用户名: 密码: 验证码:
VKORC1及CYP2C9基因多态性对房颤射频消融患者华法林抗凝效果的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     越来越多的心房颤动(Atrial fibrillation, AF)患者接受导管射频消融(Radiofrequency catheter ablation, RFCA)治疗, RFCA术出血及血栓栓塞(thromboembolic, TE)并发症多发生在术后早期2周之内,而在华法林初始抗凝阶段按照传统法给药(起始剂量固定,依据INR检测结果调整剂量),INR值经常波动较大。
     细胞色素氧化酶P4502C9(cytochrome P4502C9, CYP2C9)和维生素K环氧化物降解酶复合物1(vitamin K epoxide reductase complex1, VKORC1)基因多态性被认为影响华法林剂量需求最主要的因素。目前研究多分别分析两个基因的多态性对患者敏感性的影响,而两种基因多态性以不同的方式组合对患者敏感性有抵消或叠加的混合效应,实际应用中更需要了解两种基因的共同影响。
     国际华法林药物基因组学联合会CThe International Warfarin Pharmacogenetics Consortium, IWPC)依据不同国家和种族患者的临床和基因学资料,建立了遗传药理学运算模型,初始抗凝时预测患者的稳定剂量,提高初始给药的精准度,理论上可以使患者尽早达到所需要的抗凝目标,减少不良反应的发生,而临床试验比较传统法给药与运算模型法给药对抗凝初期INR控制效果,却得出矛盾的结果。运算模型未能取得预期效果,原因尚未明确,可能因为预测华法林稳定剂量的精准度不足,或者抗凝初始几周即使精准给药也难以控制好INR。此外,抗凝早期获得INR检测值后,遗传药理学给药模型的临床应用价值也未知。
     第一部分VKORC1及CYP2C9基因多态性对房颤射频消融患者华法林抗凝效果的影响
     1研究目的
     探讨VKORC1及CYP2C9基因多态性对AF患者RFCA术前术后华法林抗凝效果的共同影响。
     术前用传统法给药抗凝3周,术后用术前调整所得的剂量为起始剂量开始抗凝,探讨提高初始给药的精准度对AF患者RFCA术后华法林抗凝效果的影响。
     2研究方法
     1)研究对象及分组
     选取接受RFCA术的AF患者287例,要求患者是初次使用华法林且接受我院随访。根据患者术前是否需要华法林抗凝治疗将患者分为A、B两组。
     A组:CHA2DS2-VASC=0的阵发性AF患者125例,术前未予华法林抗凝。
     B组:持续性AF患者或CHA2DS2-VASC≥1分的阵发性AF患者162例,术前需要华法林抗凝3周。
     AB两患者均依据法林敏感指数(warfarin-responsive index WRI)分成WRI=0、WRI=1、WRI=2三个亚组。
     2)基因检测
     采用基于荧光染料的实时定量PCR法对患者进行VKORCl及CYP2C9基因的多态性检测。
     WRI的计算方法:对华法林敏感的VKORCl-1639AA,CYP2C9*1/*3及*3/*3记为“0”,对华法林不敏感的VKORC1-1639AG及GG,CYP2C9*1/*1记为“1”,患者的WRI则等于两种基因型记分之和。WRI反映两种基因的不同基因型组合对华法林敏感性的的共同影响,WRI=0为极度敏感,WRI=1为中度敏感,WRI=2为不敏感。
     3)抗凝方法及术后随访
     B组患者术前用传统法给药抗凝3周,起始剂量3mg/d,术前4天改用低分子肝素“桥接”抗凝,术后起始剂量为术前调整好的剂量。A组患者术后传统法给药的起始剂量3mg/d。
     所有患者在获得稳定抗凝剂量之前,每2-3天检测一次INR,获得稳定抗凝剂量之后,每1-2周检测一次INR。对每个患者随访3个月,详细记录每次INR值,华法林服用量及出血和TE并发症发生情况。
     3研究结果
     1)术后获得稳定华法林剂量的调整时间及各亚组的华法林稳定剂量
     B两组患者术后获得稳定华法林剂量的平均调整时间比A组短4.4天,调整时间的HR(95%Confidence interval,CI)为1.58(1.23-2.02)。
     A组中WRI=2比WRI=1亚组调整时间长6.8天,HR为0.60(0.39-0.91)。B组中不同亚组调整时间均无统计学差异。
     各亚组华法林稳定剂量的平均值(mg/d):A组WRI=1(3.44±0.68)、WRI=0(1.89±0.28).WRI=2(5.81±1.06);B组WRI=1(3.29±0.71),WRI=0(1.83±0.36),WRI=2(5.53±1.15).
     2)首次达到INR>2.0的时间
     B组患者术前WRI=2比WRI=1亚组的平均时间延长2.4天,HR0.59(0.34-0.92)。B组患者术后比术前缩短1.1天,HR1.83(1.41-2.27),术后各亚组之间的平均时间及HR均无统计学差异。
     A组患者术后WRI=2比WRI=1亚组平均时间延长2.5天,HR0.58(0.33-0.84)。A组患者术后的平均时间与B组患者术前相近,长于B组患者术后。3)首次达到INR>4.0的风险
     B组患者术前WRI=0比WRI=1亚组发生率高(28.6%vs9.5%,P<0.05),首次达到INR≥4.0的时间的HR4.36(1.32-30.99)。术后发生率低于术前(4.3%vsl0.5%,P<0.05),HR0.43(0.19-0.95),且术后不同亚组之间的发生率及HR均无统计学差异。
     A组患者术后WRI=0生率高于亚组WRI=1(36.4%vs8.9%,P<0.05),HR5.45(1.36-44.29))。A组患者术后风险与B组患者术前相近,高于B组患者术后。
     所有患者术后的第2月和第3月,INR>4.0的发生率明显低于最初3周,且各个亚组之间的风险均无差异。
     4)出血及TE并发症
     B组患者术前发生小出血5例,术后发生大出血1例,TE并发症1例,A组患者术后发生大出血1例,无TE并发症。
     术后A组小出血发生率高于B组(12.8%vs5.6%,P<0.05),HR为2.38(1.07-5.26)。A组及B组不同亚组之间小出血发生率均无统计学意义。
     所有患者术后的第2月和第3月,小出血的发生率明显低于最初3周,且各个亚组之间的风险均无差异。
     4研究结论
     1)VKORC1及CYP2C9基因多态性相结合可以共同影响患者对华法林敏感性和初始抗凝阶段的抗凝效果。两基因均为对华法林敏感的基因型时,患者过度抗凝及出血并发症的风险增加,两基因均不敏感的基因型时,患者进入华法林治疗窗的时间及获得稳定剂量的调整时间延长。
     2)提高起始剂量的精准度,可以缩短患者进入华法林治疗窗的时间及获得稳定剂量的调整时间,降低患者过度抗凝及出血并发症的风险,减少VKORCl及CYP2C9基因多态性对患者初始抗凝阶段带来的不利影响。
     第二部分评价两种遗传药理学给药模型的临床应用价值
     1研究目的
     1)验证阜外医院建立的遗传药理学运算模型(阜外模型)及IWPC推荐的模型
     (IWPC模型),比较两模型预测汉族AF患者华法林稳定剂量的精准程度。
     2)探讨在获得INR检测结果以后,在不同时段遗传药理学运算模型的临床实用价值。
     3)探讨基因多态性检测的性价比的影响因素。
     2研究方法
     287例患者中有16例患者因为在3个月随访结束时仍然未获得稳定剂量,不纳入本部分的研究。
     分别用两种遗传药理学运算模型计算每位患者预期的稳定剂量。通过3个月的随访中获得每个患者实际的稳定剂量,比较的两组模型预测剂量与实际剂量的符合程度,得出较优的运算模型。评价预测值与实际值符合程度的3个指标:1)平均绝对误差(rnean absolute error, MAE);2)理想预测值的比例,理想预测值定义为与实际值相差在20%以内;3)相关系数(correlation coefficient, r)。
     通过随访获得传统法给药第1周末、第2周末使用的华法林剂量,评价其与实际稳定剂量的符合程度,并与运算模型对比。
     3研究结果
     阜外模型预测精准度优于IWPC模型,MAE(0.38±0.16vs0.52±0.21mg,P<0.05)理想预测值的比例(46.1%vs34.7%,P>0.05)、r(0.72vs0.62)。
     阜外模型预测剂量与实际剂量的符合程度近似于传统法第1周末剂量的符合程度。MAE(0.38±0.16vs0.32+0.13mg,P>0.05)、理想预测值的比例(46.1%vs50.2%,P>0.05)、r(0.72vs0.77);劣于第2周末剂量的符合程度MAE(0.38+0.16vs0.12±0.05mg,P<0.05)、理想预测值的比例(46.1%vs84.1%,P<0.05)、r(0.72vs0.91)。
     WPI≠1的患者,预测模型法预测剂量与实际剂量的吻合程度优于传统法第1周末剂量。
     4研究结论
     1)对于中国汉族患者,阜外模型预测华法林稳定剂量的精准程度优于IWPC推荐的模型。IWPC推荐的运算模型难以在所有国家和种族都获得最佳的预测效果。
     2)抗凝开始1周以后,INR检测值所能提供的预测价值不逊于遗传信息,遗传药理学运算模型临床实用价值显著下降。
     3)基因多态性检测性价比的影响因素:a.某种族各等位基因的频率分布,b.两种基因均出现突变的基因型时的平均稳定剂量与某种族华法林常用起始剂量的差异,c.患者出血及TE并发症的风险。
Background
