不同外源因子对黄鳝性逆转的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以黄鳝(Monopterus albus)为研究对象。黄鳝在分类学上隶属于硬骨鱼纲、辐鳍亚纲(真口亚纲)、合鳃目、合鳃科,在我国仅发现黄鳝这个唯一种,它是东南亚地区一种重要的经济鱼类。黄鳝是一种雌性先熟雌雄同体的鱼类,在其生命发育过程中具有从功能性雌鱼向功能性雄鱼自然转变的单向发育的特性。在自然条件下,黄鳝一般在一龄以上达到性成熟,初次成熟都是雌性,产卵后开始发生性转变,三年以上可以发现雄性个体。自1944年发现黄鳝性逆转的特性以来,为了揭示黄鳝性逆转的发生机制,很多学者分别从生理生化、细胞学和分子生物学等发面做了很多努力,但到现在为止,对黄鳝性逆转的了解仍然不多,黄鳝性逆转的发生机制也不很清楚。为了进一步探讨黄鳝性逆转的发生机制,本试验研究了饲料低蛋白水平、外源性褪黑激素、外源性雌二醇、白消安和不同养殖密度对黄鳝性逆转的影响。主要研究结果如下:
     (1)低蛋白含量饲料对黄鳝性逆转的影响:以体重(9.50±1.50)g的黄鳝为试验对象,以白鱼粉作为主要蛋白源,按5个蛋白质水平梯度(10%、15%、20%、25%、40%)设计等能的饲料,每个试验组有三个重复,进行为期15个月的饲养试验,探讨低蛋白水平对黄鳝血清雌二醇、睾酮、性腺指数、性腺发育和性逆转的影响。结果显示,不同蛋白含量的饲料对黄鳝血清雌二醇和睾酮都有显著地影响,对照组(40%)中黄鳝血清雌二醇含量显著性地高于其他各试验组,而睾酮含量则显著性低于其他试验组。本试验中蛋白含量为10%组中,雌二醇含量在一月份达到最小值,为89.56±15.20 pg/ml;而最大值则出现在五月份蛋白含量为40%的试验组中,为1240.22±323.86 pg/ml;睾酮含量的最大值出现五月份,在蛋白含量为10%的试验组中,为804.02±34.84 pg/ml。性腺指数最小值出现在一月份蛋白含量为10%的试验组中,为0.611±0.35%;而最大值则出现在七月份蛋白含量为40%的对照组中,为11.669±3.66%。繁殖期间,投喂高蛋白含量的饲料,黄鳝性腺指数上升的速度较快。不同蛋白水平下,雌性比例有显著性差异,最高雌性比例出现在蛋白含量为40%的组中,雌性比例随着饲料蛋白含量的降低而减少。雄性比例最高出现在蛋白含量为10%的组中,蛋白含量为10%的组中雄性比例显著地高于蛋白含量为25%的组和对照组。同时,蛋白含量为10%的组中,黄鳝的成活率显著性地低于其他各组。本试验期间,各组间雌性黄鳝性腺的组织切片表明,雌性性腺发育的方式是相同的,各组之间没有差异。在间性个体中,可看见精母细胞分布在很多卵母细胞周围,在蛋白含量低的试验组中这种现象比较明显;在蛋白含量较低的试验组中可见有成熟的雄性性腺存在;七月份在蛋白含量为15%的试验组中,发现有繁殖后的功能性雄鱼。研究结果表明低蛋白含量的饲料对黄鳝的性逆转有促进作用。
     (2)外源性褪黑激素对黄鳝性逆转的影响:以体重(9.50±1.50)g的黄鳝为试验对象,褪黑激素按0 mg/kg(对照组)、10 mg/kg、30 mg/kg、50 mg/kg和70 mg/kg添加于饲料中,每个试验组有三个重复,进行为期15个月的饲养试验,探讨外源性褪黑激素对黄鳝性腺发育和性逆转的影响。结果显示,不同褪黑激素含量对黄鳝血清雌二醇和睾酮浓度有显著性的影响。在繁殖期结束后,黄鳝血清雌二醇和睾酮呈下降趋势,在越冬季节达到最小,产卵前迅速上升,随后下降。褪黑激素含量为10 mg/kg试验组中,黄鳝血清雌二醇浓度与对照组间没有显著性差异,但含量在30 mg/kg以上的各试验组中,血清雌二醇浓度均显著性地低于对照组;血清睾酮含量随褪黑激素含量增加而显著性下降,褪黑激素含量为10 mg/kg组与50mg/kg和70 mg/kg两组间血清睾酮含量有显著性差异。黄鳝的性腺指数只有褪黑激素含量为10 mg/kg的组与对照组间没有显著性差异,另外三组与对照组间有显著性差异,但试验组间差异性不显著。雌性比例在褪黑激素含量为10 mg/kg的试验组与对照组间没有显著性差异,含量高的各组中雌性比例显著低于对照组;间性比例中试验组间也没有显著性差异;雄性比例中,只有褪黑激素含量为70 mg/kg的试验组与对照组间有显著性差异,其他各组间均没有显著性差异。越冬期间用褪黑激素处理的黄鳝性腺中,卵母细胞间空隙较大,繁殖季节前期卵巢内可见不同发育阶段的卵母细胞,繁殖高峰季节可见部分变形的成熟卵母细胞,而间性黄鳝雄性性腺组织发育比对照组慢,雄性生殖褶相对较细;褪黑激素处理过的雄性黄鳝性腺组织比未处理过的要消瘦。本试验条件下,外源性褪黑激素对黄鳝的性腺发育有抑制作用,长时间高浓度的褪黑激素可导致黄鳝血清性类固醇激素雌二醇和睾酮含量下降,性腺指数降低,促进性逆转提前发生,但是长时间高浓度的外源性褪黑激素也会导致成活率降低。
     (3)外源性雌二醇对黄鳝性逆转的影响:以体重(9.50±1.50)g的黄鳝为试验对象,雌二醇按0 mg/kg(对照组)、20 mg/kg、40 mg/kg、60 mg/kg、80 mg/kg和100 mg/kg添加于饲料中,每个试验组有三个重复,进行为期15个月的饲养试验,探讨外源性雌二醇对黄鳝性逆转的影响。结果显示,添加外源性雌二醇的试验组与对照组之间,黄鳝血清雌二醇和睾酮浓度都存在显著性差异;但含量为60mg/kg以上的各试验组间血清雌二醇和睾酮浓度差异不显著。黄鳝性腺指数和肝脏指数在雌二醇试验组中与对照组间均有显著性差异。性腺指数在不同月份间具有极显著性差异,不同雌二醇含量对黄鳝性腺指数的影响也具有差异性,但它们交互作用对黄鳝性腺指数影响显示的差异性则不显著。不同性别比例中,低剂量组与对照组间没有显著性差异,高剂量组与对照组有显著性差异,试验组间差异性不显著。越冬期间用雌二醇处理的黄鳝性腺,卵母细胞间空隙较大,偶尔可见卵巢内有较大的卵母细胞,越冬后卵巢内可见不同发育阶段的卵母细胞,繁殖季节前可见处于不同发育阶段的卵母细胞均匀地排列在卵巢中,繁殖季节可见卵母细胞紧密地排列在卵巢中;雌二醇处理过的间性黄鳝性腺组织中,偶尔可见雄性性腺中包裹有较大的游离卵母细胞;而雌二醇处理过的雄性黄鳝性腺组织比较松散,不能填满整个精巢组织。本试验条件下,外源性雌二醇能够促进和维持黄鳝的雌性活性,增加血清中雌二醇的含量,利于卵巢和卵母细胞的发育成熟,增加黄鳝的性腺指数,同时也导致血清中睾酮含量降低,对雄性生殖腺的发生和发育有一定的抑制作用,使得肝脏指数上升和成活率下降。结果表明,外源性雌二醇能增加黄鳝的雌激素活性,对黄鳝的性转变有一定的延缓作用。
     (4)白消安对黄鳝性逆转的影响:以体重(9.50±1.50)g的黄鳝为试验对象,白消安按0 mg/kg(对照组)、10 mg/kg、30 mg/kg、50 mg/kg和70 mg/kg添加于饲料中,每组设3个平行,探讨白消安对不同时期黄鳝性腺发育和性逆转的影响。结果显示,白消安对黄鳝血清雌二醇和睾酮含量有显著性影响,但各试验组间没有显著性差异。在繁殖期结束后,雌二醇和睾酮仍处于较高水平,在越冬期最低,繁殖季节前呈上升趋势,繁殖期雌二醇和睾酮含量处于很高的水平。在各个时期,黄鳝血清雌二醇浓度均随着白消安含量的增加而呈下降趋势,而睾酮浓度均随着白消安含量的增加而略呈上升趋势。不同时期,黄鳝性腺指数的变化较大,在繁殖期达到最大值;但相同时期各试验组间,性腺指数随着白消安含量的增加呈下降趋势。雌性比例中,各试验组间均有显著性差异。间性和雄性比例中,对照组与各试验组间有显著性差异;而低含量的组间差异不显著,而白消安含量为70 mg/kg试验组中比例显著增多。经过白消安处理的试验组内,卵巢中退化的卵母细胞比例较高,而且部分细胞间有一定的空隙。间性阶段雄性生殖褶分布在稀疏的卵母细胞周围,雄性生殖腺偏消瘦,部分呈中空状态。结果表明,白消安对黄鳝的性腺发育有抑制作用,高剂量还会造成黄鳝的畸形。长时间对黄鳝进行白消安处理,可导致黄鳝血清雌二醇含量的降低和睾酮含量的增加,性腺指数降低,雌性比例减少,长时间高浓度的白消安会导致死亡率明显升高。
     (5)不同养殖密度对黄鳝性逆转的影响:以体重(9.88±0.70)g的黄鳝为试验对象,养殖密度分别为4、20、36、52、68、84和100尾/m2,每个试验组设三个重复,进行为期420 d的饲养试验,探讨不同养殖密度对黄鳝性逆转的影响。结果显示,不同养殖密度下,各组试验鱼的日增重和特定生长率随着养殖密度的增加不断降低,但在低密度组间没有显著性差异;净增重随着养殖密度的增加显著性地增加。各试验组间个体的肥满度随着养殖密度的增加呈下降趋势,不同密度间差异不显著;黄鳝血清雌二醇含量随着养殖密度的增加呈下降趋势,睾酮含量随着养殖密度的增加呈上升趋势,不同密度组间的差异均不显著。黄鳝性腺指数随着养殖密度的增加呈现出一种先上升后下降的趋势,性腺指数最高出现在养殖密度为52尾/m2的试验组中,各个试验组间差异性不显著。黄鳝的雌性比例随着养殖密度的增加呈下降趋势,间性比例中,高密度组和低密度组间差异性显著。雄性比例在三个高密度组间存在显著性差异。黄鳝的成活率随着养殖密度的增加呈下降趋势。雌性个体的性腺在低养殖密度试验组中,卵母细胞以第Ⅳ时相为主,卵母细胞发育较一致,随着养殖密度的增加,卵巢内可见较多的第Ⅱ时相和第Ⅲ时相的卵母细胞,个体差异较大;间性个体中不同试验组间差异性不显著。雄性性腺中,随着养殖密度的增加,雄性生殖褶在性腺内逐渐密集。本试验条件下,不同的养殖密度对黄鳝血清性类固醇和性腺指数因为受到性别比例的影响没有表现出显著性差异;而性别比例中,随着养殖密度的增加,雌性比例减少,间性比例和雄性比例呈上升趋势。
This study was conducted on rice field eel, Monopterus albus. It taxonomically belongs to the teleosts, the family Synbranchidae of the order Synbranchiformes, and is also the only representative species of the group of Synbranchidae in China. This fresh-water fish is an economically important species in Southeast Asia. The rice field eel is a protogynous hermaphrodite, strictly changing its sex unidirectionally from functional female to male naturally during development. It spends one or more years reaching puberty under natural ambient conditions, which is female at first. After spawning it normally begins to change sex from female to intersex and then finally to male. It may not develop into mature functional male until it is more than 3 years old. Since the discovery of natural sex reversal in rice field eels in 1944, some efforts have been made to uncover the mechanism underlying the process in this species from both the physiological and biochemical perspective, at the cytological level and at the molecular level. Thus far, little is known about sex reversal and the detailed mechanism of sex reversal of this species remains unclear. In our study, the effects of different factors including low protein level in diets, exogenous melatonin, exogenous estradiol, busulfan and stocking density on sex reversal of rice field eel were investigated. The results were as follows:
