实时荧光定量RT-PCR检测CD109、RFP和BRDT基因表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:近年来,肿瘤的发病率和死亡率呈明显上升趋势,严重威胁着人类健康。常规的化疗、放疗和手术疗法仍存在着各种问题,因此迫切要求寻找新的治疗手段。肿瘤免疫治疗亦是这些新的治疗手段之一。然而研制肿瘤治疗性疫苗,其前提是需要获得特异性肿瘤抗原。肿瘤细胞是正常细胞的“非己”化。肿瘤细胞在“非己”化过程中,必然会产生一些“非己”的成分。我们把肿瘤的这种“非己”成分限定为只存在于肿瘤细胞,而正常组织细胞不具有的细胞成分,通常称为肿瘤抗原。机体免疫系统可以识别任何“非己”的成份,并通过免疫应答将其排除。近些年来,肿瘤抗原研究的重要进展之一,就是人们对肿瘤抗原递呈和免疫识别有了新的了解,认识到机体免疫系统抗肿瘤主要方式是T淋巴细胞介导的免疫排斥反应,主要是CD8~+细胞毒性T淋巴细胞(CTL)通过其受体TCR识别MHCl类分子结合的肿瘤抗原肽而活化并发挥杀伤肿瘤细胞的效应,有人把这一认识概括为MHC一抗原肽一TCR模式,这里所说的抗原肽是CTL所识别的由8—10个氨基酸组成的线性肽段,又称肿瘤特异性抗原。到目前为止,一系列肿瘤抗原已相继被发现并得到确认,其中包括癌一睾丸抗原(Cancer Testis Antigen CTA)家族。该家族成员只在睾丸组织和一些肿瘤组织表达,在其他正常组织不表达。由于睾丸组织缺乏人类白细胞抗原(HLA),所以,CTA是一类特异性强的肿瘤抗原。
     CD109、RFP和BRDT基因与人肿瘤关系的研究国内外报道的较少,尤其CD109基因。为了探讨CD109、RFP和BRDT能否作为肿瘤治疗的潜在分子靶点,本研究全部采用临床病人的活体标本,运用Real-time PCR的方法,分析了CD109、RFP和BRDT在人、鼠正常组织及癌组织中的表达;试图为肿瘤免疫诊断与治疗提供基本的实验依据,因此具有非常重要的理论和实际意义。
     方法:成年BALB/C鼠(18-20g)取自名古屋大学医学部实验动物中心,从AICHI癌症中心进行肿瘤手术切除的病人获得人正常组织及癌组织,组织样
    
    品立即冻于液氮中,然后保存于一80“C供提取RNA用。所有样品的取得均遵
    守现行的道德规范准则,并正式得到所有参与者和该研究各方的同意。该协
    议同时也得到AICHI癌症中心医院的同意。我们采用实时荧光定量RT一PCR研
    究了CD109、RFP和BRDT在肿瘤中的表达.
    结果:
     一CDIOg基因的克隆及实时荧光定量RT一PCR检测其表达
     ZA和ZB型多发性内分泌腺瘤(MEN)的发生主要是由RET原癌基因的点
    突变引起的。MENZA是以甲状腺髓样癌(MTC)和嗜铬细胞瘤为特点的,而MEN
    ZB呈现更加复杂的表型,它与甲状腺髓样癌,嗜铬细胞瘤以及发育异常,如
    粘膜神经瘤和马方综合症的骨骼改变等都相关。为了阐明MEN ZA和MENZB
    表型发生的机理,我们通过差异显示分析证实了一些在N工H 3T3细胞和用MEN
    ZA和MEN ZB突变的RET基因转染的NIH 3T3细胞(分别称为RET一MEN ZA或
    尺ET一MEN ZB)中的差异表达基因。我们发现了一个未知序列基因在
    NIH一RET(MENZB)细胞中表达上调,这一基因可能成为癌症治疗的一个新的分
    子靶点。
     通过差异显示,我们检测到一个在N工H一RET(MEN ZB)细胞中表达上调的转
    录子。用它的eDNA片段,我们对NIH一RET(MEN ZB)细胞的CDNA文库进行筛选,
    并且获得了一个包含4329bp开读框的全长4717bp的CDNA克隆。它编码一个
    含有1442个氨基酸的蛋白,该蛋白含有一个22个氨基酸的信号肤和一个疏
    水的糖基化磷脂酞肌醇(GPI)锚定剪切位点,此外,在923一926位氨基酸上
    还存在一个硫脂键。经过测序证实这一cDNA编码一个与人CDIOg基因同源的
    小鼠CD109基因,人CD109基因是最近刁‘报道的。2巨球蛋白C3,C4和C5家
    族成员。
     为了证实鼠CDIOg是一个GPI锚定细胞表面蛋白,我们将FLAG标记的鼠
    CDIOg基因eDNA克隆到表达载体pSR a 296PL上,然后转染COS7细胞。Western
    blot分析表明,转染细胞表达一个180kDa的蛋白,该蛋白能够被抗FLAG单
    克隆抗体所识别,表明该蛋白为目的蛋白分子,即FLAG标记CD109融合蛋白。
    用抗FLAG单克隆抗体通过免疫染色观察到的FLAG标记CD109融合蛋白的表
    达。此外,当用能够剪切GP工锚定蛋白的特异性磷脂酞肌醇磷脂酶C(P工一PLC)
    处理转染细胞后,检测不到细胞表面CD109融合蛋白的表达,证实鼠CD109
    
