乳腺导管原位癌导管破口处细胞的形态学特征及其蛋白差异比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳腺癌是人类癌症疾病中发病率最高的恶性疾病之一,我国乳腺癌发病率以每年3%的速度递增。研究表明,在乳腺导管原位癌阶段诊断出的患者经过治疗后复发率和死亡率都很低,说明导管原位癌不是威胁生命的疾病,然而浸润癌阶段或之后的阶段诊断出的患者,治疗结果很差,有高的复发率和死亡率。因此,提高乳腺癌早期阶段的诊断是有效防治乳腺癌的重要手段。但乳腺癌的临床病理学特征非常复杂,至今在原位癌的病理学分类上没有一个被普遍接受的统一标准。这使得乳腺癌的早期诊断率不高,对乳腺癌的控制非常困难。一般认为在乳腺原位癌阶段,病变导管管壁损坏出现破口是原位癌开始浸润的前提条件。有研究表明,在导管原位癌中,导管破口处分布的肿瘤细胞群在形态学和肿瘤相关表型上与相邻处同导管内其它肿瘤细胞相比有许多与肿瘤恶性特征相关的表型和基因的改变,如ER阴性、c-erb-B2表达上调、增生率低、基因不稳定性和基因的杂合性缺失等,提示这些细胞可能是原位癌中最早出现的具有浸润侵袭能力的肿瘤细胞。这些细胞可能代表乳腺浸润癌的前兆。之前的一系列研究一致显示位于导管破口处的肿瘤细胞簇与浸润、迁徙和不良预后显著相关,可以作为独立的预后因子。
     为进一步研究分布于导管原位癌导管破口处的肿瘤细胞簇在超微结构和与基质降解、细胞粘附、运动以及蛋白质组学方面的特性。对3325例乳腺癌临床病理档案切片进行形态学观察分析,选取158例含有导管破口病变的石蜡包埋的导管原位癌病理标本转制超薄切片进行透射电镜观察发现,分布于乳腺导管破口处的肿瘤细胞在形态上与毗邻处同导管内其他的肿瘤细胞不同,细胞核成梭形或长杆状,核内电子密度高,胞质电子密度高,细胞之间没有紧密连接结构,但有狭窄的缝隙相隔,毗邻处的其他肿瘤细胞则显示核呈圆形或椭圆形、核内及胞质内电子密度低,细胞之间紧密连接,电子密度高。通过免疫组化染色发现,MMP-2和MMP-9在这些细胞簇的表达水平高于毗邻处其他的肿瘤细胞,TIMP-2的表达较毗邻处细胞亦升高。E-cadherin在这些细胞簇上表达异常,一是表达量高,二是表达部位不仅在胞膜,在胞质中也有高表达,而毗邻处的其他肿瘤细胞,E-cadherin仅在胞膜上表达。与癌旁正常乳腺导管相比,原位癌病变的导管中E-cadherin的表达低于癌旁正常乳腺导管。在含有原位癌和浸润癌混合病灶的标本中,E-cadherin在浸润癌的表达显著低于原位癌病变处的表达。FAK在导管原位癌病变处的表达低于癌旁正常乳腺导管,在含有导管破口的病变处,分布于导管破口处的肿瘤细胞上FAK表达量高于毗邻处其他的肿瘤细胞。与癌旁正常乳腺导管相比,talin、vinculin和integrinβ1的表达显著降低,但在浸润癌灶的表达却显著高于原位癌的表达。Vinculin在导管破口处细胞簇仅有少量弱表达(18%),其他部位的肿瘤细胞不表达。在纯导管原位癌中的肿瘤细胞不表达,仅表达于肌上皮细胞层。在浸润癌灶中显著高表达。这说明,原位癌中肿瘤细胞以E-cadherin为主的粘附关系在向浸润癌发展过程中逐渐丧失,浸润的肿瘤细胞通过以integrin为核心的黏着斑结构维持彼此的运动粘附关系。使用Qiagen公司的FFPE试剂盒提取分布于导管破口处肿瘤细胞和毗邻处同导管内其他肿瘤细胞的总蛋白,通过BeckMan公司的PF2D系统分离得到33个差异蛋白点,通过ESI-TOF MS/MS系统进行质谱分析及生物信息学分析得到140个差异蛋白。这些蛋白涉及细胞增殖、凋亡、代谢、运动等各个方面。随机选取两个蛋白,AKR1B10和DHRS7进行免疫组化验证,发现这两个蛋白在导管破口处分布的肿瘤细胞上的表达与毗邻处同导管内其他肿瘤细胞的表达有显著差异。在以往的研究中显示,AKR1B10和DHRS7在肿瘤中表达上调与不良预后相关。本研究结果显示,在导管破口处分布的肿瘤细胞上的表达水平高于同导管内毗邻处的其他肿瘤细胞,说明分布于原位癌中导管破口处的肿瘤细胞具有比纯导管原位癌细胞更高的恶性特征,是浸润癌的前兆,证明本研究的蛋白质组学分析结果可靠。
     本研究成功获得了导管原位癌中导管破口处肿瘤细胞簇与同导管内毗邻的其它肿瘤细胞的蛋白质组差异。通过超微结构观察和免疫组化染色进一步证明了这些肿瘤细胞与肿瘤浸润、迁徙和不良预后的相关性。进一步证明了这些肿瘤细胞是乳腺癌浸润的前兆,可以作为独立的预后因子。获得的差异蛋白表达谱可以为乳腺癌早期诊断标志物的筛选提供基础数据,为临床治疗策略的选择提供依据。
Breast cancer is the top cancer in women both in the developed and the developing world. The incidence of breast cancer is increasing at a rate 3% in China. An follow up investigation shows that the recurrence rate of breast carcinoma in situ after surgical excision is low. But the recurrence rate of invasive carcinoma after surgical excision is high. Therefore, early detection in order to improve breast cancer outcome and survival remains the cornerstone of breast cancer control. The clinicopathological characteristics are complex. No single classification scheme has been universally accepted, and the mechanism of the processes from breast carcinoma in situ to invasive carcinoma remains unknown. This is the big obstacles to early detection and clinical treating strategy of breast carcinoma, so further research of the mechanism of the processes from breast carcinoma in situ to invasive carcinoma is significant for to find more diagnostic marks, to elevate early detection rate and provide more choices of clinical treating strategy.It is a commonly held belief that ductal carcinoma in situ is the precursor of the invasive breast carcinoma lesions. Some previous studies demonstrate that pre-invasive breast tumors have been found to be associated with focal myoepithelial cell layer disruptions and the cells overlaying focal myoepithelial cell layer disruptions are significant different from other adjacent tumor cells within the same duct, show more inmmuophenotypes and genetic mutations related to the tumor malignancy, such as ER nagitive, c-erb-B2 up-regulation, high proliferation rate, genetic instability, and loss of heterozygous. Based on these finding, it is speculated that these tumor cells may be the earliest cells with invasive and metasitic ability, may represent the precursor of invasive breast lesion. Previous series studies consistently shows that the cells overlaying ductal myoepithelial cell layer are associated with tumor invasion, metastasis and poor prognosis, and can be a indepent prognostic factor.