     (1) Effects of low dietary protein level on sex reversal in rice field eel:Five fishmeal-based experimental diets containing various crude protein levels including 10%, 15%,20%,25% and 40% were fed to triplicate groups of 50 fish each (initial weight 9.50±1.50 g) for 15 months. Effects of low dietary protein level on serum estradiol (E2) and testosterone (T) concentrations, Gonadosomatic index (GSI), sex reversal and gonad structure at the histological level were investigated. Different dietary protein levels significantly affected both E2 and T concentrations of the rice field eels fed with the formulated feeds. E2 concentrations of the control group (40%) were significantly higher than the other treatment groups, but T concentrations of the control group were significantly lower than the other treatment groups. In our experiment, E2 concentrations achieved minimum and maximal values 89.56±15.20 pg/ml and 1240.22±323.86 pg/ml, which occurred in the 100 g/kg protein level group in January and 400 g/kg protein level group in May, respectively. T concentration achieved the maximal value of 804.02± 34.84 pg/ml in the 100 g/kg protein level group in June. The highest GSIs were observed in fish fed with the 400 g/kg protein diet. GSIs achieved the minimum and maximal values,0.611±0.35% and 11.669±3.66%, which occurred in the 100 g/kg dietary protein level group in January and 400 g/kg dietary protein level group in July, respectively. GSIs of the fish fed with higher dietary protein levels increased faster during the spawning period. Significant differences were observed in the female ratio at different dietary protein levels, the highest female ratio occurred at the 400 g/kg dietary protein level, followed by 250 g/kg,200 g/kg,150 g/kg and 100 g/kg dietary protein levels. The highest male ratio obtained at the 100 g/kg dietary protein level was significantly different compared with the 250 g/kg protein level. Meanwhile, the survival rates of the 100 g/kg dietary protein level were significantly lower than those in the other groups. Histological structure of the female gonads from all treatment groups showed the same pattern during the experimental period. In the intersex fish, some spermatocytes could be observed among the numerous oocytes in a few gonads from the lower dietary protein level groups. The mature testis were observed in lower dietary protein level treatment groups, and fortunately the spawning of the fully functional males in the 150 g/kg dietary protein level treatment group were observed in July. The results showed that low dietary protein level can promote sex reversal in rice field eel under the experimental condition.
     (2) Effects of exogenous melatonin on sex reversal in rice field eel:The present study investigated the effects of exogenous melatonin on gonad development and sex reversal of rice field eel (initial weight 9.50±1.50 g). Five exogenous melatonin doses of 0 mg/kg (control),10 mg/kg,30 mg/kg,50 mg/kg and 70 mg/kg were set-up for all experiments with 3 replicates per treatment for 15 months. The results showed that both serum E2 and T concentrations of the rice field eels were significantly affected by exogenous melatonin. Serum E2 and T concentrations had a decreasing tendency in each group after spawning and the lowest levels were reached during overwintering. No meaningful statistical differences were found in E2 concentrations between the 10 mg/kg treated group and the control group, but E2 concentrations of fish treated with 30 mg/kg,50 mg/kg or 70 mg/kg were significantly lower than the control group. T concentrations decreased significantly with the increasing exogenous melatonin dose, and T concentrations decreased faster in two higher doses than lower doses. GSIs were significantly higher in the control group than the treated groups, while they were not significantly different among treatments. Female ratios were significantly higher in the control group than all treated groups except 10 mg/kg treated group. Intersex ratios were not influenced by exogenous melatonin in the experiment. Male ratios were significantly higher in the 70 mg/kg treated group than the other lower treated groups and the control group. Histological structure of the female gonads showed that the empty space in ovaries became bigger with increasing exogenous melatonin doses during overwintering period. Different developing stage oocytes and some deformed mature oocytes could be seen in ovaries during the breeding period. Male gonad developed slower and male genital folds were thinner in the treated groups than the control group. These results indicated exogenous melatonin may inhibit the development of gonad and promote sex reversal in rice field eel. Serum E2 and T concentrations, GSIs and survivals decreased after the fish treated with exogenous melatonin for a long time.
     (3) Effects of exogenous estradiol on sex reversal in rice field eel:The present study investigated the effects of exogenous estradiol on gonad development and sex reversal of rice field eel (initial weight 9.50±1.50 g). Six exogenous estradiol doses of 0 mg/kg (control),20 mg/kg,40 mg/kg,60 mg/kg,80 mg/kg and 100 mg/kg were set-up for all experiments with 3 replicates per treatment for 15 months. Both serum E2 concentrations and T concentrations were significantly influenced by exogenous estradiol. Where the difference was not significant of E2 and T concentrations in the three treated groups of 60 mg/kg,80 mg/kg and 100 mg/kg. GSIs and HSIs were significantly higher in all estradiol treated groups than the control group. There were significant differences in GSIs of rice field eel in different month and treated with different exogenous estradiol dose, but the exogenou estradiol levels and months interaction effects on GSIs were not significant. Sex ratios were not significantly different among all treatments, there were no significant differences among the control group,20 mg/kg and 40 mg/kg treated groups, either. They were significantly affected by the higher estradiol doses of 40 mg/kg,60 mg/kg and 80 mg/kg. The empty spaces became larger between oocytes in the estradiol treated groups and developed oocytes still can be seen occasionally during the overwintering period. Different developing stage oocytes can be found in ovaries before breeding season. Sometime big free ooctyes existed in intersexual gonad. The intersex and male gonad of the estradiol-treated groups were looser than the control group, and the male genital folds can not fill the whole male testis in the treated groups. The results showed that exogenous estradiol can maintain the female activity and delay sex reversal of the rice field eel, exogenous estradiol may be benefit for the female gonad development and inhibit the male gonad development. GSIs and HSIs increased and survival decreased in the estradiol treated groups.