     The radiofrequency catheter ablation (RFCA) has been widely used in patients with atrial fibrillation (AF). RFCA related bleeding and thromboembolism (TE) usually occurs in2weeks, and at the initial phrase of administration of warfarin, the fluctuate of INR is usually large.
     Cytochrome P4502C9(CYP2C9) and vitamin K epoxide reductase complex1(VKORC1) have been proved as the main factors attributed for the efficacy of warfarin. Previous studies investigated the associations between the polymorphisms of these two genes and the stabilized dose of warfarin separately, while the interaction between these two genes in terms of the effect on warfarin has rarely been investigated.
     The International Warfarin Pharmacogenetics Consortium (IWPC) developed the pharmacogenetics algorithm to predict the stabilized dose of warfarin based on the clinical and genetic data of different countries and races, which may improve the accuracy of initial dose and theoretically shorten the time to reach the anticoagulation goal, resulting in less adverse events. However, the clinical utility of pharmacogenetics algorithm has been tested in clinical trials with equivocal results, a large number of patients did not improve anticoagulation control with the pharmacogenetics algorithm, which may be contributed to the poor accuracy of the algorithm. In addition, the value of the pharmacogenetics algorithm when the therapy of anticoagulation has been started is still to be described.
     Section1The association between the polymorphisms of VKORC1and CYP2C9genes and the anticoagulation control of warfarin for patients with atrial fibrillation underwent radiofrequency catheter ablation
     Objectives
     1, To investigate the association between the polymorphisms of VKORC1and CYP2C9genes and the anticoagulation control of warfarin for patients with atrial fibrillation underwent radiofrequency catheter ablation.
     2. Titrate the dose of warfarin based on INR from3weeks before operation, and start the administration of warfarin with the adjusted dose. Investigate the influence of improving the accuracy of administration on the anticoagulating effect in AF patients after RFCA. Methods
     Two hundred and eighty-seven AF patients underwent RPCA who were not treated with warfarin was enrolled. Patients were divided to2grouped according to the indications for therapy of warfarin before operation. Patients in group A were with CHA2DS2-VASC score of0, and warfarin therapy was not administrated before operation. Patients in group B were with permanent AF or CHA2DS2-VASC score≥1, and pre-operational warfarin therapy was administrated. Patients in both groups were divided to three subgroups according to their warfarin-responsive index (WRI).
     Real-time PCR was used to test the polymorphisms of VKORC1and CYP2C9genes. WRI was calculated based on the sensitivity of polymorphisms on warfarin. Warfarin-sensitive polymorphisms including VKORC1-1639AA, CYP2C9*l/*3and*3/*3were scored to0, and non-warfarin-sensitive polymorphisms including VKORC1-1639AG and GG, CYP2C9*1/*1were scored to1. The patient's WRI was the total scores of these two genotypes. WRI reflected the combined effect of the above genes on warfarin-sensitivity. Zero score of WRI indicates high sensitive,1for medium sensitive and2for non-sensitive.
     Warfarin was administrated with the initial dose of3mg/day for3weeks before operation in group B, and low molecular weight heparin was used to replace warfarin4days before operation. The warfarin with the last dose before operation was administrated in the next day after operation. Warfarin was administrated with the initial dose of3mg/day after operation in group A. Patients were followed up for3months, and INR, dose of warfarin, and complications including bleeding and TE were recorded.
     Results
     The time to reach the stabilized dose of warfarin after operation was4.4days' shorter in group B than in group A. The HR of adjusting time was1.58(95%CI1.23-2.02).
     In group A, the adjusting time of subgroup with WRI=2had6.8days'longer than the time of subgroup with WRI=1(HR=0.60,95%CI0.39-0.91). There was no difference of adjusting time between subgroups with different WRIs in group B.