     For further studding the ultrastructure and characteristics of stromal digestion, cell adhesion, cell motility and proteomics of the cells overlaying ductal wall disruption, we checked 3325 cases documents of breast cancer patients. Screening 158 cases performed formalin fixed, paraffin embedded tumor samples that harboring ductal wall disruptions transforming ultra-section. Under transmission electron microscope, it shows that the tumor cells overlying FMCLDs had darkly stained nuclei and cytoplasm, with elongated nuclei. Compared to these cells, the adjacent tumor cells within the same duct were rounded, with weakly stained nuclei and cytoplasm, with high electronic density at the regions of membrane contact. This demonstrated that the membrane junction was tight between in situ tumor cells Immuohistochemically, the expressions of MMP-2 and MMP-9 are higher in this cell cluster than adjacent tumor cells within same duct, and TIMP-2 same as this. E-cadherin, and focal adhesion kinase (FAK) in tumor cells overlying FMCLDs were higher than those within the corresponding duct. Integrinβ1 staining was detected only in a small number of the tumor cells overlying FMCLDs. Vinculin staining was weak (18%) or not detected (82%), and no expression was found in tumor cells within the corresponding duct or in pure isolated DCIS. By contrast, the expression levels of talin, vinculin and integrinβ1 in invasive tumors was distinctly higher than that in DCIS, and the expression of FAK and E-cadherin was lower. Under electron microscopy, the tight junctions between tumor cells overlying FMCLDs were reduced compared to the adjacent tumor cells in the lumen. These results indicate that the tumor cells overlying FMCLDs are likely to represent the specific precursors of invasive breast lesions. By PF 2D system, 33 differential protein points were identified. 140 candidate proteins were identified by ESI-TOF-MS/MS system. Random to choice two candidate proteins, AKR1B10 and DHRS7, performed Immunohistochemical staining, we found that these two proteins expression level in cell overlaying ductal wall disruption are significant different with the adjacent tumor cells within same duct. Previous same studies demonstrated the AKR1B10 and DHRS7 proteins over expression are associated with poor prognosis. Our finding demonstrated that the cells overlaying ductal wall disruption have more malignancy than the adjacent tumor cells within same duct, and confirm the proteomic results are trustworthy.
     Our findings may also facilitate the identification of specific targets for further molecular profiling, which will more completely characterize this important cell population.
引文
[1] Hayes D F. Clinical practice. Follow-up of patients with early breast cancer.[J]. N Engl J Med. 2007, 356(24): 2505-2513.
    [2] Zhang R R, Man Y G, Vang R, et al. A subset of morphologically distinct mammary myoepithelial cells lacks corresponding immunophenotypic markers.[J]. Breast Cancer Res. 2003, 5(5): R151-R156.
    [3] Man Y G, Tai L, Barner R, et al. Cell clusters overlying focally disrupted mammary myoepithelial cell layers and adjacent cells within the same duct display different immunohistochemical and genetic features: implications for tumor progression and invasion.[J]. Breast Cancer Res. 2003, 5(6): R231-R241.
    [4] Man Y G, Sang Q X. The significance of focal myoepithelial cell layer disruptions in human breast tumor invasion: a paradigm shift from the "protease-centered" hypothesis.[J]. Exp Cell Res. 2004, 301(2): 103-118.
    [5] Hoekstra R, Eskens F A, Verweij J. Matrix metalloproteinase inhibitors: current developments and future perspectives.[J]. Oncologist. 2001, 6(5): 415-427.
    [6] Coussens L M, Fingleton B, Matrisian L M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations.[J]. Science. 2002, 295(5564): 2387-2392.
    [7] Deo S V. Challenges in the treatment of breast cancer in developing countries.[J]. Natl Med J India. 2010, 23(3): 129-131.
    [8] Shulman L N, Willett W, Sievers A, et al. Breast cancer in developing countries: opportunities for improved survival.[J]. J Oncol. 2010, 2010: 595167.
    [9] Lodge M, Corbex M. Establishing an evidence-base for breast cancer control in developing countries.[J]. Breast. 2011, 20 Suppl 2: S65-S69.
    [10] Shakeel M K, George P S, Jose J, et al. Pesticides and breast cancer risk: a comparison between developed and developing countries.[J]. Asian Pac J Cancer Prev. 2010, 11(1): 173-180.
    [11] Margolese R G B F. Holland-Frei Cancer Medicine[M]. 6th edition ed. BC Decker Inc, 2003: 118.
    [12] Stuart J O. Bathsheba's breast : women, cancer, and history[M]. Johns Hopkins University Press, cop., 2002.
    [13] Giordano S H, Cohen D S, Buzdar A U, et al. Breast carcinoma in men: a population-based study.[J]. Cancer. 2004, 101(1): 51-57.
    [14] Malone K E, Daling J R, Thompson J D, et al. BRCA1 mutations and breast cancer in the general population: analyses in women before age 35 years and in women before age 45 years with first-degree family history.[J]. JAMA. 1998, 279(12): 922-929.
    [15] Auriol E, Billard L M, Magdinier F, et al. Specific binding of the methyl binding domain protein 2 at the BRCA1-NBR2 locus.[J]. Nucleic Acids Res. 2005, 33(13): 4243-4254.
    [16] Lacroix M, Leclercq G. The "portrait" of hereditary breast cancer.[J]. Breast Cancer Res Treat. 2005, 89(3): 297-304.
    [17] Zhang J, Liu X, Datta A, et al. RCP is a human breast cancer-promoting gene with Ras-activating function.[J]. J Clin Invest. 2009, 119(8): 2171-2183.
    [18] Allen N E, Beral V, Casabonne D, et al. Moderate alcohol intake and cancer incidence in women.[J]. J Natl Cancer Inst. 2009, 101(5): 296-305.
    [19] Mctiernan A, Thomas D B. Evidence for a protective effect of lactation on risk of breast cancer in young women. Results from a case-control study.[J]. Am J Epidemiol. 1986, 124(3): 353-358.
    [20] Byers T, Graham S, Rzepka T, et al. Lactation and breast cancer. Evidence for a negative association in premenopausal women.[J]. Am J Epidemiol. 1985, 121(5): 664-674.
    [21] Newcomb P A, Storer B E, Longnecker M P, et al. Lactation and a reduced risk of premenopausal breast cancer.[J]. N Engl J Med. 1994, 330(2): 81-87.
    [22] Chlebowski R T, Kuller L H, Prentice R L, et al. Breast cancer after use of estrogen plus progestin in postmenopausal women.[J]. N Engl J Med. 2009, 360(6): 573-587.
    [23] Breast cancer and hormonal contraceptives: collaborative reanalysis of individual data on 53 297 women with breast cancer and 100 239 women without breast cancer from 54 epidemiological studies. Collaborative Group on Hormonal Factors in Breast Cancer.[J]. Lancet. 1996, 347(9017): 1713-1727.
    [24] Breast cancer and hormonal contraceptives: further results. Collaborative Group on Hormonal Factors in Breast Cancer.[J]. Contraception. 1996, 54(3 Suppl): 1S-106S.
    [25] Mangia A, Malfettone A, Simone G, et al. Old and new concepts in histopathological characterization of familial breast cancer.[J]. Ann Oncol. 2011, 22 Suppl 1: i24-i30.
    [26] Hayes D F. Clinical practice. Follow-up of patients with early breast cancer.[J]. N Engl J Med. 2007, 356(24): 2505-2513.