     (4) Effects of busulfan on sex reversal in rice field eel:The present study investigated the effects of busulfan on gonad development and sex reversal of rice field eel (initial weight 9.50±1.50 g). Five busulfan doses of 0 mg/kg (control),10 mg/kg,30 mg/kg,50 mg/kg and 70 mg/kg were set-up for all experiments with 3 replicates per treatment for 15 months. Both E2 and T concentrations remained high levels before and during breeding phase. They were significantly affected by busulfan, while there were no significant differences in serum steroid concentrations among treatments. Serum E2 concentrations decreased and T concentrations increased with increasing busulfan levels in the experiment. Significant differences among GSIs were detected in different season. GSIs reached maximum in breeding period and decreased quickly after spawning. GSIs decreased as the busulfan level was raised in each group. Significant differences were observed in the female ratio at different busulfan levels. Intersex and male ratioes increased significantly in all treatment groups. The highest male ratio obtained in the 70 mg/kg group was significantly different compared with the other group. The proportion of degenerated oocytes was higher and more empty space produced in the busulfan treated groups. The male genital folds were thinner and some of them were empty in the intersex and male gonad of the fish dealed with busulfan. These results indicate additive inhibitory effects of busulfan on gonad developmnet, the effect appeared to be relatee to dose. High-dose of busulfan may produce deformed individuals of rice field eel. Serum E2 concentrations and GSIs decreased, but serum T concentrations and mortality increased significantly by busulfan treated for a long time.
     (5) Effects of different stocking density on sex reversal in rice field eel:Fish (initial weight 9.88±0.70 g) were stocked at densities of 4,20,36,52,68,84 or 100 fish/m2 in net cages in an earthen pond, with 3 replicate cages for each density. Fish were fed a formulated diet containing 45% crude protein and cultured for 420 days. Effects of stocking density on sex reversal in rice field eel were investigated. DWG and SGR decreased with increasing density, but no statistically significant differences were found between groups of the three lowest stocking densities. NY increased with increasing stocking density significantly. CF decreased with increasing stocking density, while no meaningful statistical differences were found for CF in the groups of fish held at any stocking density. Serum T concentrations and mortality increased but E2 concentrations decreased with increasing stocking density. Steriod hormone concentrations and GSIs were not affected significantly by stocking density. The highest mean GSIs were observed for fish of the 52 fish/m2 stocking density. Female ratio and survival decreased with increasing stocking density. Statistically significant differences for intersex ratio were observed between groups of the three highest and the lowest stocking densities. There were significant differences in male ratio among the three highest stocking densities. Female gonad developed well in low stocking density groups, while male gonad developed better in high stocking density groups. No statistically significant differences were found in serum steriod concentrations and GSIs because of different sex ratio in the groups of fish at any stocking density. Intersex ratio and male ratio increased, while female ratio decreased with increasing stocking density.
引文
1. 毕庶万,毕文胜.黄鳝生物学和增养殖技术.现代渔业信息,1998,13(50):16-19
    2. 邴旭文.模仿自然繁殖条件下的黄鳝人工繁殖试验.水产学报,2005,29(2):285--288
    3. 邴旭文,徐跑.黄鳝生态繁殖技术的研究.经济动物学报,2003,7(3):46-48
    4. 曹克驹,舒妙安,董惠芬.黄鳝个体生殖力与第一批产卵量的研究.水产科学,1988,7(3):1-6
    5. 陈德英.黄鳝人工繁殖及苗种培育技术.中国水产,1999,1:23-25
    6.陈国华,王建新.外源性褪黑激素对小鼠睾丸和附睾一氧化氮合酶分布的影响.齐齐哈尔医学院学报,2003a,24(10):1094-1096
    7. 陈国华,王建新.外源性褪黑激素对小鼠生精细胞凋亡的影响.齐齐哈尔医学院学报,2003b,24(10):1089-1090
    8. 陈慧.黄鳝的年龄鉴定与生长.水产学报,1998,22(4):296-302
    9. 陈丽莉,肖亚梅,刘筠.黄鳝一种新的生殖腺发育状况报道.水生生物学报,2006,30(5):621-624
    10.陈丽莉,肖亚梅,刘文彬,赵如榕,刘姣,刘筠,李万程.ERK/JNK在黄鳝雌、雄发育阶段生殖腺中的表达和定位.动物学报,2007,53(2):325-331
    11.陈鹏飞,伍莉,许南萍.不同外源激素促进黄鳝排卵的效果比较.淡水渔业,2001,31(3):54-55
    12.陈卫星,曹克驹.黄鳝分批产卵模式的研究.水利渔业,1993,4:28-31
    13.程翠,曲宪成.黄鳝性逆转研究进展.湖南农业科学,2010,1:121-124
    14.程起群,李思发,王成辉,徐志彬,项松平,王剑,段江萍,金家鑫,何小珍.不同密度瓯江彩鲤生长速度及养殖效果.安徽农业科学,2002,30(6):858-860
    15.储张杰.黄鳝性逆转研究进展.水利渔业,2006,26(6):19-23
    16.董伟等.家畜的生殖激素.北京:农业出版社,1985:126-127
    17.窦红伟,赵兴绪,马月辉,冯书堂,员新旭,曹文广.绵羊精原干细胞移植受体内源性生殖细胞的消除研究.贵州农业科学,2009,37(3):97-100
    18.范家佑,蔡惠芬,林艳红,张小雪.黄鳝不同发育阶段血清蛋白含量及电泳分析.山地农业生物学报,1999,18(4):216-218
    19.方永强,林秋明,齐襄.17α-甲基睾酮诱发赤点石斑鱼性逆转.水产学报,1992,16(2):171-174
    20.方永强,张为民,翁幼竹.17β-雌二醇促进鲻鱼性腺发育的作用机制:雌激素受体的定位.台湾海峡,2003,22(4):422-426
    21.苟兴能,苟清碧,李虎,徐大伟.黄鳝人工孵化方法的试验研究.水利渔业,2004,24(5):37
    22.韩名竹,白利平.黄鳝与泥鳅养殖.上海:上海科学技术出版社出版,1989:5-6
    23.何兰花.褪黑激素的研究进展.动物科学与动物医学,2002,19(10):10-11
    24.贺顺连,刘学文,郭照良,金宏,张继平.3种黄鳝遗传多样性分析.湖南农业大学学报(自然科学版),2004,30(2):145-147
    25.何焱,商璇,程汉华,周荣家.黄鳝Hprt基因的克隆和表达分析.遗传,2006,28(6):677-682
    26.洪美珠,陈国良.肝硬化与睾酮、雌二醇相互作用关心研究现状.世界华人消化杂志,2006,14(35):3397-3401
    27.黄勋彬,李红钢.小鼠无精子症动物模型的构建.中华男科学,2007,13:147-148
    28.江明性.药理学.北京:人民卫生出版社,1998,343-344
    29.李大鹏,庄平,严安生,王明学,章龙珍.光照、水流和养殖密度对史氏鲟稚鱼摄食、行为和生长的影响.水产学报,2004,28(1):54-61
    30.李洁斐,李卫华,杨健,徐绘,金泰,丁训诚.17-α炔雌醇对斑马鱼的卵黄蛋白原及性腺发育的影响.毒理学杂志,2006,20(1):9-13
    31.李明锋.黄鳝苗种繁育及生态养殖技术.饲料研究,1998,6:37-39
    32.李永材,黄溢明.比较生理学.北京:高等教育出版社,1984:227-229
    33.廖高鹏,赵梅,马海立,彭新星,秦萍萍,李万程,肖亚梅.黄鳝成体性腺组织生殖干细胞的体外培养及鉴定.湖南师范大学自然科学学报,2009,32(4):94-97
    34.林东红,郭俊英,张敬喜,黄慧芳.白消安诱发造血功能障碍小鼠模型的建立及淋巴细胞转化功能的测定.福建医科大学学报,2002,36(4):359-361
    35.林浩然.鱼类生理学.广州:广州高等教育出版社,1999:181-238
    36.林浩然,张梅丽,张素敏.鳗鲡繁殖生物学研究:Ⅳ.人工催熟过程中下海鳗鲡的GtH分泌活动、性腺发育状况和脑垂体GtH细胞的超显微结构.水生生物学 报,1987,11(4):320-330
    37.林君卓,翁幼竹,方永强.17β-雌二醇对鲻鱼脑垂体促性腺激素细胞分泌活动的影响.台湾海峡,2002,21(4):452-456
    38.刘继龙,曹思钦,王慧英,谭世俭.水牛卵泡液中雌二醇和睾酮水平变化的初步研究.黑龙江畜牧兽医,2009,7:1-3
    39.刘建康,顾国彦.黄鳝性逆转时生殖腺组织的改变.中国水生生物学汇报,1951,2(1-2):85-109
    40.刘利,郭一清,周荣家.黄鳝Sox9基因的克隆及其鉴定分析.遗传学报,2001,28(6):535-539
    41.刘凌云.黄鳝染色体G带带型的研究.遗传学报,1983,3:230-234
    42.刘荣臻,王浩,苏炳仁,张非常,韩代书.黄鳝性别的自然反转现象与血清蛋白关系的初步研究.水生生物学报,1987,11(1):22-28
    43.刘修业,王良臣.黄鳝性别与年龄、体长、体重等的关系及性腺的组织变化.淡水渔业,1987,6:12-14
    44.刘修业,王良臣.黄鳝年龄生物学特性关系的研究.南开大学学报(自然科学版),1985(1):86-92
    45.刘修业,崔同昌,王良臣,陈建春.黄鳝性逆转时生殖腺的组织学与超微结构的变化.水生生物学报,1990,14(2):166-169
    46.罗相忠,邹桂伟,潘光碧.大口鲇精子生理特性的研究.淡水渔业,2002,32(2):51-53
    47.吕道远,宋平,陈云贵,彭茂宇,桂建芳.黄鳝性腺自然逆转过程中vasa基因的表达分析.动物学报,2005,51(3):469-475
    48.梅文骧,操应龙,李蕊蕾,石补立,胡爱芬.黄鳝Monopterus albus'性转变的探讨.浙江水产学院学报,1993,12(1):53-58
    49.彭焕伟,张克英,陈代文.饲喂褪黑激素对生长猪生产性能及饲料养分消化率的影响.四川农业大学学报,2005,23(3):340-343
    50.彭茂宇,宋平,桂建芳.黄鳝DEAD-box家族PL10基因的克隆与序列分析.武汉大学学报,2005,51(2):227-234
    51.商璇,何焱,张雷,张春江,夏来新, 高尚,郭一清,程汉华,周荣家.黄鳝性腺高表达的核糖体蛋白基因.遗传,2005,27(2):227-230
    52.石琼.黄鳝褪黑激素的分泌特性及其对性腺发育的影响.[博士学位论文].广 州:中山大学生命科学学院,1997
    53.石琼,林浩然,邓柏礼.饥饿对黄鳝性腺发育及血清褪黑激素水平的影响.北京师范大学学报(自然科学版),1998a,34(3):395-398
    54.石琼,林浩然,邓柏礼.褪黑激素在黄鳝体内分布与生殖季节性变化.中山大学学报(自然科学版),1998b,37(2):81-84
    55.石琼,林浩然,邓柏礼.外源性褪黑激素对黄鳝性腺发育及性腺激素分泌的影响.动物学报,1998c,44(4):435-442
    56.石琼,林浩然,邓柏礼.黄鳝血清褪黑激素水平日周期性与季节性变化的节律.上海水产大学学报,1999,8(1):37-42
    57.石琼,孙儒泳.黄鳝的性转变.生物学通报,1999,34(5):12-13
    58.石琼,颜远义,胡敏.环境因子对黄鳝血清褪黑激素水平的影响.华中农业大学学报,2003,22(4):385-388
