Chardara水电站泄洪消能模型试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水利水电工程中,泄水建筑物是保证水库安全,充分发挥工程效益的关键,消能防冲也一直是水利科学鼓励研究的方向。
     Chardara(卡尔达拉)水电站运行中发现的问题:卡尔达拉水电站泄水道底板现行体型采用的是直线折坡形式,由于该体型设计不合理加之年久失修,底板出现了不同程度的破坏,流态不佳,影响了工程的正常运行。在现行方案的试验长中还发现:首先由于泄水底孔闸室内存在两个孤立的中墩,导致闸室流态较差;其次,泄水道底板直线连接,流线性较差,底板出现了一定程度的损坏;最后,消力墩的尺寸设计的不合理也导致了消力池中水流流态较差。针对卡尔达拉水电站在长期的运行中出现了流态不良,堰顶局部存有负压,泄水道底板发生了不同程度的空蚀破坏。针对上述问题进行了不同方案的试验研究,并从水流流态、底板压强、消能率等方面综合考虑,优化了体型,提出了解决办法。
     本研究采用物理模型试验,工程的试验研究是依据工程资料,按照重力相似准则,在实验室建立水工整体模型,模型比尺采用1:40,通过模型试验验证并完善泄水道建筑物体型及辅助消能工布置的合理性,研究泄水道水流特性和泄流消能效果,提出了改善泄水道水流流态和提高消能率的工程措施。
     本研究主要完成以下三方面工作:
     (1)卡尔达拉水电站泄水道底板体型优化试验。泄水道底板体型在经过现行方案体型Ⅰ,直线折坡型,底板采用1:2.8的斜坡相连;三种曲线抛物线体型。曲线抛物线Ⅰ型:底孔堰面由斜直线改为抛物线方程为y=x~2/84.681;曲线抛物线Ⅱ型:曲线抛物线Ⅰ型的基础上调整堰面曲线,为y=x~2/211.7025堰末端形成6m跌坎;曲线抛物线Ⅲ型:方程y=x~2/423.405将堰面改为抛物线型,堰面末端抬高8m;一种直线跌坎型,在曲线抛物线Ⅱ型的基础上将堰做成平面并将堰面末端抬高至水平,形成10m的跌坎。在经过5种泄水道底板体型的优化试验研究得出,底孔堰面由斜直线改为抛物线,方程为y=x~2/84.681,即为优化方案Ⅰ,亦即实施方案。试验表明该种抛物线型堰面可以消除运行工况下堰顶附近的负压,避免了堰顶附近的空蚀破坏,改善了空化性能。
     (2)为了解决现行方案中消力墩高度过大的问题,经过了8种体型布置形式的优化比较,体型1:消力墩原位置不变,高度减少至4m;体型2:消力墩原位置不变,高度减少至3m;体型3:取掉上游一个消力墩,下游两个消力墩不变,高度5m;体型4:将上游消力墩移至下游消力墩位置线,并均布,高度4m;体型5:将上游消力墩移至下游消力墩位置线,并均布,并两侧消力墩高度减少至4m;体型6:上游消力墩原位置不变,高度减少至3m,下游改为3个消力墩并均布,并两侧消力墩高度减少至4m;体型7:上游消力墩取消,下游3个且均布,高度减少至3m;体型8:取掉上下游消力墩,在下游消力墩末端下移2m布置4个消力墩且均布,高度减少至4m。经过上述消力墩8种体型布置形式,96个组合试验进行了观测比较,结果表明,现行消力墩布置形式合理可行即:优化方案Ⅰ闸墩+现行方案消力墩布置但墩高应减至4m,各工况水跃位置适中,流态较好,满足工程要求。(3)在经过5种泄水道底板体型及8种消力墩体型优化试验的基础上,进行了不同的优化试验组合,提出的最终实施方案为:优化方案Ⅰ闸墩+堰面体型+现行方案消力墩布置但墩高应减至4m。该方案成功解决了现行方案折坡消力池存在的问题,现已被工程采用。
     本试验成功地解决了卡尔达拉水电站存在的水工水力学问题。成果已被工程采用。
In water conservancy and hydropower project,outlet works are a key for the safety of reservoirs.Energy dissipation problem has been always encouraged to research.