    [27] Eheman C R, Shaw K M, Ryerson A B, et al. The changing incidence of in situ and invasive ductal and lobular breast carcinomas: United States, 1999-2004.[J]. Cancer Epidemiol Biomarkers Prev. 2009, 18(6): 1763-1769.
    [28] Leal C, Henrique R, Monteiro P, et al. Apocrine ductal carcinoma in situ of the breast: histologic classification and expression of biologic markers.[J]. Hum Pathol. 2001, 32(5): 487-493.
    [29] Jaffer S, Bleiweiss I J. Histologic classification of ductal carcinoma in situ.[J]. Microsc Res Tech. 2002, 59(2): 92-101.
    [30] Graversen H P, Blichert-Toft M, Dyreborg U, et al. In situ carcinomas of the female breast. Incidence, clinical findings and DBCG proposals for management[J]. Acta Oncol. 1988, 27(6A): 679-682.
    [31] Evans A J, Pinder S E, Ellis I O, et al. Screen detected ductal carcinoma in situ (DCIS): overdiagnosis or an obligate precursor of invasive disease?[J]. J Med Screen. 2001, 8(3): 149-151.
    [32] Consensus Conference on the classification of ductal carcinoma in situ. The Consensus Conference Committee.[J]. Cancer. 1997, 80(9): 1798-1802.
    [33] Bloom Hjg R W. Histologic grading and prognosis in breast cancer: a study of 1409 cases of which 359 have been followed for 15 years.[J]. Br J Cancer. 1957: 359-377.
    [34] Silverstein M J, Poller D N, Waisman J R, et al. Prognostic classification of breast ductal carcinoma-in-situ.[J]. Lancet. 1995, 345(8958): 1154-1157.
    [35] Silverstein M J, Lagios M D, Craig P H, et al. A prognostic index for ductal carcinoma in situ of the breast.[J]. Cancer. 1996, 77(11): 2267-2274.
    [36] Tavassoli F A. Ductal carcinoma in situ: introduction of the concept of ductal intraepithelial neoplasia.[J]. Mod Pathol. 1998, 11(2): 140-154.
    [37] Tavassoli F A, Sakorafas G H. 'Ductal carcinoma in situ of the breast' -- is it time to replace this term by 'ductal intraepithelial neoplasia of the breast'?[J]. Onkologie. 2009, 32(4): 218.
    [38] Poller D N, Silverstein M J, Galea M, et al. Ideas in pathology. Ductal carcinoma in situ of the breast: a proposal for a new simplified histological classification association between cellular proliferation and c-erbB-2 protein expression.[J]. Mod Pathol. 1994, 7(2): 257-262.
    [39] Holland R, Hendriks J H, Vebeek A L, et al. Extent, distribution, and mammographic/histological correlations of breast ductal carcinoma in situ.[J]. Lancet. 1990, 335(8688): 519-522.
    [40] Holland R, Hendriks J H. Microcalcifications associated with ductal carcinoma in situ: mammographic-pathologic correlation.[J]. Semin Diagn Pathol. 1994, 11(3): 181-192.
    [41] Bobrow L G, Happerfield L C, Gregory W M, et al. Ductal carcinoma in situ: assessment of necrosis and nuclear morphology and their association with biological markers.[J]. J Pathol. 1995, 176(4): 333-341.
    [42] Gregory D. Leonard S M S. Ductal Carcinoma In Situ, Complexities and Challenges[J]. JNCI J Natl Cancer Inst. 2011: 906-920.
    [43] Zafrani B, Leroyer A, Fourquet A, et al. Mammographically-detected ductal in situ carcinoma of the breast analyzed with a new classification. A study of 127 cases: correlation with estrogen and progesterone receptors, p53 and c-erbB-2 proteins, and proliferative activity[J]. Semin Diagn Pathol. 1994, 11(3): 208-214.
    [44] Barnes D M, Lammie G A, Millis R R, et al. An immunohistochemical evaluation of c-erbB-2 expression in human breast carcinoma[J]. Br J Cancer. 1988, 58(4): 448-452.
    [45] van de Vijver M J, Peterse J L, Mooi W J, et al. Neu-protein overexpression in breast cancer. Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer[J]. N Engl J Med. 1988, 319(19): 1239-1245.
    [46] Gullick W J, Love S B, Wright C, et al. c-erbB-2 protein overexpression in breast cancer is a risk factor in patients with involved and uninvolved lymph nodes[J]. Br J Cancer. 1991, 63(3): 434-438.
    [47] Barnes D M, Bartkova J, Camplejohn R S, et al. Overexpression of the c-erbB-2 oncoprotein: why does this occur more frequently in ductal carcinoma in situ than in invasive mammary carcinoma and is this of prognostic significance?[J]. Eur J Cancer. 1992, 28(2-3): 644-648.
    [48] Digiovanna M P, Chu P, Davison T L, et al. Active signaling by HER-2/neu in a subpopulation of HER-2/neu-overexpressing ductal carcinoma in situ: clinicopathological correlates[J]. Cancer Res. 2002, 62(22): 6667-6673.
    [49] Thor A D, Liu S, Edgerton S, et al. Activation (tyrosine phosphorylation) of ErbB-2 (HER-2/neu): a study of incidence and correlation with outcome in breast cancer[J]. J Clin Oncol. 2000, 18(18): 3230-3239.
    [50] Bobrow L G, Happerfield L C, Gregory W M, et al. Ductal carcinoma in situ: assessment of necrosis and nuclear morphology and their association with biological markers[J]. J Pathol. 1995, 176(4): 333-341.
    [51] Elledge R M, Fuqua S A, Clark G M, et al. William L. McGuire Memorial Symposium. The role andprognostic significance of p53 gene alterations in breast cancer[J]. Breast Cancer Res Treat. 1993, 27(1-2): 95-102.
    [52] Paredes J, Lopes N, Milanezi F, et al. P-cadherin and cytokeratin 5: useful adjunct markers to distinguish basal-like ductal carcinomas in situ[J]. Virchows Arch. 2007, 450(1): 73-80.
    [53] Lee K S, Rha S Y, Kim S J, et al. Sequential activation and production of matrix metalloproteinase-2 during breast cancer progression[J]. Clin Exp Metastasis. 1996, 14(6): 512-519.
    [54] Rha S Y, Kim J H, Roh J K, et al. Sequential production and activation of matrix-metalloproteinase-9 (MMP-9) with breast cancer progression[J]. Breast Cancer Res Treat. 1997, 43(2): 175-181.
    [55] Guidi A J, Fischer L, Harris J R, et al. Microvessel density and distribution in ductal carcinoma in situ of the breast[J]. J Natl Cancer Inst. 1994, 86(8): 614-619.
    [56] Guidi A J, Schnitt S J, Fischer L, et al. Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in patients with ductal carcinoma in situ of the breast[J]. Cancer. 1997, 80(10): 1945-1953.
    [57] Engels K, Fox S B, Whitehouse R M, et al. Up-regulation of thymidine phosphorylase expression is associated with a discrete pattern of angiogenesis in ductal carcinomas in situ of the breast[J]. J Pathol. 1997, 182(4): 414-420.
    [58] Alle K M, Henshall S M, Field A S, et al. Cyclin D1 protein is overexpressed in hyperplasia and intraductal carcinoma of the breast[J]. Clin Cancer Res. 1998, 4(4): 847-854.