    59.宋平,李建宏,贾熙华.黄鳝性逆转与性腺蛋白关系的分析.动物学杂志,1994,29(1):15-17
    60.宋平,熊全沫.黄鳝血清睾酮和雌二醇含量周年变化规律的研究.武汉大学学报(自然科学版),1993,2:115-119
    61.宋燕妮,关德宏,庞建华,王冰.白消安诱导构建胎鼠肢体畸形模型的研究.中国美容整形外科杂志,2007,18(1):71-75
    62.孙国波.白消安诱发建立鸡无精子症模型的研究.第十四届全国家禽科学学术讨论会,2009,北京
    63.苏建国.黄鳝的繁殖技术.畜牧兽医杂志,2001,20(5):45-47
    64.唐爱发,周永翠,余振东,江智茂,桂耀庭,秦达念,蔡志明.Mm.158494基因在白消安引起的无精子症小鼠中的表达.中国男科学杂志,2008,22(9):1-3
    65.陶亚雄,林浩然.黄鳝自然性反转的研究.水生生物学报,1991,15(3):274-278
    66.陶亚雄,林浩然.外源激素对雌性黄鳝血清类固醇激素的影响.动物学报,1993,39(3):315-321
    67.陶亚雄,林浩然.外源激素对雄性黄鳝性类固醇激素分泌的影响.水生生物学报,1994,18(2):189-191
    68.王方雨,张世萍.黄鳝生物学研究进展.水利渔业,2004,24(6):1-3
    69.王浩,刘荣臻.雌性特异蛋白质复合物促进黄鳝性腺发育、提高黄鳝孵化率.水产学报,1989,13(4):353-355
    70.王良臣等.黄鳝生物学因素关系的研究.鱼类学论文集(第四辑),科学出版社(京),1985,147-153
    71.王良臣等.黄鳝垂体腺嗜碱性细胞组织化学的研究.鱼类学论文集(第五辑),科学出版社(京),1986,29-34
    72.王林枫,杨改青,张世军,杨耀胜.光照和埋植褪黑激素对绒山羊相关激素分泌的影响.动物生产,2009,45(21):36-40
    73.王松,高腾云,李新建.褪黑激素在动物生产上的研究进展.家畜生态学报,2007,28(4):5-8
    74.隗黎丽,张世萍.黄鳝性腺发育的研究概况.河北渔业,2003,6:6-8
    75.魏震,周定刚,任永林.黄鳝繁殖生物学的研究现状.河北渔业,2008,11:5-7
    76.翁幼竹,方永强,胡晓霞.雌、雄激素受体在文昌鱼神经系统和哈氏窝的免疫识别.动物学报,2001,47(6):672-676
    77.吴翠琴,袁东星,刘宝敏.乙炔基雌二醇对真鲷幼鱼的雌激素效应研究.海洋环境科学,2009,28(6):630-634
    78.夏银,汪兴生,杨立国.褪黑激素主动免疫对蛋鸡生殖内分泌的影响.南京农业大学学报,1996,3:75-78
    79.肖亚梅.黄鳝繁殖生物学研究Ⅰ:黄鳝生殖腺的早期发生及其结构变化.湖南范大学自然科学学报,1993,16:346-349
    80.肖亚梅.黄鳝繁殖生物学研究Ⅱ:黄鳝的雌性发育.湖南师范大学自然科学学报,1995,18(5):45-51
    81.肖亚梅,陈丽莉,陈松,刘姣,赵如榕.黄鳝生殖干细胞在性逆转生殖发育过程中的变化.分子细胞生物学报,2007,40(3):196-204
    82.肖亚梅,刘姣,陈丽莉,邹立军,邓觅,李万程.黄鳝生殖发育不同时期性腺差异蛋白的初步研究.湖南师范大学自然科学学报,2009,32(1):97-99
    83.肖亚梅,刘筠.黄鳝由间性发育逆转为雄性发育的细胞生物学研究.水产学报,1995,19(14):297-301
    84.熊振湖,黄国兰.内分泌干扰物三丁基锡诱导的腹足钢动物性畸变现象.环境科学研究,2002,5(3):56-60
    85.徐宏发,朱大军.黄鳝的生殖习性和人工繁殖.水产科技情报,1987,6:14-15
    86.徐晋麟,马飞,徐沁.黄鳝性逆转过程中同工酶的分析研究.遗传学报,1994, 21(2):104-111
    87.徐晓群,朱小明,费亮亮,王桂忠,李少菁.不同饵料、密度和池底对锯缘青蟹大眼幼体蜕皮变态的影响.厦门大学学报,2005,44(2):268-271
    88.杨明生.黄鳝年龄与体长的研究.内陆水产,1993(6):7-9
    89.杨代勤.黄鳝营养需要与消化酶的研究.[博士学位论文].武汉:华中农业大学水产学院,2002
    90.杨代勤,陈芳,李道霞,刘百韬.黄鳝食性的初步研究.水生生物学报,1997,21(1):24-30
    91.杨代勤,陈芳,李道霞.黄鳝生长特殊性的初步研究.湖北农学院学报,1993,3:194-199
    92.杨代勤,陈芳,刘百韬,李道霞.黄鳝产卵类型及繁殖力的研究.湖北农学院学报,1994,14(3):40-44
    93.杨代勤,陈芳,阮国良,苏应兵.黄鳝性转变与体重、年龄的关系.长江大学学报(自然科学版),2008,5(4):45-47
    94.杨文云,顾忠旗,王春华,董武子.黄鳝性逆转过程中性腺形态学初步观察.动物医学进展,2004,25(6):113-115
    95.杨兴烨,尹大强,孙爱龙,等.几种氯代芳烃对鱼体内性激素水平的影响研究.南京大学学报(自然科学),2000,36(2):119-223
    96.叶玉珍,吴清江.鳙人工单倍体育种研究初报.水生生物学报,2003,27(1):107-107
    97.殷名称.鱼类仔鱼期的摄食和生长.水产学报,1995,19(4)::335-342
    98.尹绍武.若干因子对黄鳝繁殖的影响.河北渔业,2004,3:7-8
    99.尹绍武,李建中,周工健,刘筠.黄鳝野生群体和养殖群体遗传结构的RAPD分析.应用与环境生物学报,2005,11(3),328-332
    100.尹绍武,周工健,刘筠.黄鳝孵卵泡的生化成分及生理作用.水生生物学报,2004a,28(2):197-201
    101.尹绍武,周工健,刘筠.不同生态因子对黄鳝受精卵孵化率的影响.应用生态学报,2004b,15(4):734-736
    102.尹绍武,周工健,刘筠.黄鳝的繁殖生态学研究.生态学报,2005,25(3):435-440
    103.俞菊华,吴婷婷,李建林,曹丽萍,夏德全.黄鳝P-450芳香化酶基因的克隆 及序列分析.水生生物学报,2005,29(5):550-555
    104.张善堂,孙自敏.白消安在造血干细胞移植中的应用及其治疗药物监测研究进展.中国医院药学杂志,2009,29(3):228-232
    105.张小雪,董元凯.黄鳝性腺发生与分化的研究.水利渔业,1994a,75(3):53-55
    106.张小雪,董元凯.黄鳝精巢显微和超微结构的研究.水利渔业,1994b,16(5):53-55
    107.张小雪,董元凯.外源雄性激素对幼鳝性别诱导的初探.水利渔业,1994,6:18-20
    108.张廷军.鱼类对高密度环境的适应.水产科技情报,1998,25(3):110-113
    109.张廷军,杨振才,孙儒泳.鱼类对高密度环境的适应.水产科技情报,1998,25(3):110-113
    110.张易祥,金秀梅,刘莉,采克俊,丁志丽,李赞东.雌二醇对鸡胚性腺发育及性成熟后生殖能力的影响.中国兽医学报,2009,29(11):1474-1477
    111.张勇,陈淳,顾建新,徐晋麟.黄鳝性别决定与SRY基因不相关.自然科学进展,2001,11(4):365-367
    112.张永泉,尹家胜,王丙乾,刘奕,李永发,李建兴,白庆利.养殖密度对白点鲑幼鱼生长、存活以及行为的影响.大连水产学院学报,2009,24(6):520-524
    113.赵维信.鱼类性腺内分泌研究的进展.水产科技情报,1987,6:7-9
    114.赵维信,姜仁良,黄世蕉.团头鲂血清中雌二醇含量测定方法的改进和周年变化规律的研究.水生生物学报,1987,11(2):97-104
    115.赵云芳,柯薰陶.黄鳝繁殖生物学的观察.四川动物,1992,11(4):7-8
    116.赵云芳,柯熏陶.外源激素诱导黄鳝性转化的效果.西南农业学报,1992,5(1):74-78
    117.赵云芳,柯薰陶,杨若宾.黄鳝的性别及性腺结构变化.西南农业学报,1989,2(1):94
    118.赵云芳,柯薰陶,杨若宾.黄鳝的人工繁殖研究.西南农业学报,1990,3(3):86-89
    119.郑春梅,张玲,冯四洲,赵春华.马利兰在造血干细胞移植预处理方案中的应用及研究进展.国外医学输血及血液学分册,2003,26(6):513-516
    120.周定刚,傅天佑,谭永洪.人工诱导黄鳝排卵的初步研究.水生生物学报,1990,14(3):280-282
    121.周定刚,谭永洪,付天佑.黄鳝卵巢发育的研究.水生生物学报,1992,16(4):361-367
    122.周定刚,谭永洪,曹五七,张大祥.黄鳝精巢发育的周年变化.四川农业大学学报,2002,20(3):256-261
    123.周国利,吴玉厚.褪黑激素生理特性及应用.生物学杂志,2006,23(3):47-49
    124.周秋白,吴华东,吴红翔,庞会忠,乐世亮.产卵与黄鳝性转化关联的研究.经济动物学报,2004,8(2):89-91
    125.周秋白,张燕萍,杨发群,吴红翔,李新华.鄱阳湖区黄鳝精子活力周年观察.江西农业大学学报,2004,26(6):843-846
    126.朱春华.盐度对南美白对虾生长性能的影响.水产养殖,2002(3):25-27
    127.朱康儿,徐扬,钟隽,陈盛亭,曾慧兰.BU-CTX2预处理方案异基因造血干细胞移植治疗白血病60例.中华血液学杂志,2002,23(7):349-352
    128.朱振东.黄鳝漫话.湖北渔业,1996,12:50-51
    129.庄平,李大鹏,王明学.养殖密度对史氏鲟稚鱼生长的影响.应用生态学,2002,13(6):735-738
    130.卓孝磊,邹记兴,崔科,钟山,何学军.外源性甲基睾丸酮对雌性和间性黄鳝性腺发育的影响.水生生物学报,2008,32(6):861-866
    131.邹记兴.黄鳝H-Y抗原的研究.水产科技情报,1999,26(4):177-181
    132.邹记兴.黄鳝性逆转与血清蛋白关系的分析.水利渔业,2000,20(1):13-15
    133. Allen K O. Effects of stocking density and water exchange rate on growth and survival of channel catfishIctaluruspunctatusin circular tanks. Aquaculture,1974,4: 29-39
    134. Amano M, Hyodo S,Kitamura S, Ikuta K, Suzuki Y, Urano A, Aida K. Short photoperiod accelerates preoptic and ventral telencephalic salmon GnRH synthesis and precocious maturation in underyearling male masu salmon. General and Comparative Endocrinology,1995,99:22-27
    135. Andrews J W, Knight L H, Page J W, Matsuda Y, Brown E E. Interactions of stocking density and water turnover on growth and food conversion of channel catfish reared in intensively stocked tanks. The Progressive Fish-Culturist,1971,33: 197-203
    136. Baroiller J F, Guiguen Y, Fostier A. Endocrine and environmental aspects of sex differentiation in fish. Cellular and Molecular Life Sciences,1999,55(6/7):910-931
    137. Baskerville B B, kling L J. Larval of atlantic cod gudus morhua at hight stocking densities. Aquaculture,2000,181(1/2):61-69
    138. Berndtson W E, Igboeli G, Pickett B W. Relatonship of absolute numbers of Sertoli cells to testicular size and spermatogenesis in young beef bull. Animal Science,1987, 64:241-246
    139. Billard R. Attempts to inhibit testicular growth in rainbow trout with antiandrogens (cyproterone, cyproterone acetate, oxymetholone) and busulfan given during the period of spermatogenesis. General and Comparative Endocrinology,1982,48(1): 33-38
    140. Billard R, Fostier A, Weil C, Breton B. Endocrine control of spermatogenesis in teleost fish. Canadian Jounral of Fisheries and Aquatic Science,1982,39(1):65-79
    141. Billig H, Furuta I, Hsueh A J.Estrogens inhibit and androgens enhance ovarian granulosa cell apop tosis. Endocrinology,1993,133:2204-2212
    142. Blaise C, Gagne F, Pellerin J, Hansen P D. Determination of vitellogenin-like properties in Mya arenaria hemolymph (Saguenay Fjord, Canada):a potential biomarker for endocrine disruption. Environmental toxicology,1999,14(5):455-465
    143. Bogart M H. Sex determination:A hypothesis based on steroid ratios. Journal of Theoretical Biology,1987,128(3):349-357
    144. Boisclair D, Leggett W C. Among-population variability of fish growth:3. Influence of fish community. Canadian Journal of Fisheries and Aquatic Sciences.1989,46(9): 1539-1550
    145. Bromage N R, Randall C F, Porter M J R, Davies B. How do photoperiod, the pineal gland, melatonin, and circannual rhythms interact to co-ordinate seasonal reproduction in salmonid fish? In:Goetz F W, Thomas P eds. Reproductive Physiology of Fish. Austin:Fish Symposium 95,1995:164-166