     The stabilized doses of warfarin in subgroups were:in group A, WRI=1(3.44±0.68), WRI=0(1.89±0.28), WRI=2(5.81±1.06); in group B, WRI=1(3.29±0.71), WRI=0(1.83±0.36), WRI=2(5.53±1.15).
     Before operation, the time to reach the goal of INR≥2in subgroup of group B with WRI=2was2.4days'longer than the time in subgroup of group B with WRI=1(HR=0.59,95%CI0.34-0.92). The time to reach the goal of INR≥2in subgroup of group A with WRI=2was2.5days'longer than the time in subgroup of group A with WRI=1(HR=0.58,95%CI0.33-0.84).
     The time of INR≥2in group B was1.1days'shorter than the time before operation (HR=1.83,95%CI1.41-2.27). No difference between subgroups in terms of the time after operation to reach the goal was observed.
     The incidence of INR≥4.0in subgroup of group B with WRI=0was higher than the one in subgroup with WRI=1(28.6%vs9.5%, P<0.05; HR=4.36,95% CI1.32-30.99). The incidence of INR≥4.0in subgroup of group A with WRI=0was higher than the one in subgroup with WRI=1(36.4%vs8.9%, P<0.05; HR=4.36,95% CI1.32-1.36-44.29).
     In group B, the after operation was lower compared with the incidence before operation (4.3%vs10.5%, P<0.05; HR=0.43,95%CI0.19-0.95). No difference of incidence of INR≥4.0between subgroups was observed.
     In2months and3months after operation, the incidence of INR≥4.0was lower compared with3weeks after operation.
     In group B, minor bleeding was occurred in5patients, major bleeding in1patient, TE in1patient. In group A, major bleeding was observed in1patient, and no TE was observed.
     Conclusions
     In patient with both warfarin-sensitive genotype in VKORC1and CYP2C9genes, the risk of over-anticoagulation and bleeding was elevated. In contrast, in patient with neither warfarin-sensitive genotype in above two genes, the time to reach the therapeutic window and stabilized dose will be prolonged.
     The improvement of accuracy of initial dose may shorten the time to reach the therapeutic window and stabilized dose, and reduce the risk of over-anticoagulation and bleeding, which may reduce the adverse effect of the polymorphisms in VKORC1and
     CYP2C9genes.
     Section2The assessment of two pharmacogenetics algorithms
     Objectives
     To evaluate the accuracy of the to predict the warfarin stabilized dose in Chinese Han population with AF.
     To assess the clinical value of the pharmacogenetics algorithms when the therapy of anticoagulation has been started.
     To investigate the factors affecting cost-effectiveness of genotype-guided warfarin dosing
     Methods
     The stabilized dose of warfarin was calculated with2pharmacogenetics algorithms. The realistic stabilized doses after3months follow-up was recorded and compared with the calculated doses. Three indices were used to assess the agreement:mean absolute error (MAE), the rate of acceptable predicting value which was defined as difference no more than20%compared with realistic value, and correlation coefficient. These indices were compared between algorithms in1and2weeks.16patients who fail to acquire stable dose during the follow-up were excluded.
     Results
     The algorithm developed by fuwaihospital was better than the algorithm of IWPC with higher MAE (0.38±0.16vs0.52±0.21mg, P<0.05), higher rate of acceptable predicting value (46.1%vs34.7%, P>0.05), and higher correlation coefficient (0.72vs0.62).
     Fuwai-algorithm was similar to realistic dose at1week follow-up in terms of MAE(0.38±0.16vs0.32±0.13mg, P>0.05), rate of acceptable predicting value(46.1%vs50.2%, P>0.05), and correlation coefficient (0.72vs0.77). However, the accuracy was not as well as the realistic dose at2weeks follow-up in terms of MAE(0.38±0.16vs0.12±0.05mg, P<0.05)、rate of acceptable predicting value (46.1%vs84.1%, P<0.05), and correlation coefficient (0.72vs0.91).
     In patients who WRI≠1, the accuracy of our algorithmwas better thanrealistic dose at1week follow-up, but in patients who WRI=1, the accuracy was not as well as realistic dose at1week follow-up. Conclusions
     Fuwai-algorithm has higher accuracy than the algorithm of IWPC. The algorithm of IWPC may not the best algorithm for every countries and races.
     The pharmacogenetics algorithm should be considered in patients with high risk for bleeding and TE and patients after RFCA. However, when anticoagulation therapy has been started for more than1week, the information supplied by the algorithm adds little value beyond the INR monitor. Factors which affect cost-effectiveness of genotype-guided warfarin dosing:frequencies of genetic variant distribution; difference between the average stabilized dose when both genes were mutated and common starting dose of race;risk ofpatients with bleeding and TE complications.
引文
1. Gillinov, AM, Petterson G, Rice TW. Esophageal injury during radiofrequency ablation for atrial fibrillation[J]. J Thorac Cardiovasc Surg,2001;12:627-633
    2. Jalife J. Rotors and spiral waves in atrial fibrillation[J]. J Cardiovasc Electrophysiol, 2003;14:776-780
    3. Huang CX, Zhao QY, Jiang H, et al. Experimental study of the effect of the vagus nerve on atrial electrical remodeling [J]. J Electrocardiol,2003;36:295-300
    4. Miyauchi Y, Zhon S, Okuyama Y, et al. Altered atrial electrical restitution and heterogeneous sympathetic hyperinnervation in hearts with chronic left ventricular myocardial infarction:implications for atrial fibrillation[J]. Circulation,2003;1 08:360-366
    5. Haissaguerre M, Shah DC, Jais E, et al. Electrophysiological breakthroughs from the left atrium to the pulmonary vein[J]. Circulation,2000;102:2463-2465
    6. Morady F. Catheter ablation of supraventricular arrhythmias:state of the art[J]. J Cardiovas Electrophysiol,2004; 15:124-139
    7. Pappone C, Rosanio S, Augello G, et al.Mortality,morbidity and quality of life after circumferential pulmonary vein ablation for atrial fibrillation:outcomes from a controlled nonrandomized long-term study[J]. J Am Coll Cardiol,2003;42:185-197
    8. Sparks PB, Jayaprakash S, Vohra JK, et al. Left atrial "stunning" following radiofrequency catheter ablation of chronic atrial flutter[J]. J Am Coll Cardiol, 1998;32:468-75.
    9. Calkins H, Bmgada J, Douglas L, et al. HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation:recommendations for personnel,policy, procedures and follow up[J]. Heart Rhythm,2007;6(4):1
    10. Wazni OM, Beheiry S, Fahmy T, et al. Atrial fibrillation ablation in patients with therapeutic international normalized ratio:comparison of strategies of anticoagulation management in the periprocedural period[J]. Circulation, 2007; 116:2531-4.