    是一个Gpl锚定细胞表面蛋白。
     应用Real一t ime PCR检测CD109基因在各种人和鼠成熟组织中的表达情
    况时发现它在正常组织中高表达于翠丸组织,在癌组织标本中检测到子宫颈
    鳞状细胞癌组织的CD 109基因表达水平高于正常子宫颈组织,差异极显著
    (P    织,胃腺癌组织的CD109基因表达水平高于正常胃组织,食管鳞状细胞癌组织
    的CDIOg基因表达水平高于正常食管组织,而子宫颈鳞状细胞癌组织的CDIOg
    基因表达水平高于子宫内膜腺癌组织,差异极显著(P<0.01),食管鳞状细
    胞癌组织的CD109基因表达水平高于胃腺癌组织,脑癌组织中的CD109基因
    平均表达水平高于正常脑组织.
     二.实时荧光定量RT一PCR检测RFP基因表达
     R即通过与RE’r原癌基因重排而最初被认定为癌基因。RFP属于B盒RING
    指蛋白家族,该家族蛋
Objective: In recent years, morbidity and mortality of cancer are increasing obviously, therefore cancer becomes a serious threat to human health. There are still various kinds of problems in conventional chemotherapy , radiotherapy and operative treatment. Tumor immunotherapy is one of newly developed therapeutic methods. However, it is, important for us to get specific tumor antigen in order to develop tumor specific therapeutic vaccine. Tumor cell is "non- self" of normal cell. We define the component which express only in tumor cell but in normal cell as tumor antigen. Immune system can recognize any "non-self" component and remove them through immunological response. In recent years, significant progression in tumor antigen research is the new perspective that T lymphocyte-mediated response is the major manner by which the body to fight tumor cells, especially CD8+ cytotoxict lymphocytes. Tumor antigen is loaded with MHCI molecules and form the tumor peptide complexes which is recognized by T-cell recep
    tor(TCR), the activated T cells will kill tumor cells expressing
    
    
    
    
    tumor peptides. Someone outline the pathway as MHC-antigen peptide-TCR mode, the antigen peptide is 8-10 amino acids recognized by CTL and also called tumor specific antigen. Up to date, a series of tumor antigens have been identified and confirmed, include Cancer Testis Antigen family, which express only in cancer testis tissues and tumor tissues but in normal tissues. There is not HLA in testis tissues, therefore CTA is a kind of specific tumor antigen.
    The relationship between CD109, RFP, BRDT and human tumor has been less reported, especially CD109. To explore whether CD109, RFP, BRDT may become potential molecular targets for new cancer therapy, in the present study tumor and normal tissue samples were obtained from patients undergoing tumor resection, the expression of CD109, RFP, BRDT in tumor and normal tissue was detected through real-time PCR. The present study tried to offer fundamental experiment base for immunological diagnosis and therapy of tumor and has very important theoretical and practical significance.
    Method: Tumor and normal tissue samples were obtained from patients undergoing tumor resection at Aichi cancer center hospital, the tissue samples were snap frozen in liquid nitrogen, and stored at -80?C until RNA extraction. All samples were obtained according to current ethics regulations. Informed consent was obtained from all subjects before their participation in the study. The protocol was approved by the Aichi cancer center hospital (Nagoya, Japan).
    We used real-time PCR to analyze CD109, RFP and BRDT expression in different tumor,
    
    
    
    Result:
    1. Investigation of Cloning and Expression of CD109 Gene Using Real-Time Fluorescence Quantitative RT-PCR
    Germline mutation of the RET proto-oncogene are responsible for the development of multiple endocrine neoplasia(MEN)type 2A and 2B. MEN 2A is characterized by the development of medullary thyroid carcinoma(MTC) and pheochromocytoma whereas MEN 2B shows a more complex phenotype with association of MTC, pheochromocytoma, and developmental abnormalities such as mucosal neuroma, hyperganglionosis of the intestinal tract, and marfanoid skeletal changes. To elucidate the mechanisms of development of MEN 2A and MEN 2B phenotypes, we carried out differential display analysis of gene expression using NIH3T3 cells expressing the RET-MEN 2A and RET-MEN 2B mutant proteins. In this study, we cloned one of previously unidentified genes induced by RET-MEN 2B. It turned out to encode mouse orthologue of the human CD109 gene.
    Using its cDNA fragment, we screened the cDNA library constructed from RNA of NIH-RET(MEN2B)cells and obtained a cDNA clone of 4717 base pairs in length that contained a 4329 bp open reading frame. It encodes a protein of 1442 amino acids having an amino-terminal signal peptide of 22 amino acids and a carboxyl-terminal hydrophobic glycosyl-phosphatidylinositol (GPI)-anchored cleavage-addition site. In addition, a sequence for the thioester bond (CGEQ) was prese
引文
1. Anderson KM, Cheung PH, Kell MD. Rapid generation of homologous internal standards and evaluation of data for quantitaion of messenger RNA by competitive polymerase chain reaction. J Pharmacol Toxicol Methods.1997; 38:133-140.
    2. Ke LD, Chen Z, Yung WK. A reliability test of standard-based quantitative PCR:exogenous vs endogenous standards. Mol. Cell Probes. 2000; 14(2): 127-135.
    3. Becket K., D. Pan and C.B. Whitely. Real-time quantitative polymerase chain reaction to assess gene transfer. Hum. Gene Ther. 1999; 10: 2559-2566.
    4. Thomas D. Schmittgen, Brian A.Zakrajsek, Alan G. Mills, et al. Quantitative Reverse Transcription Polymerase Chain Reaction to Study mRNA Decay:Comparison of Endpoint and Real-Time Methods. Analytical Biochemistry. 2000; 285:194-204
    5. S. Fronhoffs, G. Totzke, S. Stier, et al.A method for the rapid construction of cRNA standard curves in quantitative real-time reverse transcription polymerase chain reaction. Molecular and Cellular Probes. 2002; 16:99-110
    6. Paradis V, Laurent A, Flejou JF,et al. Evidence for the polyclonal nature of focal nodular hyperplasia of the liver by the study of X-chromosome inactivation .Hepatology. 1997;26(4):891-895
    7. Oki E, Maehara Y, Tokunaga E, et al. Reduced expression of p33 (ING1) and the relationship with p53 expression in human gastric cancer. Cancer Lett. 1999; 147 (1-2):157-162
    8. Miyake Y, Fujiwara Y, Ohue M, et al. Quantification of micrometastases in lymphnodes of colorectal cancer using real-time fluorescence polymerase chain reaction. Int J Oncol. 2000; 16(2):289-293
    9. Gelmini S, Orlando C, Sestini R, et al. Quantitative polymerase chain
    