    146. Bubenik G A, Ball R O, Pang S F. The effect of food deprivation on brain and gastronintestinal tissue levels of tryptophan, serotonin,5-hydroxyindoleacetic acid, and melatonin. Pineal Research,1992,1:7
    147. Burton M P M. Links between nutrition and reproduction in fish. In:Goetz F W, Thomas P, eds. Proceedings of the 5th international symposiun on reproductive physiology of fish. Austin:Fish Symposium,1995,182
    148. Carlson A R, Bocher J, Herman L J. Growth and survival of channel catfish and yellow perch exposed to lowered constant and diurnally fluctuating dissolved oxyen concentrations. Progressive Fish-Culturist,1980,42(2):73-78
    149. Chan S T H. On the gonadal and adenohypophsial functions of natural sex reversal. In:Reinboth R (eds), Intersexuality in the animal kigdon, Springer-Verlag, Berlin, 1975,201-222
    150. Chan S T H. Spontaneous sex reversal in fisher. In:"Handbook of sexology" (Money J, Musaph H (eds), Elsevier/North-Holland Biomedical Press, Armterdam,1977, 91-105
    151. Chan S T H, O W S, Tang F, Lofts B. Biopsy studies on the natural sex reversal in Monopterus albus(Pisces:Teleostei). Journal of Zoology,1972,167(4):415-421
    152. Chan S T H, Philips J G. The structure of the gonad during natural sex reversal in Monopterus albus (Pisces:Teleostei). Journal of Zoology,1967,151(1):129-141
    153. Chan S T H, Wai S O, Tang F, Lofts B. Biopsy studies on the nature sex reveral in Monopterus albus (Pisces:Teleostei). Journal of Zoology,1972,167(4):415-421
    154. Chan S T H, Yeung S B. Sex control and sex reversal in fish under natural conditions. In:W. S. Hoar, et al., (ed.) Fish Physiology, Vol.9B, Academic Press, New York, 1983,171-222
    155. Chan S T H, Yeung S B. Sex steroids in intersexual fisher. Fish Physiology and Biochemistry,1989,7:229-235
    156. Chan W Y, Ng T B. Effects of pineal inloles on ovarian respones to gonadotropin-induced ovulation in rice. Journal of Nerual Transmission,1995,100: 239-246
    157. Chang C F, Hung C Y, Chiang M C, Lan S C. The concentrations of plasma sex steroids and gonadal aromatase during controlled sex differentiation in grey mullet, Mugil cephalus. Aquaculture,1999,177(1),37-45
    158. Chang C F, Lan S C, Pan B S. Feed administration of estradiol-17-beta stimulates female differentation in juvenile grey mullet, Mugil cephalus. Taiwan Zoological Studies,1995,34:257-264
    159. Channing C P, Licht P, Papkoff H, Donaldson E M. Comparative activities of mammalian, reptilian and piscine gonadotropins in monkey granulose cell oultures. General and Comparative Endocrinology,1974,22:137-145
    160. Chen F Y, Chow M, Chao T M, Lim R. Artificial spawning and larval rearing of the grouper Epinephulus tauvina (Forskal) in Singapore. Singapore Journal of Primary Industries,1977,5:1-21
    161. Chen Shaoya, Chen Chonghong. Influences of melatonin of the growth of Hela cells. Chinese Pharmaceutical Sciences,2002,11 (2):48-51
    162. Choi Y J, Ok D W, Kwon D N, Chung J I, Kin H C, Yeo S M, Kim T, Seo H G, Kim J H. Murine male germ cell apotosis induce by busulfan treatment correlates with loss of c-kit-expression in a Fas/FasL-and p53-independent manner. FEBS letter, 2004,575:41-51
    163. Coelho L A, Rodrigues P A, Nonaka K O, Sasa A, Balieiro J C, Vincente W R, Cipolla-Neto J. Annual pattern of plasma melatonin and progesterone concentrations in hair and wool ewe lambs kept under natural photoperiod at lower latitudes in the southern hemisphere. Pineal Research,2006,41:101-107
    164. Collins J P, Cheek J E. Effect of food and density on development of typical and cannibalism salamander larvae in Ambystoma tigrinum Nebulosum. American Zoologist,1983,23:77-84
    165. Collins T M, Trexler J C, Nico L G, Rawlings T A. Genetic diversity in a morphologically conservative invasive taxon:multiple introductions of swamp eels to the Southeastern United States. Conservation biology,2002,16(4):1024-1035
    166. Couch J A, Fournie J W. Pathobiology of marine and estuarine organism. Boca Raton USA:CRC Press Inc,1993,333-347
    167. Courot M, Ortavant R. Endocrine control of spermatogenesis in the ram. Journal of reproduction and fertility supplyment,1981,30:47-60
    168. Cutts C J, Metcalfe N B, Taylor A C. Aggression and growth depression in juvenile Atlantic salmon:the consequences of individual Variation in standardmetabolic rate. Journal of Fish Biolog,1998,52:1026-1037
    169. Dufour S, Delerue LBN, Fontaine Y A. Effects of steroid hormones on pituitary immunoreactive gonadotropin in European freshwater eel, Anguilla anguilla L.General Comparative Endocrinology,1983,52:190-197
    170. Fagerlund U H M, McBride J R, Stone E T. Stress-related effects of hatchery rearing density on coho salmon. Transactions of the American Fisheries Society,1981,110: 644-649
    171. Fishelson L. Protogynous sex reversal in the fish Anthias squamipinnis (Teleostei, Anthiidae) regulated by the presence or absence of a male fish. Nature,1970,227: 90
    172. Fitzpatrick M S, Pereira C B, Schreck C B. In vitro steroid secretion during early development of mono-sex rainbow trout:sex differences, onset of pituitary control, and effects of dietary steroid treatment. General and Comparative Endocrinology, 1993,91(2):199-215
    173. Fostier A, Jalabert B, Billard R, Zohar Y. The gonadal steroids. In:Hoar W S, Randall D J, Donaldson E M. (eds.), Fish Physiology. New York:Academic Press, 1983,9A:277-372
    174. Francis R C. The effect of bidirectionnal selection for social dominance on agonistic behaviour and sex ratios in the paradise fish (Macropodus opercularis). Behaviour, 1984,90:25-45
    175. Gagne F, Blaise C, Pellerin J, Pelletier E, Douville M, Gauthier-Clerc S, Viglino L. Sex alteration in soft-shell clams (Mya arenaria) in an intertidal zone of the Saint-Lawrence River (Quebec, Canada). Comparative Biochemistry and Physiology, C:Comparative Pharmacology & Toxicology,2003,134(2):189-198
    176. Garling D L, Wilson R P. Optimum dietary protein to energy ratios for channel catfish fingerlings, Ictalurus punctatus. The Journal of Nutrition,1976,106: 1368-1375
    177. Hallett J S, Wentworth B C. The effects of busulfan on gonadal differentiation and development in Japanese quail (Coturnix coturnix japonica). Poultry Science,1991, 70(7):1619-1623
    178. Hemsworth B N. Jachson H. Effect on busulfan on the developing gonad of the male rat. Journal of Reproduction and Fertility,1963,5:187-194
    179. Howell W M, Blank D A, Bortone S A. Abnormal expression of secondary sex charaters in a population of mosqitofish, Gambusia affinis holbrooki. Evidence for environmentally induced masxulinization. Copeia,1980,4:676-681
    180. Huang X, Cheng H, Guo Y, Liu L, Gui J, Zhou R. A consreved family of doublesex-related genes from fishes. Journal of Experimental Zoology,2002,294(1): 63-67
    181. Huang X, Guo Y Q, Shui Y, Gao S, Yu H S, Cheng H H, Zhou R J. Multiple alternative splicing and differential expression of dmrtl during gonad transformation of the rice field eel. Biology of Reproduction,2005,73(5):1017-1024
    182. Irwin S, Halloran J O, FilzGeald R D. Stoking density, growth and growth variation in Juvenile turbot, cophthlmus maxims. Aquaculture,1999,178:77-78