     During the long-term run of Chardara water power station ,it is found that some hydraulic problems are existing: The configuration of bottom outlet bays is the inflection slope in the present configuration of Chardara water power station. Because the configuration of bottom outlet bays is unreasonable and has not been repaired during the long-term run of Chardara water power station. The damage occurs on floor of bottom outlet bays works in various degrees.The flow pattern is poor.The project security has been influent by above problems. By making hydraulic model test , it is found that some hydraulic problems are existing in the present scheme of Chardara water power station:First, the middle piers are separated,so the flow pattern is poor in the outlet ;Second, the configuration of bottom outlet bays is the inflection slope in the present configuration, the configuration of bottom outlet bays is unreasonable.The damage occurs on floor of bottom outlet bays works in various degrees.The flow pattern is poor.Third, configuration of bottom outlet is unreasonable. The flow pattern is poor.As a result of above problems existence, during the long-term run of Chardara water power station, it is found that the flow pattern is poor, the negative pressure exists near the top of the slope in the outlet bay, the cavitation occurs on floor of bottom outlet works. By thinking about the flow pattern, the pressure ,energy dissipation and so on. The configuration of bottom outlet bays resolves those problems which are existing in the present configuration. The result has been accepted by the project.
     This study used physical model testing.The pilot project is based on the research project, established in the laboratory hydraulic model,which is designed with similarity criterion of gravity. The model scale is Lr=1:40.The model test verification and improve discharge, body building and supporting the layout of the energy dissipation reasonable, research, water discharge and the discharge of energy dissipation effect. To improve the discharge, flow pattern and increase the rate of energy dissipation measures.
     This research mainly completes following three aspects of work:
     (1) The modified configuration of the floor of bottom outlet works of Chardara water power station.
     The configuration of bottom outlet bays is the inflection slope n the present configurationⅠof Chardara water power station. A 1:2.8 slope connects the inlet and stilling basin; Three curve surfaces has been tested. The curve surface floorⅠ: Changing the straight line slops into curve surface. The curve equation is y=x~2/84.681; The curve surface floorⅡ: The slope curve is modified, the equation of which is y=x~2/211.7025. There is a drop at end of curve floor, which is 6m high; The curve surface floorⅢ: The curve floor is accepted, the equation is y=x~2/423.405, the drop, at end of curve floor, is 8m high. A straight line floor, the drop, at end of straight line floor, is 10m high.
     The hydraulic model has been tested by making five configurations of bottom outlet bays test. The bringed forward proper configurationⅠof bottom outlet bays ,the equation y = x~2/84.681,is the curve surface floor , is the optimal schemeⅠ,that is the implementation of the scheme.Experiments show that this type of weir parabolic surface can remove the top running condition weir near the negative pressure, improve the properties of space and avoid the weir near the top of the cavitation damage.
     (2) In order to solve the problem that is the oversized height of baffle blocks in the present scheme, the hydraulic model has been tested by making eight layout forms of baffle blocks test.. Layout 1 of baffle blocks in the present scheme but the hight should be reduced to 4 m; Layout 2 of baffle blocks in the present scheme but the hight should be reduced to 3 m; Layout 3 of baffle blocks in the present scheme Takes upstream one baffle blocks to disappear, downstream two stilling the same baffle blocks ,but the hight should be reduced to 5 m; Layout 4 of baffle blocks, Take the upstream baffle blocks to move to the downstream to the line of position of the downstream baffle blocks, the hight is 4m; Layout 5 of baffle blocks, take the upstream baffle blocks to move to the downstream to the line of position of the downstream baffle blocks, the The both sides baffle blocks hight is 4m; Layout 6 of baffle blocks in the present scheme but the hight should be reduced to 3 m, downstream into three baffle blocks and uniform, and on both sides of stilling baffle blocks hight reduced to 4m; Layout 7of baffle blocks,Take away of the upstream baffle blocks, the three downstream baffle blocks and uniform, hight reduced to 3m; Layout 8of baffle blocks, Takes away the upstream and downstream of baffle blocks, in the downstream baffle blocks under baffle blocks terminal to move to 2m to arrange 4 baffle blocks and uniform, hight reduced to 4m.