    11. Scherr D, Sharma K, Dalal D, et al. Incidence and Predictors of Periprocedural Cerebrovascular Accident in Patients Undergoing Catheter Ablation of Atrial Fibrillation[J]. J Cardiovas Electrophysiol,2009;20(12):1357-63.
    12. Oral H, Chugh A, Ozaydin M, et al. Risk of thromboembolic events after percutaneous left atrial radiofrequency ablation of atrial fibrillation[J]. Circulation, 2006;114:759-65.
    13. Cappato R, Calkins H, Chen SA, et al. Updated worldwidesurvey on the methods, efficacy, and safety of catheter ablation for humanatrial fibrillation[J]. Circ Arrhythm Electrophysiol,2010;3(1):32-8.
    14. David Snipelisky, Christine Kauffman, Karin Prussak, et al. A comparison of bleeding complications post-ablation between warfarin and dabigatran[J].. J Interv Card Electrophysiol,2012;35:29-33
    15. Linkins LA, Choi PT, Douketis JD. Clinical impact of bleeding in patients taking oral anticoagulant therapy for venous thromboembolism:a meta-analysis[J]. Ann Intern Med,2003; 139:893-900.
    16. Hylek EM, Evans-Molina C, Shea C, et al. Major hemorrhage and tolerability of warfarin in the first year of therapy among elderly patients with atrial fibrillation[J]. Circulation,2007; 115:2689-2696.
    17. Ansell J, Hirsh J, Poller L, et al. The pharmacology and management of the vitamin K antagonists:the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy [J]. Chest,2004;126 (3 Suppl):204S-233S.
    18. Takahashi H, Echizen H. Pharmacogenetics of warfarin elimination and its clinical implications[J]. Clin Pharmacokinet,2001;40 (8):587-603.
    19. Stehle S, Kirchheiner J, Lazar A, et al. Pharmacogenetics of oral anticoagulants:a basis for dose individualization[J]. Clin Pharmacokinet,2008;47:565-594.
    20. Sanderson S, Emery J, Higgins J. CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients:a HuGEnet systematic review and meta-analysis[J]. Genet Med,2005;7:97-104.
    21. Lindh JD, Holm L, Andersson ML, et al. Influence of CYP2C9 genotype on warfarin dose requirements-a systematic review and meta-analysis[J].Eur J Clin Pharmacol,2009;65:365-375.
    22. Wadelius M, Chen I Y, Lindh JD, et al. The largest prospective warfarin-treated cohort supports genetic forecasting [J]. Blood,2009;113(4):784-792.
    23. Nakai K, Tsuboi J, Okabayashi H, et al. Ethnic differences in the VKORC1 gene polymorphism and an association with warfarin dosage requirements in cardiovascular surgery patients[J]. Pharmacogenomics,2007;8:713-719.
    24. Reitsma PH, van der Heijden JF, Groot AP, et al. A C1173T dimorphism in the VKORC1 gene determines coumarin sensitivity and bleeding risk[J]. PLoS Med, 2005;2(10):e312.
    25. Kimura R, Miyashita K, Kokubo Y, et al. Genotypes of vitamin K epoxide reductase, y-glutamyl carboxylase, and cytochrume P450 2C9 as determinants of daily warfarin dose in Japanese patients[J]. Thromb Res,2007; 120:181-186.
    26. Miao L, Yang J, Huang C, et al. Contribution of age, body weight, and CYP2C9 and VKORC1 genotype to the anticoagulant response to warfarin:proposal for a new dosing regimen in Chinese patients[J]. Eur J Kin Pharmacol,2007;63:1135-1141.
    27. Zhu Y, Shen nan M, Reynoi ds, et al. Estimation of warfarin maintenance dose based on VKORC1 (-1639 G>A)and CYP2C9 genotypes[J]. Clin Chem,2007;53(7): 1199-1205.
    28. Millican EA, Lenzini PA, Milligan PE, et al. Genetic-based dosing in orthopedic patients beginning warfarin therapy[J]. Blood,2007;110:1511-1515.
    29. Wu AH, Wang P, Smith A, et al. Dosing algorithm for warfarin using CYP2C9 and VKORC1 genotyping from n multiethnic population comparison with other equations[J]. Pharmacogenomics,2008;9:169-178.
    30. Klein TE, Altman RB, Eriksson N, et al. The International Warfarin Pharmacogeneties Consortium.Estimation of the warfarin dose with clinical and pharmacogenetic data[J]. N Engl J Med,2009;360:753-764
    31. Anderson JL, Home BD, Stevens SM, et al. Randomized and Clinical Effectiveness Trial Comparing Two Pharmacogenetic Algorithms and Standard Care for Individualizing Warfarin Dosing (CoumaGen-II) [J]. Circulation,2012;125: 1997-2005.
    32. Pirmohamed M, Burnside G, Eriksson N, et al. A randomized trial of genotype-guided dosing of warfarin[J]. N Engl J Med,2013;369(24):2294-303.
    33. Kimmel SE, French B, Kasner SE, et al. A pharmacogenetic versus a clinical algorithm for warfarin dosing[J]. N Engl J Med,2013;369(24):2283-93
    34. AR.Patrick, Jerry Avorn, Niteesh K. Choudhry, et al. Cost-Effectiveness of Genotype-Guided Warfarin Dosing for Patients With Atrial Fibrillation[J]. Circ Cardiovasc Qual Outcomes,2009;2:429-436.
    35. Bassiouny M, SalibaW, Rickard J, et al. Use of dabigatran for peri-procedural anticoagulation in patients undergoing catheter ablation for atrial fibrillation[J]. Circ Arrhythm Electrophysiol,2013;6:460-6.
    36. Imamura K, Yoshida A, Takei A, et al. Dabigatran in the peri-procedural period for radiofrequency ablation of atrial fibrillation:efficacy, safety, and impact on duration of hospital stay[J]. J Interv Card Electrophysiol,2013;37(3):223-31
    37. Kim JS, She F, Jongnarangsin K, et al. Dabigatran vs warfarin for radiofrequency catheter ablation of atrial fibrillation[J]. Heart Rhythm,2013;10:483-9.
    38. Lakkireddy D, Reddy YM, Di Biase L, et al. Feasibility and safety of dabigatran versus warfarin for periprocedural anticoagulation in patients undergoing radiofrequency ablation for atrial fibrillation:results from amulticenter prospective registry[J]. J Am Coll Cardiol,2012;59:1168-74.
    39. Snipelisky D, Kauffman C, Prussak K, et al. A comparison of bleeding complications post-ablation between warfarin and dabigatran. J Interv Card Electrophysiol,2012;35:29-33.
