disease. Advances in experimental medicine and biology 721:1-17.
    [15]Merrill, A. H., Jr.2011. Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chemical reviews 111:6387-6422.
    [16]Chinese Society of Hepatology, Chinese Society of Infectious Diseases, and Chinese Medical Association.2005. [The guidelines of prevention and treatment for chronic hepatitis B]. Chinese journal of hepatology 13:881-891.
    [17]Liver Failure and Artificial Liver Group, Severe Liver Diseases and Artificial Liver Group, Chinese Society of Hepatology, and Chinese Medical Association.2006. [Diagnostic and treatment guidelines for liver failure]. Chinese journal of hepatology 14:643-646.
    [18]Jia, W.2009. Medical Metabonomics Shanghai Scientific & Technical Publishers, Shanghai.
    [19]DeLong, E. R., D. M. DeLong, and D. L. Clarke-Pearson.1988. Comparing the areas under two or more correlated receiver operating characteristic curves:a nonparametric approach. Biometrics 44:837-845.
    [20]Garg, H., A. Kumar, V. Garg, P. Sharma, B. C. Sharma, and S. K. Sarin.2012. Clinical profile and predictors of mortality in patients of acute-on-chronic liver failure. Dig Liver Dis 44:166-171.
    [21]Sun, Q. F., J. G. Ding, D. Z. Xu, Y. P. Chen, L. Hong, Z. Y. Ye, M. H. Zheng, R. Q. Fu, J. G. Wu, Q. W. Du, W. Chen, X. F. Wang, and J. F. Sheng.2009. Prediction of the prognosis of patients with acute-on-chronic hepatitis B liver failure using the model for end-stage liver disease scoring system and a novel logistic regression model. Journal of viral hepatitis 16:464-470.
    [22]Cicognani, C., M. Malavolti, A. M. Morselli-Labate, L. Zamboni, C. Sama, and L. Barbara.1997. Serum lipid and lipoprotein patterns in patients with liver cirrhosis and chronic active hepatitis. Arch Intern Med 157:792-796.
    [23]Freeman, R. B., Jr., R. H. Wiesner, A. Harper, S. V. McDiarmid, J. Lake, E. Edwards, R. Merion, R. Wolfe, J. Turcotte, L. Teperman, U. O. L. Unos/Optn Liver Disease Severity Score, Intestine, and U. O. P. T. Committees.2002. The new liver allocation system:moving toward evidence-based transplantation policy. Liver Transpl 8:851-858.
    [24]Yu, J.-W., L.-J. Sun, Y.-H. Zhao, and S.-C. Li.2008. Prediction value of model for end-stage liver disease scoring system on prognosis in patients with acute-on-chronic hepatitis B liver failure after plasma exchange and lamivudine treatment. Journal of gastroenterology and hepatology 23:1242-1249.
    [25]Chatzakos, V., A. K. Rundlof, D. Ahmed, P. J. de Verdier, and J. Flygare.2012. Inhibition of sphingosine kinase 1 enhances cytotoxicity, ceramide levels and ROS formation in liver cancer cells treated with selenite. Biochemical pharmacology 84: 712-721.
    [26]Olivera, A., T. Kohama, L. Edsall, V. Nava, O. Cuvillier, S. Poulton, and S. Spiegel.1999. Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. The Journal of cell biology 147: 545-558.
    [27]Mari, M., and J. C. Fernandez-Checa.2007. Sphingolipid signalling and liver diseases. Liver international:official journal of the International Association for the Study of the Liver 27:440-450.
    [28]Malhi, H., G. J. Gores, and J. J. Lemasters.2006. Apoptosis and necrosis in the liver:a tale of two deaths? Hepatology 43:S31-44.
    [29]Sun, W. Y, and C. S. Bonder.2012. Sphingolipids:A Potential Molecular Approach to Treat Allergic Inflammation. Journal of Allergy 2012:1-14.
    [30]Wu, X. X., Y. Sun, W. J. Guo, Y. H. Gu, X. F. Wu, R. X. Tan, and Q. Xu.2012. Rebuilding the balance of STAT1 and STAT3 signalings by fusaruside, a cerebroside compound, for the treatment of T-cell-mediated fulminant hepatitis in mice. Biochemical pharmacology 84:1164-1173.
    [31]Zhang, J. Y, Z. Zhang, F. Lin, Z. S. Zou, R. N. Xu, L. Jin, J. L. Fu, F. Shi, M. Shi, H. F. Wang, and F. S. Wang.2010. Interleukin-17-producing CD4(+) T cells increase with severity of liver damage in patients with chronic hepatitis B. Hepatology 51:81-91.