    [59] Warnberg F, Nordgren H, Bergkvist L, et al. Tumour markers in breast carcinoma correlate with grade rather than with invasiveness[J]. Br J Cancer. 2001, 85(6): 869-874.
    [60] Perou C M, Sorlie T, Eisen M B, et al. Molecular portraits of human breast tumours[J]. Nature. 2000, 406(6797): 747-752.
    [61] Meijnen P, Peterse J L, Antonini N, et al. Immunohistochemical categorisation of ductal carcinoma in situ of the breast[J]. Br J Cancer. 2008, 98(1): 137-142.
    [62] Selim A G, El-Ayat G, Wells C A. Expression of c-erbB2, p53, Bcl-2, Bax, c-myc and Ki-67 in apocrine metaplasia and apocrine change within sclerosing adenosis of the breast[J]. Virchows Arch. 2002, 441(5): 449-455.
    [63] Baqai T, Shousha S. Oestrogen receptor negativity as a marker for high-grade ductal carcinoma in situ of the breast[J]. Histopathology. 2003, 42(5): 440-447.
    [64] Barnes N L, Boland G P, Davenport A, et al. Relationship between hormone receptor status and tumour size, grade and comedo necrosis in ductal carcinoma in situ[J]. Br J Surg. 2005, 92(4): 429-434.
    [65] Siziopikou K P, Prioleau J E, Harris J R, et al. bcl-2 expression in the spectrum of preinvasive breast lesions[J]. Cancer. 1996, 77(3): 499-506.
    [66] Bodis S, Siziopikou K P, Schnitt S J, et al. Extensive apoptosis in ductal carcinoma in situ of the breast[J]. Cancer. 1996, 77(9): 1831-1835.
    [67] Ravdin P M, Chamness G C. The c-erbB-2 proto-oncogene as a prognostic and predictive marker in breast cancer: a paradigm for the development of other macromolecular markers--a review[J]. Gene. 1995, 159(1): 19-27.
    [68] Tsuda H, Tani Y, Hasegawa T, et al. Concordance in judgments among c-erbB-2 (HER2/neu) overexpression detected by two immunohistochemical tests and gene amplification detected by Southern blot hybridization in breast carcinoma[J]. Pathol Int. 2001, 51(1): 26-32.
    [69] Bryan B B, Schnitt S J, Collins L C. Ductal carcinoma in situ with basal-like phenotype: a possible precursor to invasive basal-like breast cancer[J]. Mod Pathol. 2006, 19(5): 617-621.
    [70] Kelly T A, Kim J A, Patrick R, et al. Axillary lymph node metastases in patients with a final diagnosis of ductal carcinoma in situ[J]. Am J Surg. 2003, 186(4): 368-370.
    [71] Welch H G, Woloshin S, Schwartz L M. The sea of uncertainty surrounding ductal carcinoma in situ--the price of screening mammography[J]. J Natl Cancer Inst. 2008, 100(4): 228-229.
    [72] Jensen R A, Page D L. Ductal carcinoma in situ of the breast: impact of pathology on therapeutic decisions[J]. Am J Surg Pathol. 2003, 27(6): 828-831.
    [73] Hadjisavvas A, Mikellidou C, Zenios A, et al. Correlation between morphology, immunohistochemistry and molecular pathology in hereditary and sporadic breast cancer cases[J]. Ultrastruct Pathol. 2002, 26(4): 237-244.
    [74] Azzopardi Jg M C Z A. Correlation between morphology, immunohistochemistry and molecular pathology in hereditary and sporadic breast cancer cases[M]. Ultrastruct Pathol, 1979: 237-244.
    [75] Moinfar F, Man Y G, Bratthauer G L, et al. Genetic abnormalities in mammary ductal intraepithelial neoplasia-flat type ("clinging ductal carcinoma in situ"): a simulator of normal mammary epithelium[J]. Cancer. 2000, 88(9): 2072-2081.
    [76] Sternlicht M D, Barsky S H. The myoepithelial defense: a host defense against cancer[J]. Med Hypotheses. 1997, 48(1): 37-46.
    [77] Man Y G, Shen T, Weisz J, et al. A subset of in situ breast tumor cell clusters lacks expression of proliferation and progression related markers but shows signs of stromal and vascular invasion.[J]. Cancer Detect Prev. 2005, 29(4): 323-331.
    [78] Yang A, Schweitzer R, Sun D, et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development[J]. Nature. 1999, 398(6729): 714-718.
    [79] Yamamoto T, Oda K, Miyazaki K, et al. p73 is highly expressed in myoepithelial cells and in carcinomas with metaplasia[J]. Int J Oncol. 2001, 19(2): 271-276.
    [80] Jones J L, Shaw J A, Pringle J H, et al. Primary breast myoepithelial cells exert an invasion-suppressor effect on breast cancer cells via paracrine down-regulation of MMP expression in fibroblasts and tumour cells[J]. J Pathol. 2003, 201(4): 562-572.
    [81] Djonov V, Hogger K, Sedlacek R, et al. MMP-19: cellular localization of a novel metalloproteinase within normal breast tissue and mammary gland tumours[J]. J Pathol. 2001, 195(2): 147-155.
    [82] Djonov V, Cresto N, Aebersold D M, et al. Tumor cell specific expression of MMP-2 correlates with tumor vascularisation in breast cancer[J]. Int J Oncol. 2002, 21(1): 25-30.
    [83] Gomm J J, Browne P J, Coope R C, et al. A paracrine role for myoepithelial cell-derived FGF2 in the normal human breast[J]. Exp Cell Res. 1997, 234(1): 165-173.
    [84] Roose J, Huls G, van Beest M, et al. Synergy between tumor suppressor APC and the beta-catenin-Tcf4 target Tcf1[J]. Science. 1999, 285(5435): 1923-1926.
    [85] Gudjonsson T, Ronnov-Jessen L, Villadsen R, et al. Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition[J]. J Cell Sci. 2002, 115(Pt 1): 39-50.
    [86] Tobacman J K, Hinkhouse M, Khalkhali-Ellis Z. Steroid sulfatase activity and expression in mammary myoepithelial cells[J]. J Steroid Biochem Mol Biol. 2002, 81(1): 65-68.
    [87] Bhattacharyya S, Tobacman J K. Steroid sulfatase, arylsulfatases A and B, galactose-6-sulfatase, and iduronate sulfatase in mammary cells and effects of sulfated and non-sulfated estrogens on sulfatase activity[J]. J Steroid Biochem Mol Biol. 2007, 103(1): 20-34.
    [88] Man Y G, Nieburgs H E. A subset of cell clusters with malignant features in morphologically normal-appearing and hyperplastic tissues.[J]. Cancer Detect Prev. 2006, 30(3): 239-247.
    [89] Man Y G, Zhao C, Chen X. A subset of prostate basal cells lacks the expression of corresponding phenotypic markers.[J]. Pathol Res Pract. 2006, 202(9): 651-662.
    [90] Zhang X, Hashemi S S, Yousefi M, et al. Aberrant c-erbB2 expression in cell clusters overlying focally disrupted breast myoepithelial cell layers: a trigger or sign for emergence of more aggressive cell clones?[J]. Int J Biol Sci. 2008, 4(5): 259-269.
    [91] Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown[J]. J Cell Physiol. 2000, 182(3): 311-322.