    40. Yamaji H, Murakami T, Hina K, et al. Usefulness of dabigatran etexilate as periprocedural anticoagulation therapy for atrial fibrillation ablation[J]. Clin Drug Investig,2013;33:409-18,
    41. Providencia R, Albenque JP, Combes S, et al. Safety and efficacy of dabigatran versus warfarin in patients undergoing catheter ablation of atrial fibrillation:a systematic review and meta-analysis[J]. Heart,2014;100(4):324-35.
    42. BA. Steinberg, Vic Hasselblad, BD. Atwater, et al. Dabigatran for periprocedural anticoagulation following radiofrequency ablation for atrial fibrillation:a meta-analysis of observational studies[J]. J Interv Card Electrophysiol, 2013;37:213-221.
    43. Lakkireddy D, Reddy YM, Di Biase L, et al. Feasibility and safety of uninterrupted rivaroxaban for periprocedural anticoagulation in patients undergoing radiofrequency ablation for atrial fibrillation:results from a multicenter prospective registry[J]. J Am Coll Cardiol,2014;18,63(10):982-8.
    44. Providencia R, Marijon E, Albenque JP, et al. Rivaroxaban and dabigatran in patients undergoing catheter ablation of atrial fibrillation. Europace,2014; Feb 18. [Epub ahead of print].
    45. Stepanyan G, Badhwar N, Lee RJ, et al. Safety of new oral anticoagulants for patients undergoing atrial fibrillation ablation. J Interv Card Electrophysiol,2014; Mar 19. [Epub ahead of print].
    46. Chun Li, UI Schwarz, MD. Ritchie, et al. Relative contribution of CYP2C9 and VKORC1 genotypes and early INR response to the prediction of warfarin sensitivity during initiation of therapy[J]. Blood,2009;113:3925-3930.
    47. Ferder NS, Eby CS, Deych E, et al. Ability of VKORC1 and CYP2C9 to predict therapeutic warfarin dose during the initial weeks of therapy[J]. Journal of Thrombosis and Haemostasis,2009;8:95-100.
    48.Schulman S,Kearon C. Subcommittee on Control of Anticoagulation of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis:Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients[J].Thromb Haemost, 2005:3:692-694.
    49.Obayashi K,Nakamura K,Kawana J,et al.VKORC1 gene variations are the major contributions of variation in warfarin dose in Japanese patients[J].Clin Pharmacol Ther,2006;80:169-178
    50.Veenstra DL,You JHS,Rieder MJ,et al.Association of Vitamin K epoxide reductase complex 1(VKORC1)variants with warfarin dose in a Hong Kong Chinese patients population[J].Pharmacogenetics and Genomics,2005;15:687-691
    51.N.A.Limdi,H.Wiener,J.A.Goldstein,et al.Influence of CYP2C9 and VKORC1 on warfarin response during initiation of therapy[J]. Blood, Cells,Molecules, and Diseases 2009:43:119-128
    52.盛琴慧,丁燕生,杨俊娟,任自文.华法林抗凝治疗的临床现状分析[J]。中国综合临床2005;21(12):1068.1069.
    53.肖荣冬,翁国星,谢维泉,韩涛,陈同.中国南方人机械瓣置换术后121服抗凝药标准的临床研究,中国综合临床[J].2004;20(12):1126.1127.
    54.Geisen C,Watzka M,Sittinger K,et al.VKORC1 haplotypes and their impact on the inter-individual and inter-ethnical variability of oral anticoagulation[J]. Thrombosis&Haemostasis,2005;94:773-779.
    55.DAndrea G,DAmbrosio RL,Di Perna P,et al.A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose anticoagulant effect of warfarin[J].Blood,2005;105:645-649.
    56.Yuan HY, Chen JJ,Lee MT,et al.A novel functional VKORC1 promoter polymorphism isassociated with inter-individual and inter-ethnic differences in warfarin sensitivity[J].Hum Mol Genet,2005;14(13):1745-1751.
    57.唐和年,张总刚,杜宇奎.新疆汉族和维吾尔族健康人群VKORC1启动子区基 因多态性研究[J].中国优生与遗传杂志[J].2007.15(3):16-18.
    58.Xie HG,Prasad HC,Kim RB,et al.CYP2C9 allelic variants:ethnic distribution and functional significance[J].Adv Drug Deliv Rev 2002;54(10):1257-1270.
    59.Gaikovitch EA.Cascorbi I,Mrozikiewicz PM.et al.Polymorphisms of drug-metabolizing enzymes CYP2C9,CYP2C 19,CYP2D6,CYP1 A1.NA 12 and of P-glycoprotein in a Russian population[J]. Eur J Clin Pharmacol,2003;59(4): 303-312.
    60. Lee CR, Coldstein JA, Pieper JA. Cytochrome P450 2C9 polymorphisms:a comprehensive review of the in-vitro and hunman data[J]. Phammcogeneties,2002; 12(3):251-263.
    61. Schwarz UI, Ritchie MD, Bradford Y, et al. Genetic determinants of response to warfarin during initial anticoagulation[J]. N Engl J Med,2008;358:999-1008
    62. Shi Long Zhong, Yuan Liu, Xi-Yong Yu, et al. The influence of genetic polymorphisms and interacting drugs on initial response to warfarin in Chinese patients with heart valve replacement[J]. Eur J Clin Pharmaco,l 2011;67:581-590.
    63. Cong Ma, Yuxiao Zhang, Qiang Xu, et al. Influence of warfarin dose-associated genotypes on the risk of hemorrhagic complications in Chinese patients on warfarin[J]. Int J Hematol,2012;96:719-728.
    64. Leung AY, Chow HC, Kwong YL, et al. Genetic polymorphism in exon 4 of cytochrome P450(CYP2C9)may be associated with warfarin sensitivity in Chinese patients[J]. Blood,2001;98:2584-2587.
    65. Anderson JL, Home BD, Stevens SM, et al. Randomized trial of henotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation[J]. Circulation,2007; 116:2563-2570.
    66. Sheng-Wen Huang, Hai-Sheng Chen, Xian-Qun Wang, et al. Validation of VKORC1 and CYP2C9 genotypes on interindividual warfarin maintenance dose:a prospective study in Chinese patients[J]. Pharmacogenetics and Genomics, 2009; 19:226-234.
    67. Marin-Leblanc M, Perreault S, Bahroun I,et al. Validation of warfarin pharmacogenetic algorithms in clinical practice[J].Pharmacogenomics, 2012;13(1):21-9.
    68. Gage B, Eby C, Johnson J, Deych E, et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin Clinical[J]. Pharmacology & Therapeutics,2008;84:326-331.