    reaction-based homogeneous assay with fluorogenic probes to measurec-erbB-2 oncogene amplification. Clin Chem. 1997; 43(5):752-758
    10. Bieche I, Olivi M, Champeme MH, et al. Novel approach to quantitati ve polymerase chain reaction using real-time detection: application to the detection of gene amplification in breast cancer. Int J Cancer. 1998; 78(5):661-666
    11. Bieche I, Onody P, Laurendeau I, et al. Real-time reverse transcription PCR assay for future management of ERBB2-based clinical applications. Clin Chem. 1999; 45 (8 Pt 1):1148-1156
    12. Favy DA, Lafarge S, Rio P, et al. Real-time PCR quantification of full length and exon 11 spliced BRCA1 transcripts in human breast cancer cell lines. Biochem Biophys Res Commun. 2000;274 (1):73-78
    13. Dolken L, Schuler F, Dolken G. Quantitative detection of t (14;18) positive cells by real-time quantitative PCR using fluorogenic probes. Biotechniques. 1998; 25 (6):1058-1064
    14. Emig M, Saussele S, Wittor H, et al. Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real-time quantitative RT-PCR Leukemia. 1999;13(11): 1825-1832
    15. Kreuzer KA, Lass U ,Nagel S , et al .Applicability of an absolu tequantitative procedure to monitor intra-individual bcr/abl transcript kinetics in clinical samples from chronic myelogenous leukemia patients. Int J Cancer. 2000; 86 (5):741-746
    16. Bozena Sarcevic, Giulio C. Spagnoli, Luigi Terracciano, et al. Expression of Cancer/Testis Tumor Associated Antigens in Cervical Squamous Cell Carcinoma. Oncology. 2003; 64:443-449
    17. Das H, Koizumi T, Sugimoto T, et al. Quantitation of Fas and Fas ligand gene expression in human ovarian, cervical and endometrial carcinomas using real-time quantitative RT-PCR. Br J Cancer. 2000;
    
    82(10):1682-1688
    18. Solveig Schulz M.D., Johannes Schmitt M.D., Wolfgang Weise M.D. Frequent expression of immunoreactive somatostatin receptors in cervical and endometrial cancer. Gynecologic Oncology. 2003; 6:385-390
    19. L. Overbergh, A. Giulietti, D. Valckx, et al. The Use of Real-Time Reverse Transcriptase PCR for the Quantification of Cytokine Gene Expression. Journal of Biomolecular Techniques. 2003; 14:33-43.
    20. Philip S. Bernard and Carl T. Wittwer. Real-Time PCR Technology for Cancer Diagnostics. Clinical Chemistry. 2002; 48:1178-1185.
    21. Beastall G H, Cook B, Rustin GJ, et al.A review of the role of established tumour markers. Ann Clin Biochem .1991; 28:5-18.
    22. Kinzler K W, Vogelstein B. Cancer-susceptibility genes. Gate keepers and caretakers. Nature. 1997; 386:761-763.
    23. The American Society of Clinical Oncology.1997 update of rec ommendations for the use of tumor markers in breast and colorectal cancer. J Clin Oncol.1998; 16 (2): 793-795.
    24. DiezM, GomezA, HemandoF, et al. Serum CEA, CA 125, and Scc antigens and tumor recurrence inresectable non- small cell lung canner. Int. J Biomarkers. 1995; 10 (1): 5
    25. Plebani M., Basso D., NaVaglia F., et al. clinical evaluation of sevesn tumour markers in lung cancer diagnosis; Can any combination improve the result?Bri J cancer. 1995; 72 (1): 170
    26. Rustin GJS. Circulatory tumor markers. In: Daar AS (ed).Tumor markers in clinical practice. Dhurchill Livingstone: Blackwell SciOxford. 1987; 204-227.
    27. Beastall GH, Cook B, Rustin GJS, et al .A review of the role of established tumor markers. Ann Clin Biochem. 1991; 28:5-18.
    28. Deivillano BC, Brennan S, Broch P, et al. Radio immunometric assay for a monoclonal antibody defined tumor CA19-9. Clin Chem. 1983; 26(3)
    