    [92] Man Y G, Tai L, Barner R, et al. Cell clusters overlying focally disrupted mammary myoepithelial cell layers and adjacent cells within the same duct display different immunohistochemical and genetic features: implications for tumor progression and invasion[J]. Breast Cancer Res. 2003, 5(6): R231-R241.
    [93] Man Y G, Zhang Y, Shen T, et al. cDNA expression profiling reveals elevated gene expression in cell clusters overlying focally disrupted myoepithelial cell layers: implications for breast tumor invasion.[J]. Breast Cancer Res Treat. 2005, 89(2): 199-208.
    [94] Man Y G. Aberrant leukocyte infiltration: a direct trigger for breast tumor invasion and metastasis.[J]. Int J Biol Sci. 2010, 6(2): 129-132.
    [95] Yousefi M, Mattu R, Gao C, et al. Mammary ducts with and without focal myoepithelial cell layer disruptions show a different frequency of white blood cell infiltration and growth pattern: implications for tumor progression and invasion.[J]. Appl Immunohistochem Mol Morphol. 2005, 13(1): 30-37.
    [96] Man Y G, Shen T, Zhao Y, et al. Focal prostate basal cell layer disruptions and leukocyte infiltration are correlated events: A potential mechanism for basal cell layer disruptions and tumor invasion.[J]. Cancer Detect Prev. 2005, 29(2): 161-169.
    [97] Matrisian L M, Sledge G J, Mohla S. Extracellular proteolysis and cancer: meeting summary and future directions[J]. Cancer Res. 2003, 63(19): 6105-6109.
    [98] James P. Protein identification in the post-genome era: the rapid rise of proteomics[J]. Q Rev Biophys. 1997, 30(4): 279-331.
    [99] Rogers S, Girolami M, Kolch W, et al. Investigating the correspondence between transcriptomic and proteomic expression profiles using coupled cluster models[J]. Bioinformatics. 2008, 24(24): 2894-2900.
    [100] Dhingra V, Gupta M, Andacht T, et al. New frontiers in proteomics research: a perspective[J]. Int J Pharm. 2005, 299(1-2): 1-18.
    [101] Olsen J V, Blagoev B, Gnad F, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks[J]. Cell. 2006, 127(3): 635-648.
    [102] Belle A, Tanay A, Bitincka L, et al. Quantification of protein half-lives in the budding yeast proteome[J]. Proc Natl Acad Sci U S A. 2006, 103(35): 13004-13009.
    [103] Emmert-Buck M R, Bonner R F, Smith P D, et al. Laser capture microdissection[J]. Science. 1996, 274(5289): 998-1001.
    [104] Espina V, Heiby M, Pierobon M, et al. Laser capture microdissection technology[J]. Expert Rev Mol Diagn. 2007, 7(5): 647-657.
    [105] Prieto D A, Hood B L, Darfler M M, et al. Liquid Tissue: proteomic profiling of formalin-fixed tissues[J]. Biotechniques. 2005, Suppl: 32-35.
    [106] Emmert-Buck M R, Bonner R F, Smith P D, et al. Laser capture microdissection[J]. Science. 1996, 274(5289): 998-1001.
    [107] Farrell P H O. Chemokines in Tumor Immunotherapy[J]. Chemokines and cancer. 1975: 1024-1030.
    [108] Nagele E, Vollmer M, Horth P, et al. 2D-LC/MS techniques for the identification of proteins in highly complex mixtures[J]. Expert Rev Proteomics. 2004, 1(1): 37-46.
    [109] Guetens G, De Boeck G, Wood M, et al. Hyphenated techniques in anticancer drug monitoring. I. Capillary gas chromatography-mass spectrometry[J]. J Chromatogr A. 2002, 976(1-2): 229-238.
    [110] Chouchani E T, James A M, Fearnley I M, et al. Proteomic approaches to the characterization of protein thiol modification[J]. Curr Opin Chem Biol. 2011, 15(1): 120-128.
    [111] Yamano S, Tanaka K, Matsumoto K, et al. Mutant regulatory subunit of 3',5'-cAMP-dependent protein kinase of yeast Saccharomyces cerevisiae[J]. Mol Gen Genet. 1987, 210(3): 413-418.
    [112] Yoshida T, Ii T, Sakamoto H, et al. Technetium-99m serum albumin measurement of gastrointestinal protein loss in a subtotal gastrectomy patient with giant hypertrophic gastritis[J]. Clin Nucl Med. 1987, 12(10): 773-776.
    [113] Li J, Zhang Z, Rosenzweig J, et al. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer[J]. Clin Chem. 2002, 48(8): 1296-1304.
    [114] Julia D. Wulfkuhle D C S H. Proteomics of Human Breast Ductal Carcinoma in Situ[J]. CANCER RESEARCH. 2002: 6740-6749.
    [115] Hudelist G, Pacher-Zavisin M, Singer C F, et al. Use of high-throughput protein array for profiling of differentially expressed proteins in normal and malignant breast tissue[J]. Breast Cancer Res Treat. 2004, 86(3): 281-291.
    [116] Luo Y, Zhang J, Liu Y, et al. Comparative proteome analysis of breast cancer and normal breast[J]. Mol Biotechnol. 2005, 29(3): 233-244.
    [117] Somiari R I, Somiari S, Russell S, et al. Proteomics of breast carcinoma[J]. J Chromatogr B Analyt Technol Biomed Life Sci. 2005, 815(1-2): 215-225.
    [118] Bouchal P, Zdrahal Z, Helanova S, et al. Proteomic and bioinformatic analysis of iron- and sulfur-oxidizing Acidithiobacillus ferrooxidans using immobilized pH gradients and mass spectrometry[J]. Proteomics. 2006, 6(15): 4278-4285.
    [119] Molina R, Barak V, van Dalen A, et al. Tumor markers in breast cancer- European Group on Tumor Markers recommendations[J]. Tumour Biol. 2005, 26(6): 281-293.
    [120] Kiang D T, Greenberg L J, Kennedy B J. Tumor marker kinetics in the monitoring of breast cancer[J]. Cancer. 1990, 65(2): 193-199.
    [121] Yasasever V, Dincer M, Camlica H, et al. Utility of CA 15-3 and CEA in monitoring breast cancer patients with bone metastases: special emphasis on "spiking" phenomena[J]. Clin Biochem. 1997, 30(1): 53-56.
    [122] Pentheroudakis G, Malamou-Mitsi V, Briasoulis E, et al. The neutrophil, not the tumor: serum CA 15-3 elevation as a result of granulocyte--colony-stimulating factor-induced neutrophil MU1C overexpression and neutrophilia in patients with breast carcinoma receiving adjuvant chemotherapy[J]. Cancer. 2004, 101(8): 1767-1775.
    [123] Colomer R, Ruibal A, Genolla J, et al. Circulating CA 15-3 levels in the postsurgical follow-up of breast cancer patients and in non-malignant diseases[J]. Breast Cancer Res Treat. 1989, 13(2): 123-133.
    [124] Hashimoto T, Matsubara F. Changes in the tumor marker concentration in female patients with hyper-, eu-, and hypothyroidism[J]. Endocrinol Jpn. 1989, 36(6): 873-879.
    [125] Symeonidis A, Kouraklis-Symeonidis A, Apostolopoulos D, et al. Increased serum CA-15.3 levels in patients with megaloblastic anemia due to vitamin B12 deficiency[J]. Oncology. 2004, 67(5-6): 359-367.