    [32]Young, M. M., M. Kester, and H. G. Wang.2012. Sphingolipids:regulators of crosstalk between apoptosis and autophagy. The Journal of Lipid Research 54:5-19.
    [33]Thomas, S., A. Preda-Pais, S. Casares, and T. D. Brumeanu.2004. Analysis of lipid rafts in T cells. Molecular immunology 41:399-409.
    [34]Manes, S., G. del Real, and A. C. Martinez.2003. Pathogens:raft hijackers. Nat Rev Immunol 3:557-568.
    [35]Bertoletti, A., M. M. D'Elios, C. Boni, M. De Carli, A. L. Zignego, M. Durazzo, G. Missale, A. Penna, F. Fiaccadori, G. Del Prete, and C. Ferrari.1997. Different cytokine profiles of intraphepatic T cells in chronic hepatitis B and hepatitis C virus infections. Gastroenterology 112:193-199.
    [36]Malagarie-Cazenave, S., N. Andrieu-Abadie, B. Segui, V. Gouaze, C. Tardy, O. Cuvillier, and T. Levade.2002. Sphingolipid signalling:molecular basis and role in TNF-alpha-induced cell death. Expert reviews in molecular medicine 4:1-15.
    [37]Seijo, S., J. J. Lozano, C. Alonso, E. Reverter, R. Miquel, J. G. Abraldes, M. L. Martinez-Chantar, A. Garcia-Criado, A. Berzigotti, A. Castro, J. M. Mato, J. Bosch, and J. C. Garcia-Pagan.2013. Metabolomics Discloses Potential Biomarkers for the Noninvasive Diagnosis of Idiopathic Portal Hypertension. The American journal of gastroenterology.
    [38]Trygg, J., and S. Wold.2002. Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics 16:119-128.
    [39]Dudley, J. T, and A. J. Butte.2010. Biomarker and drug discovery for gastroenterology through translational bioinformatics. Gastroenterology 139:735-741,741e731.
    [1]Alter, M. J.2007. Epidemiology of hepatitis C virus infection. World journal of gastroenterology:WJG 13:2436-2441.
    [2]Sherman, M., S. Shafran, K. Burak, K. Doucette, W. Wong, N. Girgrah, E. Yoshida, E. Renner, P. Wong, and M. Deschenes.2007. Management of chronic hepatitis C:consensus guidelines. Canadian journal of gastroenterology= Journal canadien de gastroenterologie 21 Suppl C:25C-34C.
    [3]Davis, G. L., J. E. Albright, S. F. Cook, and D. M. Rosenberg.2003. Projecting future complications of chronic hepatitis C in the United States. Liver transplantation:official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society 9:331-338.
    [4]Ghany, M. G., D. E. Kleiner, H. Alter, E. Doo, F. Khokar, K. Promrat, D. Herion, Y Park, T. J. Liang, and J. H. Hoofnagle.2003. Progression of fibrosis in chronic hepatitis C. Gastroenterology 124:97-104.
    [5]Bravo, A. A., S. G. Sheth, and S. Chopra.2001. Liver biopsy. The New England journal of medicine 344:495-500.
    [6]Brown, H. A., and L. J. Marnett.2011. Introduction to lipid biochemistry, metabolism, and signaling. Chemical reviews 111:5817-5820.
    [7]Puri, R., M. Duong, K. Uno, Y Kataoka, and S. J. Nicholls.2012. The emerging role of plasma lipidomics in cardiovascular drug discovery. Expert opinion on drug discovery 7:63-72.
    [8]Zehethofer, N., and D. M. Pinto.2008. Recent developments in tandem mass spectrometry for lipidomic analysis. Analytica chimica acta 627:62-70.
    [9]Szymanska, E., F. A. van Dorsten, J. Troost, I. Paliukhovich, E. J. van Velzen, M. M. Hendriks, E. A. Trautwein, J. P. van Duynhoven, R. J. Vreeken, and A. K. Smilde. 2012. A lipidomic analysis approach to evaluate the response to cholesterol-lowering food intake. Metabolomics:Official journal of the Metabolomic Society 8:894-906.
    [10]Chan, R B., T. G. Oliveira, E. P. Cortes, L. S. Honig, K. E. Duff, S. A. Small, M. R. Wenk, G. Shui, and G. Di Paolo.2012. Comparative lipidomic analysis of mouse and human brain with Alzheimer disease. The Journal of biological chemistry 287: 2678-2688.