    183. Izhar A K, Peter T. Melatonin Influences Gonadotropin II Secretion in the Atlantic Croaker (Micropogonias undulatus). General and Comparative Endocrinology,1996, 104:231-242
    184. Jack B, Bishop, John S, Wassom. Toxicolgical revies of busulfan (Myleran). Mutation Research/Reviews in Genetic Toxicology,1986,168(1):15-45
    185. Jang S H, Zhou F, Xia L X, Zhao W, Cheng H H, Zhou R J. Construction of a BAC library and identification of Dmrtl gene of the rice field eel, Monopterus albus. Biochemical and Biophysical Research Communications,2006,348(2):775-780
    186. Jiang F X. Behaviour of spermatogonia following recovery from busulfan treatment in the rat. Anatomy and Embryology,1998,198(1):53-61
    187. Jorgen S C, Yngvar S S, Malcolm J. The combined effects of stocking density and sustained exercise on the behaviour, food intake and growth of juvenile Arctic charr (Salvelinus alpinus). Canadian Journal Zoology,1992,70:115-122
    188. Joy K P, Agha A K. Seasonal effects of administration of melatonin and 5-methoxytryptophol on ovarian activity in catfish Heteropneustes follilis (Bloch). Pineal Research,1991,10:65-701
    189. Julieta W, Kerry W, Robert E E, Christopher L B, Karen K, Vince P. Waterborne ethynylestradiol induces vitellogenin and alters metallothionein expression in lake trout (Salvelinus namaycush). Aquatic Toxicology,2003,62:321-328
    190. Kagawa H, Young G, Nagahama Y. Changes in plasma steroid hormone levels during gonadal maturation in female goldfish, Bulletin of the Japanese Society of Scientifid Fisheries,1983,49:1783-1787
    191. Kanatsu S M, Toyokuni S, Morimoto T, Matsui S, Honjo T, Shinohara T. Functional assessment of self-renewal activity of male germline stem cells following cytotoxic damage and serial transplantation. Biology of Reproduction,2003,68(5):1801-1807
    192. Kazufumi M, Chiemi N. F, Toshitaka F. Universal Occurrence of the Vasa-Related Genes Among Metazoans and their Germ line Expression in Hydra. Development Genes and Evolution,2001,211:299-308
    193. Kent J, Wheatley S C, Andrews J E, Sinclair A H, Koopman P. A male-specific role for SOX9 in vertebrate ses determination. Development,1996,122:2813-2822
    194. Kezuka H, Kobayashi M, Aida K, Hanyu I. Effects of photoperiod and pinealectomy on the gonadotropin surge and ovulation in goldfish Carassius auratus. Nippon Suisan Gakkaishi,1989,55:2099-2103
    195. Koopman P, Gubbay J, Vivian N, Goodfellow P, Badge R L. Male development of chromosomally female mice transgenic for Sry. Nature,1991,351:177-121
    196. Korfsmeier K H. Uber die degeneration von eizellen des zebrafisches, Brachydanio rerio, in vitro. Cell and Tissue Research,1969,98(1):99-105
    197. Kuo C M, Ting Y Y, Yeh S L. Induced sex reversal and spawning of bluespotted grouper, Epinephelus fario. Aquaculture,1988,74:113-126
    198. Kusama M, Kubota T, Matsukura Y, Matsuno K, Ogawa S, Kanda Y. Influence of glutathione S-transferase AI polymorphism on the pharmacokinetics of busulfan. Clinica Chimica Acta,2006,368(1):93-98
    199. Lange I G, Hartel A, Meyer H H D. Evolution of oestrogen functions in vertebrates. The Journal of Steroid Biochemistry and Molecular Biology,2002,83(1-5):219-226
    200. Lange R, Hutchinson T H, Croudase C P, Siegmund F, Schweinfurth H, Hampe P, Panter G H, Sumpter J P. Effects of the synthetic estrogen 17-a-ethinylestradiol on the life-cycle of the fathead minnow (Pimephales promelas). Environmental Toxicology and Chemistry,2001,20(6):1216-1227
    201. Leatherland J F, Cho C Y. Effect of rearing density on thyroid and interrenal gland activity and plasma and hepatic metabolite levels in rainbow trout, Salmo gaudneri Richardson. Journal of Fish Biology,1985,27:583-592
    202. Leatherland J F. Studies of the correcation between stress-response, osmoregucation and thyroid physiology in rainbow trout, Salmon gairdneri Richardson. Comparative Biochemistry Physiology,1985,80:523-531
    203. Li M H, Wang Z R. Effect of nonylphenol on plasma vitellogenin of male adult guppies (Poecilia reticulata). Environmental Toxicology,2005,20(1):53-59
    204. Li W T, Liao X L, Yu X M, Cheng L, Tong J. Isolation and characterization of polymorphic microsatellites in a sex-reversal fish, rice field eel (Monopterus albus). Molecular Ecology Notes,2007,7(4):705-707
    205. Liem K F. Sex reversal as a natural process in the synbranchiform fish Monopterus albus. Copeia,1963,2:303-312
    206. Liem K F. Geographical and taxonomic variation in the pattern of natural sex reversal in the teloest fish order Synbranchiformes. Journal of Zoology,1968,156: 225-238
    207. Liu C K. Rudimentary hermaphroditism in the symbranchoid eel, Monopterus javanensis. Sinensia,1944,15:1-8
    208. Liu C K, Ku K Y. Histological changes in the gonad of Monopterus javanensis during sex transformation. Sinensia,1951(2):85-109
    209. Lu H, Cheng H H, Guo Y Q, Zhou R J. Two alleles of the Sox9a2 in the rice field eel. The Journal of Experimental Zoology Part B:Molecular and Developmental Evolution,2003,299(1):36-40
    210. Marchand F, Boisclair D. Influence of fish density on the energy allocation pattern of juvernile brook trout (Salvelinus fontinalis). Canadian Journal of Fisheries and Aquatic Sciences,1998,55(4):796-805
    211. Masafumi A, Masayuki I, Kazumasa I, Shoji K, Hideaki Y, Kunio Y. Roles of Melatonin in Gonadal Maturation of Underyearling Precocious Male Masu Salmon. General and Comparative Endocrinology,2000,120:190-197
    212. Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, Morrey C E, Shibata N, Asakawa S, Shimizu N, Hori H, Hamgauchi S, Sakaizumi M. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature,2002,417:559-563
    213. Matsuda M, Shinomiya A, Kinoshita M, Suzuki A, Kobayshi T, Prasanth B P, Lau E L, Hamaguchi S H, Sakaizumi M S, Nagahama Y N. DMY gene induces male development in genetically female (XX) medaka fish. Proceedings of the National Academy of Sciences USA,2007,104:3865-3870
    214. Mazur C F, Iwama G K. Effect of handling and stocking density on hematocrit plasma cortisol, and survival in wild and hatchery-reared Chinook salmon (Oncorhynchus tshawytscha). Aquaculture,1993,112:291-299
    215. Mommsen P T, Walsh P J. Vitellogenesis and oocyte assembly. In:Hoar W S, Randall D J, Donaldson E M. (eds.), Fish Physiology. New York:Academic Press, 1988,11A:348-395
    216. Montero D, Izquierdo M S, Tort L, Robaina L, Vergara J M. High stocking density produces crowding stress altering some physiological and biochemical parameters in gilthead seabream, Sparus aurata, juveniles. Fish Physiology and Biochemistry, 1999,20(1):53-60
    217. Nagahama Y. Role of steroid hormones in gonadal growth and maturation in teleosts. Fish Physiology,Fish Toxicology and Fisheries management:Proceedings of an International Symposium,Guangzhou,P.R. China,1988,9:46-61
    218. Nagahama Y. Endocrine regulation of gametogenesis in fish. International Journal of Developmental Biology,1994,38:217-229
    219. Nagahama Y.17α,20β-Dihydroxy-4-pregnen-3-one, a maturation-inducing hormone in fish oocytes:Mechanisms of synthesis and action. Steriods,1997,62(1):190-196