    :549-552.
    29. Harris RA, Yang A, Stein RC, et al. Cluster analysis of an extensive human breast cancer cell line protein expression map datebase. Proteomics. 2002; 2 (2):212-223.
    30. Bichsel VE, Liotta LA, Petricoin EF 3rd. Cancer proteomics: from biomarker discovery to signal pathway profiling. Cancer J. 2001; 7 (1):69-78.
    31. Alaiya AA, Franzen B, Auer G, et al. Cancer proteomics: from identification of novel markers to creation of artificial learning models for tumor classification. Electrophoresis. 2000; 21(6): 1210-1217.
    32. Sauter ER, Zhu W, Fan XJ, et al. Proteomic analysis of nipple aspirate fluid to detect biologic markers of breast cancer. Br J Cancer. 2002; 86 (9):1440-1443.
    33. Porter PL. Molecular markers of tumor initiation and progression. Curr Opin Genet Dev. 2001; 11 (1):60- 63.
    34. Celis JE, Ostergaard M, Rasmussen HH, et al.A comprehensive protein resource for the study of bladder cancer. Electrophoresis. 1999; 20(2):300-309.
    35. Vlahou A, Schellhammer PF, Mendrinos S, et al .Development of a novel proteomic approach for the detection of transistional cell carcinoma of the bladder inurine. AmJ Pathol. 2001; 158(4):1491-1502.
    36. Bubendorf L, Kolmer M, Kononen J, et al. Hormone therapy falure in human prostate cancer: analysis by complementary DNA and tissue microarrays. J Natl Cancer Inst. 1999; 91 (20):1758-1764.
    37. Moch H, Schraml P, Bubendprf L, et al. High throughput tissue microarray analysis to evaluate genes uncovered by cDNA microarray screening in renal cell carcinoma. Am J Pathol. 1999; 154 (4):981-986.
    38. Jones MB, Krutzsch H, Shu H, et al.Proteomic analysis and
    
    identification new biomarkers and therapeutic targets for invasive ovarian cancer. Proteomics. 2002; 2 (1):76-84.
    39. Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet. 2002; 359 (9306):572-577.
    40. Chaurand P, DaGue BB, Pearsall RS, et al. Profiling proteins fromazoxy methane-induced color tumors at the molecular level by matrix-assisted laser desorption Pionization mass spectrometry. Proteomics. 2001; 1(10):1320-1326.
    41. Bryumor W, Robert S, Shannon B, et al. Detection of early stage cancer by serum protein analysis. Am Lab. 2001; 33 (9): 322
    42. Voss T, Ahorn H, Haberl P, et al. Correlation of clinical data with proteomics profiles in 24 patients with B-cell chronic lymphocytic leukemia. Int J Cancer. 2001; 91 (2):180-186.
    43. Wellmann A, Thieblemont C, Pittaluga S, et al. Detection of differentially expressed genes in lymphomas using cDNA arrays: identification of clusterin as a new diagnostic marker for anaplastic large cell lymphomas. Blood. 2000; 96 (2):398-404.
    44. Rosty C, Christa L, Kuzdzal S, et al. Identification of hepatocarcinoma intestine pancreas/pancreatitis associated protein Ⅰ as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res. 2002; 62 (6):1868-1875.
    45. Emmert Buck MR, Gillespie JW, Paweletz CP, et al. An approach to proteomic analysis of human tumor. Mol Cancinog. 2000: 27(3):158-165.
    46. Belbin TJ , Singh B , Barber I , et al. Molecullar classification of head and neck squamous cell carcinoma using cDNA microarry .Cancer Res. 2002; 62 (4) :1184-1190.
    47. Sanders G H W, Manz A. chip-based microsystems for genomic and proteomic analysis. Trends Anal chem. 2000; 19(6):364-378
    48. Arenkov P, kukhtin A, Gemmell A, et al. protein microchips: use for
    
    immunoassay and enzymatic reactions. Anal Biochem. 2000; 278(2):123-131
    49. Cestra G., Castagnoli, Dente L., et al. The SH3 domains of endophilin and amphiphysin bind to the proline-rich region of synatojanin 1 at distinct sites that display an unconventional binding specificity .J Biol chem. 1999; 274(5):32001-32007
    50. Martin Lin, D. Robert Sutherland, Wendy Horsfall, et al. Cell surface antigen CD109 is a novel member of the α2 macroglobulin/C3, C4, C5 family of thioester-containing proteins. Blood. 2002; 99:1683-1691.
    51. Andre C. Schuh, Nick A. Watkins,Quang Nguyen, et al. A tyrosine703serine polymorphism of CD109 defines the Gov platelet alloantigens. Blood. 2002; 99:1692-1698.
    52. Berry JE, Murphy CM, Smith GA, et al. Detection of Gov system antibodies by MAIPA reveals an immunogenicity similar to the HPA-5 alloantigens. Br J Haematol. 2000; 60: 75-81.
    53. Lesley J. Murray, Edward Bruno, Nobuko Uchida, et al. CD109 is expressed on a subpopulation of CD34+ cells enriched in hematopoietic stem and progenitor cells, experimental hematology. 1999; 27:1282-1294.
    54. Kelton JG, Smith JW, Horsewood P, et al. ABH antigens on human platelets: expression on the glycosylphosphatidylinositol-anchored protein CD109. J Lab Clin Med. 1998; 132: 142-148.
    55. Christina Giesert, Anke Marxer, D. Robert Sutherland, et al. Antibody W7C5 Defines a CD109 Epitope Expressed on CD34+ and CD34-Hematopoietic and Mesenchymal Stem Cell Subsets. Annals of the New York Academy of Science. 2003; 996:227-230.
    56. Udani M, Rao N, Telen MJ, et al. Leukocyte phenotypic changes in an invitro model of ABO hemolytic transfusion reaction. Transfusion. 1997; 37:904-909.
    57. Bordin JO, Kelton JG, Warner MN, et al. Maternal immunization to Gov system alloantigens on human platelets. Transfusion. 1997; 37:823-828.
    