     The hydraulic model has been tested by making eight layout forms of baffle blocks test and 96 rows of observed combination test.The results show that the existing baffle blocks layout forms that is reasonable and feasible: Optimization ofⅠmiddle pier + layout forms of baffle blocks in the present scheme but the hight should be reduced to 4 m, the condition of water jump conveniently located, better flow pattern to meet the engineering requirements.
     (3) On the basis of optimized scheme test of 5 the configurations of bottom outlet bays and 8 layout forms of baffle blocks,after making different combination of optimization tests.Get the final implementation scheme are: OptimizationⅠmiddle pier + layout forms of baffle blocks in the present scheme but the hight Should be reduced to 4 m. The scheme successful resolution the problem of the inflection slope stilling basin existing in the present scheme slope problems, the result has been used by the project.
     This test solved hydraulics problem in middle outlet of Chardara water power station.the result has been used by the project.
引文
[1] 中国地质工程公司哈萨克斯坦项目部,哈萨克斯坦Synas水电站整体水工模型试验任务书,2005年1月24日;
    [2] 中华人民共和国行业标准《水工(常规)模型试验规程,SL155——95,中华人民共和国水利部;
    [3] 吴持恭 主编 水力学 高等教育出版社 1985.5;
    [4] 郭子中.消能防冲原理与水力设计[Ml. 北京:科学出版社,1982;
    [5] 毛昶熙,周名德,柴恭纯. 闸坝工程水力学与设计管理[M].北京:水利电力出版社,1995;
    [6] 李菊根.科学求实技术创新开创水电事业新纪元[J].水力发电,2004,(12):25-31;
    [7] 黄新生.二滩水电站-本世纪建成的我国最大水电站[J].中国工程科学,1999(1):86;
    [8] 杨家卫,薛芝龙,马麟.小湾水电站泄洪建筑物布置优化研究[J].水力发电,2004,(10):24-26;
    [9] 周钟,沈文莉,黄庆.奚落渡水电站坝身泄洪消能布置[J].水电站设计,1999(2):5-13;
    [10] 肖兴斌.高坝泄水建筑物泄洪消能的新发展[J].东北水利水电,1995(3):41-45;
    [11] 于洪银.低佛氏水跃消能问题的试验研究.陕西机械学院硕士学位论文,1988;
    [12] P.A.A gyroponlas.The Hydraulic Jump and the Effecton Hydraulic Structure[J]. Proc.IAHR,1961;
    [13] S .P.Gary and H .R.Sharma.E fficiency of Hydraulic Jump[J].Pr oc.ASCE,Vol.97, J.of Hydraulic Div.N o .3 , 1971;
    [14] 廖文根、张任.低佛氏数尾坎下游水流紊动特性试验研究[J].全国高水头泄水建筑物水力学问 题论文集 ,1987;
    [15] 张晓莉、崔陇天.大单宽流量低堰上的新型辅助消能工试验研究[J].泄水工程与高速水1992(1);
    [16] 王小京. 低佛氏数水跃及消能规律的研究.西北农学院硕士论文,1988.