    220. Nakamura M, Kobayashi T, Chang X T, Nagahama Y. Gonadal sex differentiation in teleost fish. Journal of Experimental Zoology,1998,281(5):362-372
    221. Nakamura M, Nagahama Y. Differentiation and development of Leydig cells, and changes of testosterone levels during testicular differentiation in tilapia Oroechromis niloticus. Fish Physiology Biochemistry,1989,7(1-4):211-219
    222. Nanda I, kondo M, Hornung U, Asakawa S, Winkler C, Shimizu A, Shan Z, Heaf T, Shinizu N, Shimas A, Schmid M, Schartl M. A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proceedings of the National Academy of Sciences USA,2002,99,11778-11783
    223. Ng T B, Lee Y H, Chan S T. Pituitary extract of the ricefield eel Monopterus albus (Synbranchidae, Teleostei) exhibits gonadotropic activity in the Mammalia, Aves, Reptilia and Amphibia. Comparative Biochemistry and Physiology,1986,84A: 371-381
    224. Ng T B, Lo L L H. Inhibitory actions of pineal indoles on steroidogenesis in isolated rat Leydig cells. Pineal Research,1988,5:229-243
    225. Nicholas J K, Hunting W H. Effects of larval stocking density on laboratory-scale and commersial-Scale production of summer flounder paralichthys dentatus. Journal of the world aquaculture society,2000,31(3):436-445
    226. Ooi V E C, Ng T B. Histological studies on the effects of pineal 5-methoxyindoles on the reproductive organs of the male golden hamster. Pineal Research,1989 7: 315-324Pevet P. The 5-methoxyindoles different from melatonin:their effects on the sexual axis. In:Axelrod J, Franchini F, Velo GP eds The pineal gland and its endocrine role. London:Plenum Press,1983,331-348
    227. Oshima Y, Kang L J, Kobayashi M, Nakayama K, Imada N, Honjo T. Suppression of sexual behavior in male Japanese medaka (Oryzias latipes) exposed to 17β3-estradiol. Chemosphere,2003,50:429-436
    228. OWS, Chan S T. A cytological study on the structures of the pituitary gland of Monopterus albus. General and Comparative Endocrinology,1974,24:208-222
    229. Pandian T J, Koteeswaran R. Lability of sex differentiation in fish. Current Science, 1999,76(4):580-583
    230. Pankhurst N W, Carragher J F. Seasonal endocrine cycles in marine teleosts. Reproductive Physiology of Fish.1991,131-135
    231. Piferrer F. Endocrine sex control strategies for the feminization of teleost fish. Aquaculture,2001,197(1-4):229-281
    232. Recio J M. Pharmacological profile and diurnal rhythmmicity of 2-125 I iodo Melatonin biding sites in murine mammary tissue. Pieal Research,1994,16:10-17
    233. Reinboth R. Can sex inversion be environmentally induced. Biology of Reproduction, 1980,22:49-59
    234. Reinboth R. The peculiarities of gonad transformation in teleosts. Differentiation, 1983,23(Suppl):82-86
    235. Reinboth R. Ambisexuality in teleosts-a challenge to endocrinologists. In:B. Lofts and W. n. Holmes (eds) Current trends in comparative endocrinology, University Press, Hong Kong,1985,579-581
    236. Reinboth R. Physiological problems of teleost ambisexuality. Envirnmental Biology of Fishes,1988,22:249-259
    237. Renuka K, Joshi B N. Melatonin-induced changes in ovarian function in the freshwater fish Channa punctatus (Bloch) held in long days and continuous light. General and Comparative Endocrinology,2009,165(2010):42-46
    238. Reiter R J, Vaughan M K, Chen H J, Meyer A C, Philo D T, Dinh R, de los Santos H C. Reproductive consequences of melatonin in mammals. In:Birau N, Schloot W eds Melatonin:current status and perspectives. Oxford:Pergamon Press,1981, 151-157Rollag M D. Ability of tryptophan derivatives to mimic melatonin's action upon the Syrian hamster reproductive system. Life Science,1982,31:2699-2707
    239. Roemer U, Beisenherz W. Environmental determination of sex in Apistogramma (Cichlidae) and two other freshwater fishes (Telestoei). Journal of Fish Biology, 1996,48:714-725
    240. Roncarati A, Melotti P, Mordenti O, Gennari L D. Influence of stocking density of European eel(Anguilla anguilla, LD.) elvers on sex differentiation and zootechnical performances. Journal of Applied Ichthyology,1997,13:131-136
    241. Rothbard S, Moav B, Yaron Z. Changes in steroids concentrations during sexual ontogenesis in tilapia. Aquaculture,1987,61(1):59-74
    242. Rougeot C, Krim A, Mandiki S N M, Kestemont P, Me'lard C. Sex steroid dynamics during embryogenesis and sexual differentiation in Eurasian perch, Perca fluviatilis. Theriogenology,2007,67(5):1046-1052
    243. Rubin D A. Effect of pH on sex ratio in cichlids and a poecilid (Teleostei). Copeia, 1985,1:233-235
    244. Sachman J W, Little J C, Rudeen P K, Waring P J, Reiter R J. The effects of pineal indoles given late in the light period on reproductive organs and pituitary prolactin levels in male golden hamsters. Hormone Research,1977,8:84-92
    245. Sanchez-Barcelo. Melatonin suppression of mammary growth in heifers. Biology Reprodcution,1991,44:875-879
    246. Santiago C B, Aldaba M B, Laron M A. Dietary crude protein requirement of Tilapia nitotica fry. Philippine Journal of Biology,1982,11:255-265
    247. Schreck C B, Patino R, Pring C K, Winton J R, Holway J E. Effects of rearing density on indices of smoltification and performance of coho salmon, Oncorhynchus kisutch. Aquaculture,1985,45:345-358
    248. Sebert M E, Legros C, Weltzien F A, Malpaux B, Chemineau P, Dufour S. Melatonin Activates Brain Dopaminergic Systems in the Eel with an Inhibitory Impact on Reproductive Function. Journal of Neuroendocrinology,2008,20: 917-929
    249. Semlitsch R D, Reichling S B. Density dependent injury in larval salamanders. Oecologia,1989,81:100-103
    250. Shang X, He Y, Zhang L, Chen B, He C J, Cheng H H, Zhou R J. Molecular cloning of the rice field eel Nup93 with predominant expression in gonad and kidney. Acat GenetSinica,2006,33:41-48
    251. Shang X, Sun J, He Y, Zhao W, Li Q, Zhou F, Chen B, Cheng H, Zhou R. Identification and predominant expression of annexin A2 in epithelial-type cells of the rice field eel. Journal of Cellular Biochemistry,2007,101:600-608
    252. Shapiro D Y. Behavioral influences on gene strucure and other nes idesa concening sex changes in fishes. Environmental Biology of Fishes,1988,23:283-297
    253. Shelbourn J E, Brett J R, Shirahata S. Effect of temperature and feeding regimes on the specific growth rate of sockeye salmon fry (oncorhynchus nerka) with a consideration of size effect. Journal of the Fisheries Research Board of Canada, 1973,30:1191-1194
    254. Shinomiya A I, Hamaguchi S, Shibata N. Sexual differentiation of germ cell deficient gonads in the medaka, Oryzias latipes. Journal of Experimental Zoology, 2001,290:402-410
    255. Silva S M, Hacker A, Harley V, Goodfellow P, Swain A, Badge R L. Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nature Genetic,1996,14:62-68
    256. Sinclair A H, Breta P, Palmer M S, Hawkins J R, Griffiths B L, Smith M J, Foster J W, Frischauf A M, Badge R L, Goodfellow P. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature,1990,346:240-244
    257. Smith H T, Schreck C B, Maughan O E. Effect of population density and feeding rate on the fathead minnow (Pinephales pramelas). Journal of Fish Biology,1978,12: 449-455