    
    58. Irene Rappold, Benedikt L. Ziegler, Iris K(?)hler, et al. Functional and Phenotypic Characterization of Cord Blood and Bone Marrow Subsets Expressing FLT3 (CD135) Receptor Tyrosine Kinase. Blood. 1997;90:111-125.
    59. Furley AJ, Reeves BR, Mizutani S, et al. Divergent molecular phenotypes of KG1 and KG1a myeloid cell lines. Blood. 1986; 68:1101-1107.
    60. Koeffler HP, Billing R, Lusis AJ, Sparkes R, Golde DW. An undifferentiated variant derived from the human acute myelogenous leukemia cell line (KG-1). Blood. 1980; 56:265-273.
    61. Sutherland DR, Yeo E, Ryan A, et al. Identification of a cell-surface antigen associated with activated T lymphoblasts and activated platelets. Blood. 1991; 77:84-93.
    62. Yeo EL, Sutherland DR. Further characterization of platelet 8A3, and activation-specific and T-cell antigen and its identification in endothelial cells. Blood. 1992; 80:56.
    63. Sutherland DR, Yeo EL. Cluster report: CDw109. In: Schlossman S, et al.,eds. Leukocyte Typing V. Oxford, England: Oxford University Press. 1995; 1767-1769.
    64. Sutherland DR, Yeo EL. Cluster report: CD109. In: Kishimoto T, et al., eds. Leukocyte Typing Ⅵ. London, England: Garland Publishing. 1998; 714-716.
    65. Dodds AW, Law SK. The phylogeny and evolution of the thioester bond-containing proteins C3, C4 and alpha 2-macroglobulin. Immunol Rev. 1998; 166:15-26
    66. Rubenstein DS, Thogersen IB, Pizzo SV, Enghild JJ. Identification of monomeric alpha-macroglobulin proteinase inhibitors in birds, reptiles, amphibians and mammals and purification and characterization of a monomeric alpha-macroglobulin proteinase inhibitor from the American bullfrog Rana catesbeiana. Biochem J. 1993; 290:85-95.
    
    
    67. Salvesen G, Pizzo S. Proteinase inhibitors: alpha-macroglobulins, serpins, and kunins. In: Colman R, Hirsch J, Marder V, Salzman J, eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. 3rd ed. Philadelphia, PA: JB Lippincott. 1994; 241-258.
    68. Krieger M, Herz J. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP).Annu Rev Biochem. 1994; 63:601-637.
    69. Misra UK, Chu CT, Gawdi G, Pizzo SV. The relationship between low density lipoprotein-related protein/alpha 2-macroglobulin (alpha 2M) receptors and the newly described alpha 2M signaling receptor. J BiolChem. 1994; 269:18303-18306
    70. Gawdi G, Pizzo SV. higation of the alpha 2-macroglobulin signalling receptor on macrophages induces protein phosphorylation and an increase in cytosolic pH. Biochem J.1995; 309:151-158
    71. Solomon KR, Sharma P, Chan M, CD109 represents a novel branch of the alpha2-macroglobulin/complement gene family. Gene. 2004; 327(2):171-183
    72. Misra UK, Gawdi G, Pizzo SV. Binding of rat α 1-inhibitor-3-methylamine to the α 2-macroglobulin signaling receptor induces second messengers. J Cell Biochem. 1996; 61:61-71.
    73. Misra UK, Pizzo SV. Binding of receptor-recognized forms of α2-macroglobulin to the α2-macroglobulin signaling receptor activates phosphatidylinositol 3-kinase.J Biol Chem. 1998; 273:13399-13402
    74. Enghild JJ, Thogersen IB, Roche PA, Pizzo SV. A conserved region in alpha-macroglobulins participates in binding to the mammalian alpha-macroglobulin receptor. Biochemistry. 1989; 28:1406-1412
    75. Howard GC, DeCamp DL, Misra UK, Pizzo SV. Identification of residu
    