    [126] Jesneck J L, Mukherjee S, Yurkovetsky Z, et al. Do serum biomarkers really measure breast cancer?[J]. BMC Cancer. 2009, 9: 164.
    [127] Decker G, Wanner G, Zenk M H, et al. Characterization of proteins in latex of the opium poppy(Papaver somniferum) using two-dimensional gel electrophoresis and microsequencing[J]. Electrophoresis. 2000, 21(16): 3500-3516.
    [128] Rossner P J, Terry M B, Gammon M D, et al. Plasma protein carbonyl levels and breast cancer risk[J]. J Cell Mol Med. 2007, 11(5): 1138-1148.
    [129] Therasse P, Arbuck S G, Eisenhauer E A, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada[J]. J Natl Cancer Inst. 2000, 92(3): 205-216.
    [130] Rouzier R, Perou C M, Symmans W F, et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy[J]. Clin Cancer Res. 2005, 11(16): 5678-5685.
    [131] Carey L A, Dees E C, Sawyer L, et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes[J]. Clin Cancer Res. 2007, 13(8): 2329-2334.
    [132] Wosikowski K, Regis J T, Robey R W, et al. Normal p53 status and function despite the development of drug resistance in human breast cancer cells[J]. Cell Growth Differ. 1995, 6(11): 1395-1403.
    [133] Chuthapisith S, Layfield R, Kerr I D, et al. Proteomic profiling of MCF-7 breast cancer cells with chemoresistance to different types of anti-cancer drugs[J]. Int J Oncol. 2007, 30(6): 1545-1551.
    [134] Chuthapisith S, Bean B E, Cowley G, et al. Annexins in human breast cancer: Possible predictors of pathological response to neoadjuvant chemotherapy[J]. Eur J Cancer. 2009, 45(7): 1274-1281.
    [135] Nitiss J L. Targeting DNA topoisomerase II in cancer chemotherapy[J]. Nat Rev Cancer. 2009, 9(5): 338-350.
    [136] Batist G, Tulpule A, Sinha B K, et al. Overexpression of a novel anionic glutathione transferase in multidrug-resistant human breast cancer cells[J]. J Biol Chem. 1986, 261(33): 15544-15549.
    [137] Liscovitch M, Ravid D. A case study in misidentification of cancer cell lines: MCF-7/AdrR cells (re-designated NCI/ADR-RES) are derived from OVCAR-8 human ovarian carcinoma cells[J]. Cancer Lett. 2007, 245(1-2): 350-352.
    [138] Liu Y, Liu H, Han B, et al. Identification of 14-3-3sigma as a contributor to drug resistance in human breast cancer cells using functional proteomic analysis[J]. Cancer Res. 2006, 66(6): 3248-3255.
    [139] Deng S S, Xing T Y, Zhou H Y, et al. Comparative proteome analysis of breast cancer and adjacent normal breast tissues in human[J]. Genomics Proteomics Bioinformatics. 2006, 4(3): 165-172.
    [140] Othman M I, Majid M I, Singh M, et al. Isolation, identification and quantification of differentially expressed proteins from cancerous and normal breast tissues[J]. Ann Clin Biochem. 2008, 45(Pt 3): 299-306.
    [141] Hudelist G, Singer C F, Pischinger K I, et al. Proteomic analysis in human breast cancer: identification of a characteristic protein expression profile of malignant breast epithelium[J]. Proteomics. 2006, 6(6): 1989-2002.
    [142] Kim D H, Bae J, Lee J W, et al. Proteomic analysis of breast cancer tissue reveals upregulation of actin-remodeling proteins and its relevance to cancer invasiveness[J]. Proteomics Clin Appl. 2009, 3(1): 30-40.
    [143] Bisca A, D'Ambrosio C, Scaloni A, et al. Proteomic evaluation of core biopsy specimens from breast lesions[J]. Cancer Lett. 2004, 204(1): 79-86.
    [144] Nimeus E, Malmstrom J, Johnsson A, et al. Proteomic analysis identifies candidate proteins associated with distant recurrences in breast cancer after adjuvant chemotherapy[J]. J Pharm Biomed Anal. 2007, 43(3): 1086-1093.
    [1] Fc S. Multistep progression from an oestrogen-dependent growth towards an autonomous growth in breast carcinogenesis[J]. Eur J Cancer. 1995: 2049-2052.
    [2] Beckmann Mw N D S H. Multistep carcinogenesis of breast cancer and tumour heterogeneity[J]. J Mol Med. 1997: 429-439.
    [3] Clarke R B N K B. Progression of human breast cancer cells from hormone-dependent to hormone-independent growth both in vitro and in vivo[J]. Proc Natl Acad Sci USA. 1989: 3649-3653.
    [4] Jolicoeur F S T G G. Multifocal, nascent, and invasive myoepithelial carcinoma (malignant myoepithelioma) of the breast: an immunohistochemical and ultrastructural study[J]. Int J Surg Pathol. 2002: 281-291.
    [5] Tsubura A S N I T. Immunohistochemical localization of myoepithelial cells and basement membrane in normal, benign and malignant human breast lesions[J]. Virchows Arch A Pathol Anat Histopathol. 1988: 133-139.
    [6] A N. Morphology of basement membrane and associated matrix proteins in normal and pathological tissues[J]. Veroff Pathol. 1995: 139.
    [7] Slade Mj C R G J. The human mammary gland basement membrane is integral to the polarity of luminal epithelial cells[J]. Exp Cell Res. 1999: 267-278.
    [8] N M. The ultrastructural composition of basement membranes in vivo[J]. Histol Histopathol. 2001: 1239-1248.
    [9] Man Y G, Tai L, Barner R, et al. Cell clusters overlying focally disrupted mammary myoepithelial cell layers and adjacent cells within the same duct display different immunohistochemical and genetic features: implications for tumor progression and invasion[J]. Breast Cancer Res. 2003, 5(6): R231-R241.
    [10] Yousefi M, Mattu R, Gao C, et al. Mammary ducts with and without focal myoepithelial cell layer disruptions show a different frequency of white blood cell infiltration and growth pattern: implications for tumor progression and invasion.[J]. Appl Immunohistochem Mol Morphol. 2005, 13(1): 30-37.
    [11] Man Y G. A seemingly most effective target for early detection and intervention of prostate tumor invasion.[J]. J Cancer. 2010, 1: 63-69.
    [12] Bell K A K R J. A clinicopathologic analysis of atypical proliferative (borderline) tumors and well-differentiated endometrioid adenocarcinomas of the ovary[J]. Am J Surg Pathol. 2000: 1465-1479.
    [13] Kurman R J. Evaluation of criteria for distinguishing atypical endometrial hyperplasia from well-differentiated carcinoma[J]. Cancer. 1982: 2547-2559.
    [14] Riopel M A R B M K. Evaluation of diagnostic criteria and behavior of ovarian intestinal-type mucinous tumors: atypical proliferative (borderline) tumors and intraepithelial, microinvasive, invasive, and metastatic carcinomas[J]. Am J Surg Pathol. 1999: 617-635.
    [15] Pitcher T J P B W C. A blind fish can school[J]. Science. 1976: 963-965.
    [16] P D. Context-dependent variability in the components of fish escape response: integrating locomotor performance and behavior[J]. J Exp Zool A Ecol Genet Physiol. 2010: 59-79.