    258. Spotila L D, Spotila J R, Hall S E. Sequence and expression analysis of WT1 and Sox9 in the red-eared slider turtle, Trachemys scripta. The Journal of Experimental Zoology,1998,281:417-427
    259. Suresh A V, Lin C K. Effect of stocking density on water quality and production of red tilapia in a recirculated water system. Aquaculture Engineering,1992,11:1-22
    260. Tamarkin L, Westrom W K, Hamill A I, Goldman B D. Effect of melatonin on the reproductive systems of male and female Syrian hamsters:a diurnal rhythm in sensitivity to melatonin. Endocrinology,1976,99:1534-1541
    261. Tamura H, Nakamura Y, Korkmaz A, Manchester LC, Tan DX, Sugino N, Reiter RJ. Melatonin and the ovary:physiological and pathophysiological implications. Fertil Steril,2009,92(1):328-343
    262. Tang F, Chan S T H, Lofts B. Effect of steroid hormones on the sex reversal in the ricefield eel, Monopterus albus (Ziuew). General and Comparative Endocrinology, 1974a,24:227-241
    263. Tang F, Chan S T H, Lofts B. Effect of mammalian luteinizing hormone on the natural sex reversal of the ricefield eel, Monopterus albus (Zuiew). General and Comparative Endocrinology,1974b,24:242-248
    264. Tang F, Lofts B, Chan S T H. As-3fl-hydroxysteroid dehydrogenase activities in the ovaries of ricefield eel,Monopterus albus. Experientia,1974,30:316-317
    265. Tao Y X, Lin H R, Kraak G V D, Peter R E. Hormonal induction of precocious sex reversal in the ricefield eel, Monopterus albus. Aquaculture,1993,118(1-2): 131-140
    266. Tata J R, Smith D F. Vitellogenesis:a versatile model for hormonal regulation of gene expression. Recent Progress in Hormone Research,1979,35:47-95
    267. Thor P J, Krolczyk G, Gil K, Zurowski D, Nowak L. Melatonin and serotonin effect s on gast rointestinal motility. Physiol Pharmacol,2007,58:97-105
    268. Uchida D, Yamashita M, Kitano T, Iguchi T. Oocyte apoptosis during the transition from ovary-like tissue to testes during sex differentiation of juvenile zebrafish. The Journal of Experimental Zoology,2002,205:711-718
    269. Vanden B K, Verheyen R, Witters H. Effects of 17a-ethynylestradiol in a partial life-cycle test with zebrafish (Danio rerio):effects on growth, gonads and female reproductive success. Science of the Total Environmen,2003,309(1-3):127-137
    270. Vanden B K, Verheyen R, Witters H. Comparison of vitellogenin responses in zebrafish and rainbow trout following exposure to environmental estrogens. Ecotoxicology and environmental safety,2003,56(2):271-281
    271. Vidal V P, Chaboissier M C, Rooij D G, Schedl A. Sox9 induces testis development in XX transgenic mice. Nature Genetics,2001,28,216-217
    272. Vijayan M M, Leatherland J F. Effect of stocking density on the growth and stress-response in Brook Charr, Salvelinus fontinalis. Aquaculture,1988,75: 159-170
    273. Vuayan M M, Leatherland J F. High stocking density affects cortisol secretion and tissue distribution in brook charr(Salvenlinus fontinalis). Journal of Endocriology, 1990,124:311-318
    274. Wachtel S S, Ohno S, Koo G C, Boyse E A. Possible role for H-Y antigen in the primary determination of sex. Nature,1975,257:235-236
    275. Wallace C M, Selman K. Celluar and dynamic aspects of oocyte growth in teleost. American zoologist,1981,21:335-343
    276. Wang R, Cheng H H, Xia L X, Guo Y Q, Huang X, Zhou R J. Molecular cloning and expression of Sox 17 in gonads during sex reversal in the rice field eel, a teleost fish with a characteristic of natural sex transformation. Biochemical and Biophysical Research Communications,2003,303(2):452-457
    277. Warner R R, Swearer S E. Social control of sex change in the bluehead wrasse, Thalassoma bifasciatum (Pisces:Labridae). Biological Bulletin,1991,181:199-204
    278. Western P S, Harry J L, Graves JAM, Sinclair A H. Temperature-dependent sex determination in the American alligator:AMH precedes SOX9 expression. Developmental Dynamics,1999,216:411-419
    279. Wilamowska A, Pawlikowshi M, Klencki M, Kunert-Radek J. Food restriction enhances melatonin effects on the pituitary-gonadal axis in female rats. Pineal Research,1992,13:1
    280. Xia L X, Cheng H H, Guo Y Q, Zhou R J. Characterization of the beta-action gene of the rice field eel and its phylogeny in fish. Acta Genet Sinica,2005,32:689-695
    281. Xia L X, Cheng H H, Yu H S, Guo Y Q, Zhou R J. Molecular cloning and expression of the osteoclast-stimulating-factor-like gene from the rice field eel. The Journal of Experimental Zoology Part B:Molecular and Developmental Evolution, 2004,302(2):174-181
    282. Yamamoto T. Sex differentiation. In:Fish Physiology, Hoar W S, Randall D J eds. New York:Academic Press,1969,117-175
    283. Yamamoto E. Studies on sex-manipulation and production of cloned populations in hirame, Paralichthys olivaceus (Temminck et Schlegel). Aquaculture,1999,173(1-4): 235-246
    284. Yeung W S B, Chan S T H. The plasma sex stetoid profiles in the freshwater, sex-reversing teleost fish, Monopterus albus (Zuiew). General and Comparative Endocrinology,1987,65(2):233-242
    285. Yeung W S B, Chen H, Chan S T H. The in vitro metabolism of radioactive androstenedione and testosterone by the gonads of the protogynous Monopterus albus at different sexual phases:a time-course and seasonal study. General and Comparative Endocrinology,1993a,89(3):313-322
    286. Yeung W S B, Chen H, Chan S T H. Effect of LH and LHRH-analog on ganadal development and in vitro steroidogenesis in the protogynous Monopterus albus. General and Comparative Endocrinology,1993b,89(3):323-332
    287. Yeung W S B, Chan S T H. The plasma sex stetoid profiles in the freshwater, sex-reversing teleost fish, Monopterus albus (Zuiew). General and Comparative Endocrinology,1987,65:233-242
    288. Yu H S, Cheng H H, Guo Y Q, Xia L X, Zhou R J. Alternative splicing and differential expression of P450c17 (CYP17) in gonads during sex transformation in the rice field eel. Biochemical and Biophysical Research Communications,2003, 307(1):165-171
    289. Zachmann A, Ali M A Falcon J. Melatonin and its effects in fishes:An overview. In: Ali M A eds. Rhythms in Fishes. New York:Plenum Press,1992,149-165
    290. Zheng R H, Wang C G, Zhao Y, Zuo Z H, Chen Y X. Effect of tributyltin, benzo(a)pyrene and their mixture exposure on the sex hormone levels in gonads of cuvier (Sebastiscus marmoratus). Environmental Toxicology and Pharmacology, 2005,20(2):361-367
    291. Zhou R J, Cheng H H, Zhang Q Y, Guo Y Q, Cooper R K, Tiersch T R. SRY-related genes in the genome of rice field eel (Monopterus albus). Genetique Selection Evolution,2002,34(1):129-137
    292. Zhou R J, Cheng H H, Tiersch T R. Differential genome duplication and fish diversity. Reviews in Fish Biology and Fisheries,2002,11(4):331-337
    293. Zhou R J, Liu L, Guo Y Q,Yu H S, Cheng H H, Huang X, Tiersch T R, Berta P. Similar gene structure of two Sox9a genes and their expression patterns during gonadal differentiation in a teleost fish, rice field eel (Monopterus albus). Molecular Reproduction and Development,2003,66(3):211-217

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700