    69. Lei X, Guo Y, Sun J, et al.Accuracy assessment of pharmacogenetic algorithms for warfarin dose prediction in Chinese patients[J]. Am J Hematol,2012;87(5):541-4.
    70. Shin J, Cao D.Comparison of warfarin pharmacogenetic dosing algorithms in a racially diverse large cohort[J]. Pharmacogenomics,2011;12(1):125-34.
    71. Yu Liu, Jie Yang, Qiang Xu, et al.Comparative performance of warfarin pharmacogenetic algorithms in Chinese patients [J]. Thrombosis Research, 2012;130:435-440
    72. Zhao L, Chen C, Li B,et al. Verification of pharmacogenetics-based warfarin dosing algorithms in han-chinese patients undertaking mechanic heart valve replacement [J]. PLoS One,2014;119(4):e94573.
    73. Wei M, Ye F, Xie D, Zhu Y, et al. A new algorithm to predict warfarin dose from polymorphisms of CYP4F2, CYP2C9 and VKORC1 and clinical variables: Derivation in Han Chinese patients with non valvular atrial fibrillation[J]. Thrombosis and haemostasis,2012; 107:1083.
    74. Lazo-Langner A, Monkman K, Kovacs MJ.et al. Predicting warfarin maintenance dose in patients with venous thromboembolism based on the response to a standardized warfarin initiation nomogram[J].J Thromb Haemost,2009;7(8): 1276-83.
    75. Lenzini P, Wadelius M, Kimmel S, et al. Integration of genetic, clinical, and INR data to refine warfarin dosing[J].Clin Pharmacol Ther,2010;87(5):572-8.
    76. Eckman MH, Rosand J, Greenberg SM, et al. Cost-effectiveness of using pharmacogenetic information in warfarin dosing for patients with nonvalvular atrial fibrillation[J].Ann. Intern. Med,2009; 150(2),73-83 (2009). You JH, Tsui KK, Wong RS, et al:Potential clinical and economic outcomes of CYP2C9 and VKORC1 genotypeguided dosing in patients starting warfarin therapy[J]. Clin. Pharmacol Ther,2009;86(5),540-547.
    1. Scherr D, Sharma K, Dalal D, et al. Incidence and Predictors of Periprocedural Cerebrovascular Accident in Patients Undergoing Catheter Ablation of Atrial Fibrillation[J]. J Cardiovasc Electrophysiol,2009;20(12):1357-63.
    2. Oral H, Chugh A, Ozaydin M, et al. Risk of thromboembolic events after percutaneous left atrial radiofrequency ablation of atrial fibrillation[J]. Circulation, 2006;114:759-65.
    3. Bertaglia E, Zoppo F, Tondo C, et al. Early complications of pulmonary vein catheter ablation for atrial fibrillation:a multicenter prospective registry on procedural safety[J]. Heart Rhythm,2007; 1265-71.
    4. Cappato R, Calkins H, Chen SA, et al.Updated worldwidesurvey on the methods, efficacy, and safety of catheter ablation for humanatrial fibrillation[J]. Circ Arrhythm Electrophysiol,2010;3(1):32-8.
    5. Sparks PB, Jayaprakash S, Vohra JK, et al. Left atrial "stunning" following radiofrequency catheter ablation of chronic atrial flutter[J]. J Am Coll Cardiol, 1998;32:468-75.
    6. Calkins H, Bmgada J, Douglas L, et al. HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation:recommendations for personnel,policy, procedures and follow up[J]. Heart Rhythm,2007;6(4):1
    7. Calkins H, Kuck KH, Cappato R, et al.2012 HRS/EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation:recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design[J].Europace,2012;14(4):528-606.
    8. Scherr D, Dalal D, Chilukuri K, et al. Incidence and predictors of left atrial thrombus prior to catheter ablation of atrial fibrillation[J]. J Cardiovasc Electrophysiol, 2009;20:379-84.
    9. Natale A, Raviele A, Arentz T, et al. Venice Chart international consensus document on atrial fibrillation ablation[J]. J Cardiovasc Electrophysiol,2007;18:560-80.
    10. Wazni OM, Beheiry S, Fahmy T, et al. Atrial fibrillation ablation in patients with therapeutic international normalized ratio:comparison of strategies of anticoagulation management in the periprocedural period[J]. Circulation, 2007; 116:2531-4.
    11. Nademanee K, Schwab MC, Kosar EM, et al. Clinical outcomes of catheter substrate ablation for high-risk patients with atrial fibrillation[J]. J Am Coll Cardiol, 2008;51:843-9.
    12. Shah AN, Mittal S, Sichrovsky TC, et al. Long-term outcome following successful pulmonary vein isolation:pattern and prediction of very late recurrence[J]. J Cardiovasc Electrophysiol,2008;19:661-7.
    13. Douketis JD, Berger PB, Dunn AS, et al. The perioperative management of antithrombotic therapy:American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition) [J]. Chest,2008;133:299S-339S.
    14.京敏,刘少稳,聂振宁,等.持续性与阵发性心房颤动导管射频消融肺静脉电隔离的抗凝治疗[J].中国心脏起搏与心电生理杂志,2007,21(2):116
    15. Schmidt M, Segerson NM, Marschang H, et al. Atrial fibrillation ablation in patients with therapeutic international normalized ratios [J]. Pacing Clin Electrophysiol, 2009;32:995-9.
    16. Ren JF, Marchlinski FE, Callans DJ, et al. Increased intensity of anticoagulation may reduce risk of thrombusduring atrial fibrillation ablation procedures in patients with spontaneous echo contrast[J]. J Cardiovasc Electrophysiol,2005; 16:474-7.
    17. Wazni OM, Rossillo A, Marrouche NF, et al.Embolic events and char formation during pulmonary vein isolation in patients with atrial fibrillation:impact of different anticoagulation regimens and importance of intracardiac echo imaging[J]. J Cardiovase Electrophysiol,2005;6(16):576
    18. Prudente LA, Moorman JR, Lake D, et al. Femoral vascular complications following catheter ablation of atrial fibrillation[J]. J Interv Card Electrophysiol, 2009;26:59-64.
    19. Shea JB. Anticoagulation practice in cardiac electrophysiology[J]. Heart Rhythm, 2006;3:372-4.
    20. Seow SC, Lim TW, Koay CH, et al. Efficacy and late recurrences with wide electrical pulmonary vein isolation for persistent and permanent atrial fibrillation[J]. Europace,2007;9:1129-33.
    21. Bunch TJ, Crandall BG, Weiss JP, et al. Warfarin Is Not Needed in Low-Risk Patients Following Atrial Fibrillation Ablation Procedures[J]. J Cardiovasc Electrophysiol,2009;20:988-93.