    [17] Partridge Tj P T. Evidence against a hydrodynamic function for fish schools[J]. Nature. 1979: 418-419.
    [18] Milinski M H R. Influence of a predator on the optimal foraging behaviour of sticklebacks (Gasterosteus aculeatus L.)[J]. Nature. 1978.
    [19] E S T A. The optomotor reaction of schooling carangid fishes[J]. Anim Behav. 1965: 330-336.
    [20] Fisher Hs H H. Competition drives cooperation among closely related sperm of deer mice[J]. Nature. 2010: 801-803.
    [21] Pb M. Fishes: An Introduction to Ichthyology (5th Edition)[M]. Benjamin Cummings.
    [22] Sj S. The transition from ductal carcinoma in situ to invasive breast cancer: the other side of the coin[J]. Breast Cancer Res. 2009: 101.
    [23] Weigelt B, Peterse J L, van T V L. Breast cancer metastasis: markers and models[J]. Nat Rev Cancer. 2005, 5(8): 591-602.
    [24] Staack A, Badendieck S, Schnorr D, et al. Combined determination of plasma MMP2, MMP9, and TIMP1 improves the non-invasive detection of transitional cell carcinoma of the bladder[J]. BMC Urol. 2006, 6: 19.
    [25] Frontczak-Baniewicz M, Walski M, Madejska G, et al. MMP2 and MMP9 in immature endothelial cells following surgical injury of rat cerebral cortex--a preliminary study[J]. Folia Neuropathol. 2009, 47(4): 338-346.
    [26] Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression[J]. Nat Rev Cancer. 2002, 2(3): 161-174.
    [27] Luo Y, Liang F, Zhang Z Y. PRL1 promotes cell migration and invasion by increasing MMP2 andMMP9 expression through Src and ERK1/2 pathways[J]. Biochemistry. 2009, 48(8): 1838-1846.
    [28] Popow-Wozniak A, Nowak D, Malicka-Blaszkiewicz M. [Types of tumor cells movement][J]. Postepy Biochem. 2009, 55(2): 113-120.
    [29] Mseka T, Coughlin M, Cramer L P. Graded actin filament polarity is the organization of oriented actomyosin II filament bundles required for fibroblast polarization[J]. Cell Motil Cytoskeleton. 2009, 66(9): 743-753.
    [30] Friedl P, Brocker E B. The biology of cell locomotion within three-dimensional extracellular matrix[J]. Cell Mol Life Sci. 2000, 57(1): 41-64.
    [31] Gingras A R, Vogel K P, Steinhoff H J, et al. Structural and dynamic characterization of a vinculin binding site in the talin rod.[J]. Biochemistry. 2006, 45(6): 1805-1817.
    [32] Bass M D, Patel B, Barsukov I G, et al. Further characterization of the interaction between the cytoskeletal proteins talin and vinculin.[J]. Biochem J. 2002, 362(Pt 3): 761-768.
    [33] Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms[J]. Nat Rev Cancer. 2003, 3(5): 362-374.
    [34] Pitts W C, Rojas V A, Gaffey M J, et al. Carcinomas with metaplasia and sarcomas of the breast[J]. Am J Clin Pathol. 1991, 95(5): 623-632.
    [35] Klinowska T C, Soriano J V, Edwards G M, et al. Laminin and beta1 integrins are crucial for normal mammary gland development in the mouse[J]. Dev Biol. 1999, 215(1): 13-32.
    [36] Simian M, Hirai Y, Navre M, et al. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells[J]. Development. 2001, 128(16): 3117-3131.
    [37] Glukhova M, Koteliansky V, Sastre X, et al. Adhesion systems in normal breast and in invasive breast carcinoma[J]. Am J Pathol. 1995, 146(3): 706-716.
    [38] Coopman P J, Thomas D M, Gehlsen K R, et al. Integrin alpha 3 beta 1 participates in the phagocytosis of extracellular matrix molecules by human breast cancer cells[J]. Mol Biol Cell. 1996, 7(11): 1789-1804.
    [39] Teuliere J, Faraldo M M, Deugnier M A, et al. Targeted activation of beta-catenin signaling in basal mammary epithelial cells affects mammary development and leads to hyperplasia[J]. Development. 2005, 132(2): 267-277.
    [40] Mierke C T, Kollmannsberger P, Zitterbart D P, et al. Vinculin facilitates cell invasion into three-dimensional collagen matrices[J]. J Biol Chem. 2010, 285(17): 13121-13130.
    [41] Tanentzapf G, Martin-Bermudo M D, Hicks M S, et al. Multiple factors contribute to integrin-talin interactions in vivo[J]. J Cell Sci. 2006, 119(Pt 8): 1632-1644.
    [42] Critchley D R, Gingras A R. Talin at a glance[J]. J Cell Sci. 2008, 121(Pt 9): 1345-1347.
    [43] Beckerle M C, Yeh R K. Talin: role at sites of cell-substratum adhesion[J]. Cell Motil Cytoskeleton. 1990, 16(1): 7-13.
    [44] Beckerle M C. The adhesion plaque protein, talin, is phosphorylated in vivo in chicken embryo fibroblasts exposed to a tumor-promoting phorbol ester[J]. Cell Regul. 1990, 1(2): 227-236.
    [45] Sawada K, Mitra A K, Radjabi A R, et al. Loss of E-cadherin promotes ovarian cancer metastasis via alpha 5-integrin, which is a therapeutic target[J]. Cancer Res. 2008, 68(7): 2329-2339.
    [46] Berx G, Van Roy F. The E-cadherin/catenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression[J]. Breast Cancer Res. 2001, 3(5): 289-293.
    [47] le Duc Q, Shi Q, Blonk I, et al. Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner[J]. J Cell Biol. 2010, 189(7): 1107-1115.
    [48] Ren X D, Kiosses W B, Sieg D J, et al. Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover[J]. J Cell Sci. 2000, 113 ( Pt 20): 3673-3678.
    [49] Schmitz K J, Grabellus F, Callies R, et al. High expression of focal adhesion kinase (p125FAK) in node-negative breast cancer is related to overexpression of HER-2/neu and activated Akt kinase but does not predict outcome[J]. Breast Cancer Res. 2005, 7(2): R194-R203.
    [50] Lark A L, Livasy C A, Dressler L, et al. High focal adhesion kinase expression in invasive breast carcinomas is associated with an aggressive phenotype[J]. Mod Pathol. 2005, 18(10): 1289-1294.
    [51] Emmert-Buck M R, Bonner R F, Smith P D, et al. Laser capture microdissection[J]. Science. 1996, 274(5289): 998-1001.
    [52] Espina V, Heiby M, Pierobon M, et al. Laser capture microdissection technology[J]. Expert Rev Mol Diagn. 2007, 7(5): 647-657.
    [53] Shi S R, Liu C, Balgley B M, et al. Protein extraction from formalin-fixed, paraffin-embedded tissue sections: quality evaluation by mass spectrometry[J]. J Histochem Cytochem. 2006, 54(6): 739-743.
    [54] Prieto D A, Hood B L, Darfler M M, et al. Liquid Tissue: proteomic profiling of formalin-fixedtissues[J]. Biotechniques. 2005, Suppl: 32-35.