    [11]Hu, C., H. Wei, A. M. van den Hoek, M. Wang, R. van der Heijden, G. Spijksma, T. H. Reijmers, J. Bouwman, S. Wopereis, L. M. Havekes, E. Verheij, T. Hankemeier, G. Xu, and J. van der Greef.2011. Plasma and liver lipidomics response to an intervention of rimonabant in ApoE*3Leiden.CETP transgenic mice. PloS one 6: e19423.
    [12]Li, M., Z. Zhou, H. Nie, Y. Bai, and H. Liu.2011. Recent advances of chromatography and mass spectrometry in lipidomics. Analytical and bioanalytical chemistry 399:243-249.
    [13]Yamamoto, K., Y. Isogai, H. Sato, Y. Taketomi, and M. Murakami.2011. Secreted phospholipase A2, lipoprotein hydrolysis, and atherosclerosis:integration with lipidomics. Analytical and bioanalytical chemistry 400:1829-1842.
    [14]Min, H. K., S. Lim, B. C. Chung, and M. H. Moon.2011. Shotgun lipidomics for candidate biomarkers of urinary phospholipids in prostate cancer. Analytical and bioanalytical chemistry 399:823-830.
    [15]Hart, P. J., S. Francese, E. Claude, M. N. Woodroofe, and M. R. Clench.2011. MALDI-MS imaging of lipids in ex vivo human skin. Analytical and bioanalytical chemistry 401:115-125.
    [16]Fernandez, J. A., B. Ochoa, O. Fresnedo, M. T. Giralt, and R. Rodriguez-Puertas. 2011. Matrix-assisted laser desorption ionization imaging mass spectrometry in lipidomics. Analytical and bioanalytical chemistry 401:29-51.
    [17]Dennis, E. A.2009. Lipidomics joins the omics evolution. Proceedings of the National Academy of Sciences of the United States of America 106:2089-2090.
    [18]Gao, X., Q. Zhang, D. Meng, G. Isaac, R. Zhao, T. L. Fillmore, R. K. Chu, J. Zhou, K. Tang, Z. Hu, R. J. Moore, R. D. Smith, M. G. Katze, and T. O. Metz.2012. A reversed-phase capillary ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) method for comprehensive top-down/bottom-up lipid profiling. Analytical and bioanalytical chemistry 402:2923-2933.
    [19]Chan, S. C., S. Y. Lo, J. W. Liou, M. C. Lin, C. L. Syu, M. J. Lai, Y. C. Chen, and H. C. Li.2011. Visualization of the structures of the hepatitis C virus replication complex. Biochemical and biophysical research communications 404:574-578.
    [20]Mannova, P., R. Fang, H. Wang, B. Deng, M. W. McIntosh, S. M. Hanash, and L. Beretta.2006. Modification of host lipid raft proteome upon hepatitis C virus replication. Molecular & cellular proteomics:MCP 5:2319-2325.
    [21]Bassendine, M. F., D. A. Sheridan, D. J. Felmlee, S. H. Bridge, G. L. Toms, and R. D. Neely.2011. HCV and the hepatic lipid pathway as a potential treatment target. J Hepatol 55:1428-1440.
    [22]Diamond, D. L., A. J. Syder, J. M. Jacobs, C. M. Sorensen, K. A. Walters, S. C. Proll, J. E. McDermott, M. A. Gritsenko, Q. Zhang, R. Zhao, T. O. Metz, D. G. Camp, 2nd, K. M. Waters, R. D. Smith, C. M. Rice, and M. G. Katze.2010. Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics. PLoS pathogens 6:e1000719.
    [23]Puoti, C., R. Guarisco, L. Bellis, and L. Spilabotti.2009. Diagnosis, management, and treatment of hepatitis C. Hepatology 50:322; author reply 324-325.
    [24]European Association for the Study of the, L.2011. EASL Clinical Practice Guidelines:management of hepatitis C virus infection. Journal of hepatology 55:245-264.
    [25]Hepatotogy Branch, I., and C. M. A. Parasitology branch.2004. [Guideline of prevention and treatment of hepatitis C].7hongh.ua yu fang yi xue za zhi [Chinese journal of preventive medicine] 38:210-215.
    [26]Batts, K. P., and J. Ludwig.1995. Chronic hepatitis. An update on terminology and reporting. The American journal of surgical pathology 19:1409-1417.
    [27]Umetrics. Simca-P and multivariate analysis Frequently Asked Questions. In Version 1.01. Umetrics.