    [17] 赵慧琴.辅助消能工在闸下低佛氏数水流中的应用[J].泄水工程与高速水流论文集.成都科技大学出版社,1994;
    [18] 苏联芸等.低佛氏数水跃消能理论在水闸设计中的应用[J]..黑龙江水利科技,1996(4);
    [19] 冬俊瑞,李永徉,李玉柱.中小型水工建筑物底流水跃消能技术新进展[J]. 海河水利,1996(6);
    [20] Kuttiammu.T .p. Rao..J. V .Bhavianl type stilling Basin for spill ways of larged ams[M].Fourthcongress on large Dams.Now Delhi,1951;
    [21] F.J.Resch. Reynolds Stress Measurements In Hydraulic Jump[J].J.of Hydraulic research,LAHR,No.4,1972;
    [22] H.Rouse,T .T.Siao and S .Nagaratnam.Turbulence Characteristics of the Hydraulic Jump[J]. J.of Hydrauli cresearch,ASCE,No.1958;
    [23] 清华大学董曾南主编.水力学.[M].下册.高等教育出版社,1981;
    [24] 吴子荣,包中进.多级消力池水利特性的研究及应用[J]..水利水电技术,1998(12);
    [25] 韩昌海,赵建钧,王溥文等.黄河沙坡头水利枢纽导流明渠的消能布置[J].人民黄河 2002(1);
    [26] 梁跃平,刘海凌,梁国亭.辅助消能工应用于低佛氏数水流消能的试脸研究[J].华北水利水电 学院学报 ,2000(3);
    [27] 葛立福,薛桂玉,邹鹏飞一种布置形式复杂的溢洪道消能探讨[J].河北水利水电技术,2004(3);
    [28] 王均星,邹鹏飞,黄先敏.溢洪道弯道前陡槽内水流的消能研究[J].水力发电学报.2004 (3);
    [29] 郭伟成.多级消力池的应用[J].西部探矿工程,2004(07);
    [30] 陆芳春,史斌,林军.曹娥江大闸枢纽工程消能试验研究[J].浙江水利科技,2004(06);
    [31] 李桂兰,孙彦君.T型墩消力他在中小型水利工程中的应[J].黑龙江水专学报,1994(2);
    [32] 孙栋芬,侯佩珑. T型墩消能的试验研究[J].山西水利科技.1995(2);
    [33] 江锋,苗隆德,王飞虎等.低佛氏数T型墩消力池设计及消能研究[J].水利学报,1998(1);
    [34] 江锋.低佛氏数T型墩消力池水利特性试验研究[J].陕西水力发电,1995(3);
    [35] 昊兴亚,徐作坤,吴振.T形尾墩消力池在延寿县的应用[J].黑龙江水利科技,2001(2);
    [36] 张之钰.拴驴泉水电站引水枢纽底流水跃消能设计[J].小水电,1998(6);
    [37] 聂长根.金鸡桥水电站消力池设计浅析[J].江西水利科技,1999(9);
    [38] 宋向宁,陈汝辉.朗江水电站溢流坝T型墩消力池的设计[J].湖南水利水电,1994(03);
    [39] 朱国兴.在实践中创新--东西关水电站设计的几个特点[J].水电站设计,1996 (03);
    [40] 孟庆珠.东西关水电站泄洪闸消力池设计优化[J].水电站设计,1996(03);
    [41] 王业红,肖兴斌.阶梯溢洪道大单宽流里的水流特性及消能效果[J].长江职工大学学报, 1999 (01);
    [42] 游文荪,李效文.T型墩在廖坊水利工程消能中的应用[J].江西水利科技,2000(04);
    [43] 南京水利科学研究院,水利水电科学院研究院.水工模型试验[M].水利电力出版社,1985.12;
    [44] 宁廷俊,陈元清,唐祥甫.隔河岩工程水力学安全监测技术及成果分析[J].长江科学院院报, 2000 (05 );
    [45] 周春天,宁勇.石梁河水库泄洪闸闸下冲刷试验研究[J].河海大学学报(自然科学版),2000 (02 );