    es in alpha-macroglobulins involved in activation of the alpha 2-macroglobulin signaling receptor. Biochim Biophys Acta. 1996; 1297:111-114
    76. Howard GC, Yamaguchi Y, Misra UK, et al. Selective mutations in cloned and expressed alpha-macroglobulin receptor binding fragment alter binding to either the alpha 2-macroglobulin signaling receptor or the low density lipoprotein receptor-related protein/alpha 2-macrogtobulin receptor. J Biol. Chem. 1996; 271:14105-14111.
    77. Huang W, Dolmer K, Liao X, Gettins PG. Localization of basic residues required for receptor binding to the single alpha-helix of the receptor binding domain of human-alpha 2 macroglobulin. Protein Sci. 1998; 7:2602-2612
    78. Marynen P, van Leuven F, Cassiman JJ, van den Berghe H. Proteolysis at a lysine residue abolishes the receptor-recognition site of alpha 2-macroglobulin complexes. FEBS Lett. 1982; 137:241-244.
    79. Nielsen KL, Holtet TL, Etzerodt M, et al. Identification of residues in alpha-macroglobulins important for binding to the alpha2-macroglobulin receptor/low density lipoprotein receptor-related protein. J Biol Chem. 1996; 271:12909-12912.
    80. Suciu-Foca N, Reed E, Rubinstein P, et al. A late-differentiation antigen associated with thehelper inducer function of human T cells. Nature. 1985; 318:465-467
    81. Brashem-Stein C, Nugent D, Bernstein ID. Characterization of an antigen expressed on activated human T cells and platelets. J Immunol. 1988; 140:2330-2333
    82. Haregewoin A, Solomon K, Hom RC, et al. Cellular expression of a 6PI-linked T cell activation protein. Cell Immunol. 1994; 156:357-370.
    
    
    83. Murray LJ, Bruno E, Uchida N, et al. CD109 is expressed on a subpopulation of CD34~+ cells enriched in hematopoietic stem and progenitor cells. Exp Hematol. 1999; 27:1282-1294.
    84. Rappold I, Ziegler BL, Kohler I, et al.Functional and phenotypic characterization of cord blood and bone marrow subsets expressing FLT3 (CD135) receptor tyrosine kinase. Blood. 1997; 90:111-125
    85. Kelton JG, Smith JW, Horsewood P, et al. Gova/b alloantigen system on human platelets. Blood. 1990; 75:2172-2176
    86. Bordin JO, Kelton JG, Warner MN, et al. Maternal immunization to Gov system alloantigens on human platelets. Transfusion. 1997; 37:823-828
    87. Misra UK, Gawdi G, Pizzo SV. Ligation of the alpha 2-macroglobulin signalling receptor on macrophages induces protein phosphorylation and an increase in cytosolic pH. Biochem J. 1995; 309:151-158
    88. Takahashi M., Inaguma Y., Hiai H., et al. Developmentally regulated expression of a human 'finger' -containing gene encoded by the 5' half of the ret transforming gene. Mol Cell Biol. 1988; 8: 1853-1856.
    89. Berg JM.Potential metal-binding domains in nucleic acid binding proteins. Science. 1986; 232:485-487.
    90. Freemont, P.S., Hanson, I.M., Trowsdale, J. A novel cysteine-rich sequence motif. Cell. 1991; 64:483-484.
    91. Reddy, B.A, Etkin, L.D. A unique bipartite cysteine-histidine motif defines a subfamily of potential zinc-finger proteins. Nucl. Acids Res. 1991; 19:6330.
    92. Torok M, Etkin LD. Two B or not two B? Overview of the rapidly expanding B-box family of proteins. Differentiation. 2000; 67:63-71.
    93. Tezel G., Nagasaka T., Iwahashi N., et al. Different nuclear/cytoplasmic distributions of Ret finger protein in different cell types. Pathol. Int. 1999; 49:881-886.
    94. Shou W., Li X., Wu C., et al. Finely tuned regulation of cytoplasmic
    
    retention of Xenopus nuclear factor 7 by phosphorylation of individual threonine residues. Mol Cell Biol.1996; 16:990-997.
    95. Patarca, R., Schwartz, J., Singh, R. P.,etal. Rpt-1, an intracellular protein from helper/inducer T cells that regulates gene expression of interleukin 2 receptor and human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 1988; 85:2733-2737.
    96. Kastner, P., Perez, A., Lutz, Y.,et al. Structure, localization, and transcriptional properties of two classes of retinoic acid receptor fusion proteins in acute promyelocytic leukemia (APL): Structural similarities with a new family of oncoproteins. EMBO J. 1992; 11:629-642.
    97. Le Douarin, B., Zechel, C., Gabnier, J. M., et al. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J. 1995; 14:2020-2033.
    98. Miki, Y., Swensen, J., Shattuck-Eidens, D.,et al.A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994; 266:66-71.
    99. Leonhardt, E. A., Kapp, L. N., Young, B. R., and Murnane, J. P. Nucleotide sequence analysis of a candidate gene for ataxia-telangiectasia group D (ATDC). Genomics. 1994; 19:130-136.
    100. Cao, T., Shannon, M., Handel, M. A., and Etkin, L.D. The mouse ret finger protein (rfp) proto-oncogene is expressed at specific stages of mouse spermatogenesis. Dev. Genet. 1996; 19:309-320.
    101. Shimono, Y., Murakami, H., Hasegawa, Y., and Takahashi, M. Ret finger protein is a transcriptional repressor and interacts with Enhancer of Polycomb that has dual transcriptional functions. J. Biol. Chem. 2000; 275:39411-39419.
    102. Gaye Tezel, Yohei Shimono, and Takahashi, M. Biochemical and
    