    [55] Gown A M. Unmasking the mysteries of antigen or epitope retrieval and formalin fixation[J]. Am J Clin Pathol. 2004, 121(2): 172-174.
    [56] Rahmanzadeh R, Huttmann G, Gerdes J, et al. Chromophore-assisted light inactivation of pKi-67 leads to inhibition of ribosomal RNA synthesis[J]. Cell Prolif. 2007, 40(3): 422-430.
    [57] Bullwinkel J, Baron-Luhr B, Ludemann A, et al. Ki-67 protein is associated with ribosomal RNA transcription in quiescent and proliferating cells[J]. J Cell Physiol. 2006, 206(3): 624-635.
    [58] Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown[J]. J Cell Physiol. 2000, 182(3): 311-322.
    [59] Vander J D, Hassebrook R K, Hunsaker L A, et al. Metabolism of the 2-oxoaldehyde methylglyoxal by aldose reductase and by glyoxalase-I: roles for glutathione in both enzymes and implications for diabetic complications[J]. Chem Biol Interact. 2001, 130-132(1-3): 549-562.
    [60] Hyndman D J, Flynn T G. Sequence and expression levels in human tissues of a new member of the aldo-keto reductase family[J]. Biochim Biophys Acta. 1998, 1399(2-3): 198-202.
    [61] Ma J, Yan R, Zu X, et al. Aldo-keto reductase family 1 B10 affects fatty acid synthesis by regulating the stability of acetyl-CoA carboxylase-alpha in breast cancer cells[J]. J Biol Chem. 2008, 283(6): 3418-3423.
    [62] Yan R, Zu X, Ma J, et al. Aldo-keto reductase family 1 B10 gene silencing results in growth inhibition of colorectal cancer cells: Implication for cancer intervention[J]. Int J Cancer. 2007, 121(10): 2301-2306.
    [63] Hsu N Y, Ho H C, Chow K C, et al. Overexpression of dihydrodiol dehydrogenase as a prognostic marker of non-small cell lung cancer[J]. Cancer Res. 2001, 61(6): 2727-2731.
    [64] Deng H B, Parekh H K, Chow K C, et al. Increased expression of dihydrodiol dehydrogenase induces resistance to cisplatin in human ovarian carcinoma cells[J]. J Biol Chem. 2002, 277(17): 15035-15043.
    [65] Shen H, Fan Y, Yang X, et al. Increased expression of cystic fibrosis transmembrane conductance regulator in rat liver after common bile duct ligation[J]. J Cell Physiol. 2005, 203(3): 599-603.
    [66] Ciaccio P J, Tew K D. cDNA and deduced amino acid sequences of a human colon dihydrodiol dehydrogenase[J]. Biochim Biophys Acta. 1994, 1186(1-2): 129-132.
    [67] Ciaccio P J, Jaiswal A K, Tew K D. Regulation of human dihydrodiol dehydrogenase by Michael acceptor xenobiotics[J]. J Biol Chem. 1994, 269(22): 15558-15562.
    [68] Penning T M, Burczynski M E, Hung C F, et al. Dihydrodiol dehydrogenases and polycyclic aromatic hydrocarbon activation: generation of reactive and redox active o-quinones[J]. Chem Res Toxicol. 1999, 12(1): 1-18.
    [69] Matsushita K, Fukumoto M, Kobayashi T, et al. Diabetes-induced inhibition of voltage-dependent calcium channels in the retinal microvasculature: role of spermine[J]. Invest Ophthalmol Vis Sci. 2010, 51(11): 5979-5990.
    [70] Ishizaki E, Fukumoto M, Puro D G. Functional K(ATP) channels in the rat retinal microvasculature: topographical distribution, redox regulation, spermine modulation and diabetic alteration[J]. J Physiol. 2009, 587(Pt 10): 2233-2253.
    [71] Khuri F R, Lotan R. Retinoids in lung cancer: friend, foe, or fellow traveler?[J]. J Clin Oncol. 2004, 22(17): 3435-3437.
    [72] von Lintig J, Vogt K. Filling the gap in vitamin A research. Molecular identification of an enzyme cleaving beta-carotene to retinal[J]. J Biol Chem. 2000, 275(16): 11915-11920.
    [73] Boureux A, Vignal E, Faure S, et al. Evolution of the Rho family of ras-like GTPases in eukaryotes[J]. Mol Biol Evol. 2007, 24(1): 203-216.
    [74] Bustelo X R, Sauzeau V, Berenjeno I M. GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo[J]. Bioessays. 2007, 29(4): 356-370.
    [75] Hall A. Rho GTPases and the actin cytoskeleton[J]. Science. 1998, 279(5350): 509-514.
    [76] Etienne-Manneville S, Hall A. Rho GTPases in cell biology[J]. Nature. 2002, 420(6916): 629-635.
    [77] Ellenbroek S I, Collard J G. Rho GTPases: functions and association with cancer[J]. Clin Exp Metastasis. 2007, 24(8): 657-672.
    [78] Anzick S L, Kononen J, Walker R L, et al. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer[J]. Science. 1997, 277(5328): 965-968.
    [79] Tikkanen M K, Carter D J, Harris A M, et al. Endogenously expressed estrogen receptor and coactivator AIB1 interact in MCF-7 human breast cancer cells[J]. Proc Natl Acad Sci U S A. 2000, 97(23): 12536-12540.
    [80] Takeshita A, Cardona G R, Koibuchi N, et al. TRAM-1, A novel 160-kDa thyroid hormone receptor activator molecule, exhibits distinct properties from steroid receptor coactivator-1[J]. J Biol Chem. 1997, 272(44): 27629-27634.
    [81] Hoek K S, Schlegel N C, Eichhoff O M, et al. Novel MITF targets identified using a two-step DNA microarray strategy[J]. Pigment Cell Melanoma Res. 2008, 21(6): 665-676.
    [82] Conte N, Delaval B, Ginestier C, et al. TACC1-chTOG-Aurora A protein complex in breast cancer[J]. Oncogene. 2003, 22(50): 8102-8116.
    [83] Lettau I, Hattermann K, Held-Feindt J, et al. Matrix metalloproteinase-19 is highly expressed in astroglial tumors and promotes invasion of glioma cells[J]. J Neuropathol Exp Neurol. 2010, 69(3): 215-223.
    [84] John A, Tuszynski G. The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis[J]. Pathol Oncol Res. 2001, 7(1): 14-23.
    [85] Stetler-Stevenson W G. The role of matrix metalloproteinases in tumor invasion, metastasis, and angiogenesis[J]. Surg Oncol Clin N Am. 2001, 10(2): 383-392.
    [86] Bister V O, Salmela M T, Karjalainen-Lindsberg M L, et al. Differential expression of three matrix metalloproteinases, MMP-19, MMP-26, and MMP-28, in normal and inflamed intestine and colon cancer[J]. Dig Dis Sci. 2004, 49(4): 653-661.
    [87] Impola U, Jeskanen L, Ravanti L, et al. Expression of matrix metalloproteinase (MMP)-7 and MMP-13 and loss of MMP-19 and p16 are associated with malignant progression in chronic wounds[J]. Br J Dermatol. 2005, 152(4): 720-726.
    [88] Djonov V, Hogger K, Sedlacek R, et al. MMP-19: cellular localization of a novel metalloproteinase within normal breast tissue and mammary gland tumours[J]. J Pathol. 2001, 195(2): 147-155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700