    22. Themistoclakis S,Corrado A,Marchlinski FE,et al.The risk of thremboembolism and need for oral anticoagulation after successful atrial fibrillation ablation[J].J Am Coll Cardiol,2010;55(8):744
    23. Israel CW, Gmnereid G, Ehdieh JR., et al. Long-time risk of recurrent atrial fibrillation as documented by all implantable monitoring device implications for optimal patient care[J]. J Am Coll Cardiol,2004;43:47-52.
    24. Di Biase L, Burkhardt JD, Mohanty P, et al. Periprocedural stroke and management of major bleeding compli-cations in patients undergoing catheter ablation of atrial fibrillation:the impact of periprocedural therapeutic international normalized ratio[J]. Circulation,2010;121:2550-2556.
    25. Gautam S, John RM, Stevenson WG, et al. Effect of therapeutic INR on activated clotting times, heparin dosage, and bleeding risk during ablation of atrial fibrillation[J]. J Cardiovasc Electrophysiol,2011;22:248-254.
    26. Hayes CR, Keane D. Safety of atrial fibrillation ablation with novel multi-electrode array catheters on uninterrupted anticoagulation-a single-center experience[J]. J Interv Card Electrophysiol,2010;27:117-122.
    27. Kwak JJ, Pak HN, Jang JK, et al. Safety and convenience of continuous warfarin strategy during the periprocedural period in patients.who underwent catheter ablation of atrial fibrillation[J] J Cardiovasc Electrophysiol,2010;21:620-625.
    28. Page SP, Siddiqui MS, Finlay M, et al. Catheter ablation for atrial fibril-lation on uninterrupted warfarin:can it be done without echo guidance? [J] J Cardiovasc Electrophysiol,2011;22:265-270.
    29. Wazni OM, Beheiry S, Fahmy T, et al. Atrial fibrillation ablation in patients with therapeutic international normalized ratio:comparison of strategies of anticoagulation man-agement in the periprocedural period[J]. Circulation, 2007;116:2531-2534.
    30. Hakalahti A, Uusimaa P, Ylitalo K, et al. Catheter ablation of atrial fibrillation in patients with therapeutic oral anticoagulation treatment[J]. Europace,2011;13:640-645.
    31. Pasquale Santangeli, Luigi Di Biase, Rodney Horton, et al.Ablation of atrial fibrillation under therapeutic warfarin reduces periprocedural complications evidence from a Meta-Analysis[J]. Circ Arrhythm Electrophysiol,2012;5:302-311.
    32. Bassiouny M, SalibaW, Rickard J, et al. Use of dabigatran for peri-procedural anticoagulation in patients undergoing catheter ablation for atrial fibrillation[J]. Circ Arrhythm Electrophysiol,2013;6:460-6.
    33. Imamura K, Yoshida A, Takei A, et al. Dabigatran in the peri-procedural period for radiofrequency ablation of atrial fibrillation:efficacy, safety, and impact on duration of hospital stay[J]. J Interv Card Electrophysiol,2013;37(3):223-31
    34. Kim JS, She F, Jongnarangsin K, et al. Dabigatran vs warfarin for radiofrequency catheter ablation of atrial fibrillation[J]. Heart Rhythm 2013;10:483-9.
    35. Lakkireddy D, Reddy YM, Di Biase L, et al. Feasibility and safety of dabigatran versus warfarin for periprocedural anticoagulation in patients undergoing radiofrequency ablation for atrial fibrillation:results from amulticenter prospective registry [J]. J Am Coll Cardiol,2012;59:1168-74.
    36. Snipelisky D, Kauffman C, Prussak K, et al. Acomparison of bleeding complications post-ablation between warfarin and dabigatran [J]. J Interv Card Electrophysiol, 2012;35:29-33.
    37. Yamaji H, Murakami T, Hina K, et al. Usefulness of dabigatran etexilate as periprocedural anticoagulation therapy for atrial fibrillation ablation[J]. Clin Drug Investig,2013;33:409-18.
    38. Providencia R, Albenque JP, Combes S, et al. Safety and efficacy of dabigatran versus warfarin in patients undergoing catheter ablation of atrial fibrillation:a systematic review and meta-analysis[J].Heart,2014;100(4):324-35.
    39. BA. Steinberg, Vic Hasselblad, BD. Atwater, et al. Dabigatran for periprocedural anticoagulation following radiofrequency ablation for atrial fibrillation:a meta-analysis of observational studies[J]. J Interv Card Electrophysiol, 2013;37:213-221
    40. Lakkireddy D, Reddy YM, Di Biase L, et al. Feasibility and safety of uninterrupted rivaroxaban for periprocedural anticoagulation in patients undergoing radiofrequency ablation for atrial fibrillation:results from a multicenter prospective registry [J]. J Am Coll Cardiol,2014;18,63(10):982-8.
    41. Providencia R, Marijon E, Albenque JP, et al. Rivaroxaban and dabigatran in patients undergoing catheter ablation of atrial fibrillation[J]. Europace,2014; 18. [Epub ahead of print].
    42. Stepanyan G, Badhwar N, Lee RJ, et al. Safety of new oral anticoagulants for patients undergoing atrial fibrillation ablation [J]. J Interv Card Electrophysiol,2014 Mar 19. [Epub ahead of print].
    43. Wehermann A, Brodmann M, Domanovits H, et al. Dabigatran in patients with atrial fibrillation:Perioperative andperiinten, entional management [J]. Wien Klin Wochenschr,2012;124(9-10):340-347.
    1. Ansell J, Hirsh J, Poller L, et al. The pharmacology and management of the vitamin K antagonists:the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy[J]. Chest,2004,126 (3 Suppl):204S-233S.
    2. Miao L, Yang J, Huang C, et al. Contribution of age, body weight, and CYP2C9 and VKORC1 genotype to the anticoagulant response to warfarin:proposal for a new dosing regimen in Chinese patients[J]. Eur J Kin Pharmacol,2007;63:1135-1141.
    3. Nelsestuen GL, Zytkovicz TH, Howard JB. The mode of action of vitamin K. Identification of gamma-carboxyglutamic acid as a component of prothrombin[J]. J Biol Chem,1974;249(19):6347-6350.
    4. Stehle S, Kirchheiner J, Lazar A, et al. Pharmacogenetics of oral anticoagulants:a basis for dose individualization.Clin Pharmacokinet,2008;47:565-594.
    5. Takahashi H, Echizen H. Pharmacogenetics of warfarin elimination and its clinical implications[J].Clin Pharmacokinet,2001;40 (8):587-603.
    6. Rost S, Fregin A, Ivaskevicius V, et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2[J].Nature,2004;427: 537-41.