    Biophysical Research Communications. 2002; 290:409-414
    103. Borden, K. L. B., Lally, J. M., Martin, S. R., et al. Novel topology of a zinc-binding domain from a protein involved in regulating early Xenopus development. EMBO J. 1995; 14:5947-5956.
    104. Borden, K. L. B., Lally, J. M., Martin, S. R.,et al. Invivo and invitro characterization of the B1 and B2 zinc-binding domains from the acute promyelocytic leukemia proto-oncoprotein PML. Proc. Nat. Acad. Sci. USA. 1996; 93: 1601-1606.
    105. Frankel, A. D., Bredt, D. S. and Pabo, C. O. Tat protein from human immunodeficiency virus forms a metal-linked dimer. Science. 1988; 240:70-73
    106. Cao, T., Borden, K. L. B., Freemont, P. S. and Etkin, L. D. Involvement of the rfp tripartite motif in protein-protein interactions and subcellular distribution. J. Cell Sci. 1997; 110:1563-1571.
    107. Doucas, V and Evans, R. M. The PML nuclear compartment and cancer. Biochim. Biophy. Acta. 1996; 1288: 25-29.
    108. deTh(?), H. Altered retinoic acid receptors. FASEB J. 1996;10: 955-960.
    109. Zuber, M., Heyden, T. S. and Lajous-Petter, A. M. A human autoantibody recognizing nuclear matrix-associated nuclear-protein localized in dot structures. Biol. Cell. 1995; 85: 77-86.
    110. Korioth, F., Gieffers, C., Maul, G. G. and Frey, J. Molecular characterization of NDP52, a novel protein of the nuclear domain 10, which is redistributed upon virus infection and interferon treatment. J. Cell Biol. 1995; 130, 1-13.
    111. Ascoli, C. A. and Maul, G. G. Identification of a novel nuclear domain. J. Cell Biol. 1991; 112: 785-795.
    112. Epstein, A. Immunobiochemical characterization with monoclonal antibodies of Epstein-Barr virus-associated early antigens in chemically induced cells J. Virol. 1984; 50: 372-379.
    
    
    113. Dyck, J., Maul, G., Miller, W., et al. Anovel macromolecular structure is a target, of the promyelocytic retinoic acid receptor oncoprotein. Cell. 1994; 76:333-343.
    114. Szostecki, C., Guldner, H.H., Netter, H. J. et al. Isolation and characterization of cDNA encoding a human nuclear antigen predominantly recognized by autoantibodies from patients with primary biliary cirrhosis. J. Immunol.1990; 145: 4338-4347.
    115. Xie, K., Lambie, E. J. and Snyder, M. Nuclear dot antigens may specify transcriptional, domains in the nucleus. Mol. Cell Biol. 1993; 13:6170-6179.
    116. Weis, K., Rambaud,S., Lavau, C., et al. Retinoic acid regulates aberrant nuclear localization of PMLRARa in acute promyelocytic leukemia cells. Cell. 1994; 76: 345-356.
    117. Desbois, C., Rousset, R., Bantignies, F. and Jalinot, P. Exclusion of Int-6 from PML nuclear bodies by binding to the HTLY-1 Tax oncoprotein. Science. 1996; 273:951-953.
    118. Boddy, M. N., Howe, K., Etkin, L. D., et al. Pic 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukemia.Oncogene. 1996:13: 971-982.
    119. Dolnick, B.J. Naturally occurring antisense RNA. Pharmacol. Therap. 1997:75:179-184
    120. Cao, T. c-ret and signal transduction. Cancer Bull.1995; 47: 119-124.
    121. Huang, M. E., Yu-chen, Y., Shu-rong, C., et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood. 1988; 72: 567-572.
    122. Warrell, R. P. Jr, Frankel, S. R., Miller, W. H. Jr, et al.Differentiation therapy of acute promyelocytic leukemia with tretinoin (all trans-retinoic acid). New Eng. J. Med. 1991; 324: 1385-1393.
    
    
    123. Raelson, J. V., Nervi, C., Rosenauer, A., et al. The PML/RARaoncoprotein is a direct molecular target of retinoic acid in acute promyelocytic leukaemia. Blood. 1996; 88: 2826-2832.
    124. Watanabe T., Ichihara M., Hashimoto M. Characterization of gene expression induced by RET with MEN2A or MEN2B mutation. Am.J. Pathol. 2002; 161(1):249-256.
    125. Matangkasombut, O., and S. Buratowski. Different sensitivities of bromodomain factors 1 and 2 to histone H4 acetylation. Mol. Cell.2003; 11:353-363.
    126. Christophe Pivot-Pajot, C(?)cile Caron, J(?)r(?)me Govin, et al. Acetylation-Dependent Chromatin Reorganization by BRDT, a Testis-Specific Bromodomain-Containing Protein. Molecular and Cellular Biology. 2003; 23:5354-5365
    127. T. Boon, L.J. Old. Cancer tumor antigens, Curr. Opin. Immunol. 1997; 9: 681-683.
    128. S.A. Rosenberg. A new era for cancer immunotherapy based on genes that encode cancer antigens, Immunity. 1999; 10:281-287.
    129. U. Sahin, H. Schmitt, B. Cochlovius, et at. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc. Natl. Acad. Sci. 1995; 92:11810-11813.
    130. V. Brichard, A. Van Pel, T. Wolfel, et al. The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J. Exp. Med. 1993; 178: 489-495.
    131. S. Labrecque, N. Naor, D. Thomson, G. Matlashewski, et al. Analysis of the anti-p53 antibody response in cancer patients. Cancer Res. 1993; 53: 3468-3471.
    132. M.L. Disis, E. Calenoff, G. McLaughlin, et al. Existent T-cell and antibody immunity to HER-2/neu protein in patients with breast cancer. Cancer Res. 1994; 54:16-20.
    