    [28]Ismail, F. W., R. A. Khan, L. Kamani, A. A. Wadalawala, H. A. Shah, S. S. Hamid, and W. Jafri.2012. Nutritional status in patients with hepatitis C. Journal of the College of Physicians and Surgeons-Pakistan:JCPSP 22:139-142.
    [29]Pohjanen, E., E. Thysell, P. Jonsson, C. Eklund, A. Silfver, I. B. Carlsson, K. Lundgren, T. Moritz, M. B. Svensson, and H. Antti.2007. A multivariate screening strategy for investigating metabolic effects of strenuous physical exercise in human serum. Journal of proteome research 6:2113-2120.
    [30]Stenlund, H., A. Gorzsas, P. Persson, B. Sundberg, and J. Trygg.2008. Orthogonal projections to latent structures discriminant analysis modeling on in situ FT-IR spectral imaging of liver tissue for identifying sources of variability. Anal Chem 80:6898-6906.
    [31]Bao, Y, T. Zhao, X. Wang, Y. Qiu, M. Su, W. Jia, and W. Jia.2009. Metabonomic variations in the drug-treated type 2 diabetes mellitus patients and healthy volunteers. J Proteome Res 8:1623-1630.
    [1]Dennis, E. A.2009. Lipidomics joins the omics evolution. Proceedings of the National Academy of Sciences of the United States of America 106:2089-2090.
    [2]Gao, X., Q. Zhang, D. Meng, G. Isaac, R. Zhao, T. L. Fillmore, R. K. Chu, J. Zhou, K. Tang, Z. Hu, R. J. Moore, R. D. Smith, M. G. Katze, and T. O. Metz.2012. A reversed-phase capillary ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) method for comprehensive top-down/bottom-up lipid profiling. Analytical and bioanalytical chemistry 402:2923-2933.
    [3]Kim, J., and C. L. Hoppel.2013. Comprehensive approach to the quantitative analysis of mitochondrial phospholipids by HPLC-MS. J Chromatogr B Analyt Technol Biomed Life Sci 912:105-114.
    [4]Masukawa, Y., H. Narita, H. Sato, A. Naoe, N. Kondo, Y. Sugai, T. Oba, R. Homma, J. Ishikawa, Y. Takagi, and T. Kitahara.2009. Comprehensive quantification of ceramide species in human stratum corneum. Journal of lipid research 50:1708-1719.
    [5]Nie, H., R. Liu, Y. Yang, Y. Bai, Y. Guan, D. Qian, T. Wang, and H. Liu.2010. Lipid profiling of rat peritoneal surface layers by online normal-and reversed-phase 2D LC QToF-MS. Journal of lipid research 51:2833-2844.
    [6]Alpert, A. J.1990. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. Journal of chromatography 499: 177-196.
    [7]Zhao, Y. Y, Y. Xiong, and J. M. Curtis.2011. Measurement of phospholipids by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry: the determination of choline containing compounds in foods. Journal of chromatography. A 1218:5470-5479.
    [8]Zheng, L., R. T'Kind, S. Decuypere, S. J. von Freyend, G. H. Coombs, and D. G. Watson.2010. Profiling of lipids in Leishmania donovani using hydrophilic interaction chromatography in combination with Fourier transform mass spectrometry. Rapid communications in mass spectrometry:RCM 24:2074-2082.
    [9]Okazaki, Y, Y Kamide, M. Y. Hirai, and K. Saito.2013. Plant lipidomics based on hydrophilic interaction chromatography coupled to ion trap time-of-flight mass spectrometry. Metabolomics:Official journal of the Metabolomic Society 9:121-131.
    [10]Bielawski, J., Z. M. Szulc, Y. A. Hannun, and A. Bielawska.2006. Simultaneous quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods 39:82-91.
    [11]Samhan-Arias, A. K., J. Ji, O. M. Demidova, L. J. Sparvero, W. Feng, V. Tyurin, Y. Y. Tyurina, M. W. Epperly, A. A. Shvedova, J. S. Greenberger, H. Bayir, V. E. Kagan, and A. A. Amoscato.2012. Oxidized phospholipids as biomarkers of tissue and cell damage with a focus on cardiolipin. Biochimica et biophysica acta 1818: 2413-2423.
    [12]Pham, H. T., A. T. Maccarone, M. C. Thomas, J. L. Campbell, T. W. Mitchell, and S. J. Blanksby.2014. Structural characterization of glycerophospholipids by combinations of ozone-and collision-induced dissociation mass spectrometry:the next step towards "top-down" lipidomics. The Analyst 139:204-214.