    7. Kosaki K, Yamaghishi C, Sato R, et al.1173C>T polymorphism in VKORC1 modulates the required warfarin dose[J]. Pediatr Cardiol,2006;27:685-688.
    8. Nakai K, Tsuboi J, Okabayashi H, et al.Ethnic differences in the VKORC1 gene polymorphism and an association with warfarin dosage requirements in cardiovascular surgery patients[J]. Pharmacogenomics,2007;8:713-719.
    9. DAndrea G, DAmbrosio RL, Di Perna P, et al.A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose anticoagulant effect of warfarin[J]. Blood,2005;105:645-649.
    10. Kimura R, Miyashita K, Kokubo Y, et al. Genotypes of vitamin K epoxide reductase, y-glutamyl carboxylase, and cytochrume P450 2C9 as determinants of daily warfarin dose in Japanese patients[J]. Thromb Res,2007; 120:181-186.
    11. Xie HG, Prasad HC, Kim RB, et al.CYP2C9 allelic variants:ethnic distribution and functional significance [J]. Adv Drug Deliv Rev,2002;54(10):1257-1270.
    12. Gaikovitch, EA.Cascorbi I, Mrozikiewicz PM, et al. Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1 A1.NAI2 and of P-glycoprotein in a Russian population[J]. Eur J Clin Pharmacol,2003;59(4): 303-312.
    13.Lee CR,Coldstein JA,Pieper JA. Cytochrome P4502C9 polymorphisms: acomprehensive review of the in-vitro and hunman data[J]. Phammcogeneties,2002;12(3):251-263.
    14.Reitsma PH,van der Heijden JF,Groot AP,et al.A C1173T dimorphism in theVKORC1 gene determines coumarin sensitivity and bleeding risk[J].PLoS Med,2005;2(10):e312.
    15.Zhu Y, Shen nan M,Reynoi ds,et al.Estimation of warfarin maintenance dose basedon VKORC1(-1639 G>A)and CYP2C9 genotypes[J].Clin Chem,2007;53(7):1199-1205.
    16.Reiner MJ,Reiner AP,Gage BF, et al.Effect of VKORC1 haplotypes ontranscriptional regulation and warfarin dose[J].N Engl J Med,2005;352:2285-2293.
    17.Geisen C,Watzka M,Sittinger K,et al.VKORC1 haplotypes and their impact on theinter-individual and inter-ethnical variability of oral anticoagulation[J].Thrombosis&Haemostasis,2005;94:773-779.
    18.Higashi M K,Veenstra DI,Kondo LM,et al.Association between CYP2C9 geneticvariants and anticoagulation-related outcomes during warfarin therapy[J].JAMA;2002;287(13):16901698.
    19.Sanderson S,Emery J,Higgins J.CYP2C9 gene variants,drug dose, and bleedingrisk in warfarin-treated patients:a HuGEnet systematic review and meta-analysis.[J].Genet Med,2005;7:97-104.
    20.Lindh JD,Holm L,Andersson ML,et a1.Influence of CYP2C9 genotype on warfarindose requirements-a systematic review and meta-analysis[J].Eur J Clin Pharmacol,2009;65:365-375.
    21.Wadelius M,Chen I Y,Lindh JD,et a1.The largest prospective warfarin-treatedcohort supports genetic forecasting[J].B1ood,2009;113(4):784-792.
    22.Borgiani P,Ciccacci C,Forte V,Sirianni E,Novelli L,Bramanti P, Novelli G:CYP4F2 genetic variant(rs2108622)significantly contributes to warfarin dosingvariability in the Italian population[J].Pharmacogenomics 2009;10(2):261-266.
    23.Lee MT, Chen CH,Chou CH,et al.Genetic determinants of warfarin dosing in theHan-Chinese population[J].Pharmacogenomics 2009;l0(12):1905-1913.
    24.Chen LY,Eriksson N,Gwilliam R,et al.Gama-glutamyl carboxylase(GGCX)microsatellite and warfarin dosing[J].Blood 2005;106:3673-3674.
    25.Kimmel SE,Christie J,Kealey C,et al.Apolipoprotein E genotype and warfarin dosing among Caucasians and African Americans[J], Pharmacogenomics J,2008;8: 53-60.
    26. Sconce EA, Daly AK, Khan TI, et al. APOE genotype makes a small contribution to warfarin dose requirements [J]. Pharmacogenet genomics,2006;16(8):609-611.
    27. Sconce EA, Khan TI, Wynne HA, et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristic upon warfarin dose requirements: proposal for a new dosing regimen [J]. Blood,2005;106(7):2329-2333.
    28. Aquilante, C.L. et al. Influence of coagulation factor, vitamin K epoxide reductase complex subunit 1, and cytochrome P450 2C9 gene polymorphisms on warfarin dose requirements[J]. Clin. Pharmacol,. Ther,.2006;79,291-302
    29. Wu AH, Wang P, Smith A, et al. Dosing algorithm for warfarin using CYP2C9 and VKORC1 genotyping from n multiethnic population comparison with other equations[J]. Pharmacogenomics,2008;9:169-178.
    30. Millican EA, Lenzini PA, Milligan PE, et al.Genetic-based dosing in orthopedic patients beginning warfarin therapy[J].Blood,2007;110:1511-1515.
    31. Klein TE, Altman RB, Eriksson N, Gage BF. The International Warfarin Pharmacogeneties Consortium.Estimation of the warfarin dose with clinical and pharmacogenetic data[J]. N Engl J Med,2009;360:753-764
    32. Gage BF, Eby C, Johnson JA, et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin[J]. Clinical pharmacology and therapeutics, 2008;84(3):326-331.
    33. Caraco, Y. et al. CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation:a prospective randomized controlled study. Clin. Pharmacol[J]. Ther,2008;83,460-470
    34. Anderson JL, Home BD, Stevens SM, et al. Randomized trial of henotype-guided versus stan dard warfarin dosing n patients nitiating oral antieoagulation[J].Circulation,2007;116:2563-2570.
    35. Anderson JL, Home BD, Stevens SM, et al. Randomized and Clinical Effectiveness Trial Comparing Two Pharmacogenetic Algorithms and Standard Care for Individualizing Warfarin Dosing (CoumaGen-Ⅱ) [J]. Circulation,2012;125: 1997-2005.
    36. Pirmohamed M, Burnside G, Eriksson N,et al. A randomized trial of genotype-guided dosing of warfarin[J]. N Engl J Med,2013;369(24):2294-303.
    37. Kimmel SE, French B, Kasner SE, et al. A pharmacogenetic versus a clinical algorithm for warfarin dosing[J]. N Engl J Med,2013;369(24):2283-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700