    
    133. T. Boon, P.G. Coulie, B. Van den Eynde. Tumor antigens recognized by T cells. Immunol. Today 1997; 18: 267-268.
    134. Y.T. Chen, A.O. Gure, S. Tsang, et al. Identification of multiple cancer/testis antigens by allogeneic antibody screening of a melanoma cell line library. Proc. Natl. Acad. Sci. USA 1998; 95: 6919-6923.
    135. F. Jeanmougin, J.M. Wurtz, B. Le Douarin, et al. The bromodomain revisited. Trends Biochem. Sci. 1997; 22:151-153.
    136. Jones MH, Numata M, Shimane M. Identification and characterization of BRDT: A testis-specific gene related to the bromodomain genes RING3 and Drosophila fsh. Genomics. 1997; 45:529-534
    137. Crowley, T. E., E. M. Kaine, M. Yoshida, et al. Reproductive cycle regulation of nuclear import, euchromatic localization, and association with components of Pol Ⅱ mediator of a mammalian double-bromodomain protein. Mol. Endocrinol. 2002; 16:1727-1737
    138. Chua, P., and G. S. Roeder. Bdf1, a yeast chromosomal protein required for sporulation. Mol. Cell. Biol. 1995; 15:3685-3696.
    139. Lygerou, Z., C. Conesa, P. Lesage, R. N. Swanson, A. Ruet, M. Carlson, A. Sentenac, and B. Seraphin. The yeast BDF1 gene encodes a transcription factor involved in the expression of a broad class of genes including snRNAs. Nucleic Acids Res. 1994; 22:5332-5340.
    140. Matangkasombut, O., and S. Buratowski. Different sensitivities of bromodomain factors 1 and 2 to histone H4 acetylation. Mol. Cell.2003; 11:353-363.
    141. Scanlan, M. J., N. K. Altorki, A. O. Gure, B. Williamson, A. Jungbluth, Y. T. Chen, and L. J. Old. Expression of cancer-testis antigens in lung cancer: definition of bromodomain testis-specific gene (BRDT) as a new CT gene, CT9. Cancer Lett. 2000; 150:155-164.
    142. French, C. A., I. Miyoshi, I. Kubonishi, H. E. Grier, A. R. Perez-Atayde, and J. A. Fletcher. BRD4-NUT fusion oncogene: a novel mechanism in
    
    aggressive carcinoma. Cancer Res. 2003; 63:304-307.
    143. Jacobson R. H., A. G. Ladurner, D. S. King, and R. Tjian. Structure and function of a human TAFII250 double bromodomain module.Science. 2000; 288:1422-1425.
    144. Christophe Pivot-Pajot, C(?)cile Carom, J(?)r(?)me Govin, et al. Acetylation-Dependent Chromatin Reorganization by BRDT,a Testis-Specific Bromodomain-Containing Protein. Molecular and Cellular Biology. 2003; 23:5354-5365
    145. Haynes, S. R., Dollard, C., Winston, F., et al. The bromodomain: A conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Res. 1992; 20:2603.
    146. Tamkun J. W., Deuring R., Scott M. P., et al. brahma: A regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SW12. Cell.1992; 68: 561-572.
    147. Laurent B. C., Wreital M., and Carlson M. Functional interdependence of the yeast SNF2, SNF5, and SNF6 proteins in transcriptional activation. Proc. Natl. Acad. Sci. USA 1991; 88: 2687-2691.
    148. Mozer B. A., and Dawid I. B. Cloning and molecular characterization of the trithorax locus of Drosophila melanogaster. Proc. Natl. Acad. Sci.USA 1989; 86: 3738-3742.
    149. Cimino G., Moir D. T., Canaani O., et al. Cloning of ALL-1, the locus involved in leukemias with the t (4; 11) (q21; q3), t(9; 11)(p22; q3),and t(11;19)(q23;p3) chromosome translocations.Cancer Res.1991; 51:6712-6714.
    150. Saha V., Chaplin T., Gregorini A., et al. The leukemia-associated-protein (LAP) domain, a cysteine rich motif, is present in a wide variety of proteins, including MLL, AF10, and MLT6 proteins. Proc. Natl. Acad. Sci. USA 1995; 92: 9737-9741
    151. Gabig T. G., Mantel P. L., Rosli R., and Crean C. D. Requiem: A novel
    
    zinc finger gene essential for apoptosis in myeloid cells. J. Biol. Chem. 1994; 269(47): 29515-29519.
    152. Denis G. V., and Green M. R. A novel, mitogen-activated nuclear kinase is related to a Drosophila developmental regulator. Genes. Dev. 1996; 10:261-271.
    153. Maru Y., and Witte O. N. The BCR gene encodes a novel serine/threonine kinase activity within a single exon. Cell. 1991; 67: 459-468.
    154. K.C. Parker, M.A. Bednarek, J.E. Coligan. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J. Immunol. 1994: 152:163-175.
    155. Yao-Tseng Chen, Ali O. G(?)re, Solam Isang, et al. Identification of multiple cancer/testis antigens by allogeneic antibody screening of a melanoma cell line library, Immunology. 1998; 95:6919-6923
    156. Dirk J(?)ger, Marc Unkelbach, Claudia Frei, et al. Identification of tumor-restricted antigens NY-BR-1, SCP-1, and a new cancer/testis-like antigen NW-BR-3 by serological screening of a testicular library with breast cancer serum. Cancer Immunity. 2002; 2:5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700