    [13]Stegemann, C., I. Drozdov, J. Shalhoub, J. Humphries, C. Ladroue, A. Didangelos, M. Baumert, M. Allen, A. H. Davies, C. Monaco, A. Smith, Q. Xu, and M. Mayr.2011. Comparative lipidomics profiling of human atherosclerotic plaques. Circulation. Cardiovascular genetics A:232-242.
    [14]Shaner, R. L., J. C. Allegood, H. Park, E. Wang, S. Kelly, C. A. Haynes, M. C. Sullards, and A. H. Merrill, Jr.2009. Quantitative analysis of sphingolipids for lipidomics using triple quadrupole and quadrupole linear ion trap mass spectrometers. Journal oflipid research 50:1692-1707.
    [15]Umetrics. Simca-P and multivariate analysis Frequently Asked Questions. In Version 1.01. Umetrics.
    [16]Jia, W.2009. Medical Metabonomics Shanghai Scientific & Technical Publishers, Shanghai.
    [17]Houjou, T., K. Yamatani, M. Imagawa, T. Shimizu, and R. Taguchi.2005. A shotgun tandem mass spectrometric analysis of phospholipids with normal-phase and/or reverse-phase liquid chromatography/electrospray ionization mass spectrometry. Rapid communications in mass spectrometry:RCM19:654-666.
    [18]Murphy, R. C., T. J. Leiker, and R. M. Barkley.2011. Glycerolipid and cholesterol ester analyses in biological samples by mass spectrometry. Biochimica et biophysica acta 1811:776-783.
    [19]Qu, F., S. J. Zheng, S. Liu, Y. Jin, J. L. Zhang, and Z. P. Duan.2013. Identification of sphingolipids as novel noninvasive biomarkers of liver damage caused by chronic hepatitis B. Faseb J.27:1.
    [20]Qu, F., S. J. Zheng, C. S. Wu, Z. X. Jia, J. L. Zhang, and Z. P. Duan.2013. Lipidomic profiling of plasma in patients with chronic hepatitis C infection. Anal Bioanal Chem.
    [21]Demirkan, A., A. Isaacs, P. Ugocsai, G. Liebisch, M. Struchalin, I. Rudan, J. F. Wilson, P. P. Pramstaller, U. Gyllensten, H. Campbell, G. Schmitz, B. A. Oostra, and C. M. van Duijn.2013. Plasma phosphatidylcholine and sphingomyelin concentrations are associated with depression and anxiety symptoms in a Dutch family-based lipidomics study. Journal of psychiatric research 47:357-362.
    [22]Zhou, X., J. Mao, J. Ai, Y. Deng, M. R. Roth, C. Pound, J. Henegar, R. Welti, and S. A. Bigler.2012. Identification of plasma lipid biomarkers for prostate cancer by lipidomics and bioinformatics. PloS one 7:e48889.
    [23]Zhao, D., L. Han, Z. He, J. Zhang, and Y. Zhang.2014. Identification of the plasma metabolomics as early diagnostic markers between biliary atresia and neonatal hepatitis syndrome. PloS one 9:e85694.
    [24]Hammad, S. M., J. S. Pierce, F. Soodavar, K. J. Smith, M. M. Al Gadban, B. Rembiesa, R. L. Klein, Y. A. Hannun, J. Bielawski, and A. Bielawska.2010. Blood sphingolipidomics in healthy humans:impact of sample collection methodology. Journal of lipid research 51:3074-3087.
    [25]Pohjanen, E., E. Thysell, P. Jonsson, C. Eklund, A. Silfver, I. B. Carlsson, K. Lundgren, T. Moritz, M. B. Svensson, and H. Antti.2007. A multivariate screening strategy for investigating metabolic effects of strenuous physical exercise in human serum. Journal of proteome research 6:2113-2120.
    [26]Stenlund, H., A. Gorzsas, P. Persson, B. Sundberg, and J. Trygg.2008. Orthogonal projections to latent structures discriminant analysis modeling on in situ FT-IR spectral imaging of liver tissue for identifying sources of variability. Anal Chem 80:6898-6906.
    [27]Bao, Y., T. Zhao, X. Wang, Y. Qiu, M. Su, W. Jia, and W. Jia.2009. Metabonomic variations in the drug-treated type 2 diabetes mellitus patients and healthy volunteers. J Proteome Res 8:1623-1630.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700