    [46] 花立峰.消力墩-T型墩-消能塘联合消能的试验研究[J].水利水电工程设计,2004(01);
    [47] 花立峰,卢军,寿伟冈.综合式消能工的水力特性及工程应用[J].水利水电工程设计,1998 (03 );
    [48] 吴宇峰.消力墩对水跃跃长的影响[J].四川水力发电,2004(03);
    [49] 赵钰龙,梁红飞,苏定积.磋动式综合消能技术在大江水库溢洪道消能中的应用[J].广西水利 水电,2001(S1);
    [50] 周黎明,马成,赵守勤.浅谈大沽可泄洪闸改建工程[J].山东水利,1999(09);
    [51] 王海龙,孙桂凯,徐伟章.低坎分流墩用于低佛氏数水流消能的试验研究[J].红水河,2003 (2);
    [52] 孙保沐等.低坎分流墩消能工下游水流波动特性研究[J].水利水电技术,2003(7);
    [53] 李建中,宁利中.高速水力学[M].西北工业大学出版社.1994;
    [54] 孙保沐,王海龙.低坎分流墩消能工的优化研究[J].水力发电学报,2004 (03);
    [55] 孙桂凯,徐伟章,黄冰梅等.低坎分流墩消能工用于金鸡滩水利枢纽工程的试验研究[J].红水 河,2004(04);
    [56] 孙建,门晋垣.矩形分流墩墩体壁压特性及其空化研究[J].西安理工大学学报,1995(03);
    [57] 徐伟章等.左江水利枢纽泄水建筑物体型优化研究[J].红水河,1996(2);
    [58] 张宗孝等.用附加动量理论分析齿墩与消力池联合消能机理[J].长江科学院院报,2001(4);
    [59] 甘惠麟,凌贤宗,李霞.巴江口水电站宽尾墩库式消力池联合消能的试验研究[J].广西水利水 电,1999(2);
    [60] 尹崇清,刘亚辉,王平义.低坝宽尾墩消能效果研究[J].重庆交通学院院报,1999(6);
    [61] 荣权华,徐木运.岩滩水电站宽尾墩新型消能工的试验研究[J].红水河,1996(2);
    [62] 南晓红,梁宗样,刘韩生.新型宽尾墩在索风营水电站的应用研究[J].水利学报.2003(8);
    [63] 谢省宗,李世琴,李桂芬.宽尾墩联合消能工在我国的发展(续)[J]..红水河.1996(01);
    [64] 潘艳华,杨敏.宽尾墩与库式消力短池在满台城水电站中的联合应用[J].吉林水利,1997(01);
    [65] 倪汉根.宽尾墩一消力池的简化计算方法[J].水利学报,1998(06);
    [66] 谢省宗,李世琴.宽尾墩联合消能工在百色水利枢纽的研究和应用[J].红水河,1998(02);
    [67] 吴胜光.岩滩水电站宽尾墩库式消力池联合消能效果[J].红水河,1998 (02);
    [68] 高树华,王天恩..大膝峡水电站枢纽布置与泄洪消能研究[J].红水河,1998(01);
    [69] 麦家乡,覃永恒.百色水利枢纽泄水建筑物设计[J].红水河,1998(01);
    [70] 刘沛清,高季章,李桂芬.五强溪水电站右消力池底板块失事分析[J].水利学报,1999(01);
    [71] 周赤,郭均立,芦俊英等.泄洪表孔宽尾墩加消力池联合消能工的应用[J].长江科学院院报. 2000 (0 4 );
    [72] 李中枢,潘艳华,韩连超等.宽尾墩联合消能工体型选择及水力特性的研究[J].水科学进展, 2000 (01);
    [73] 雷中俊.安康水电站表孔消力池破损原因分析及加固处理[J].水力发电,2000(1);
    [74] 韩立,邓毅国,杨键等.大朝山水电站泄洪消能及排沙建筑物设计[J].水力发电,2001(12);
    [75] 梁宗样,尹进步,刘韩生等.宽尾墩与台阶坝面联合消能工的试验探[J].长江科学院院报,2003 (06);
    [76] 王莉,邓迎,夏叶青.不对称宽尾墩在隔河岩枢纽中的应用[J].人民长江,2004(09);
    [77] 严根华,胡去劣,陈发展.宽尾墩下游消力池底板动水荷载试验研究[J].广西水利电,2004(S1);
    [78] 安刚等.低水头消能防冲实验研究[J].天津大学学报,1997(7);
    [79] 孙桂凯,徐伟章.消力序在低佛氏数水流中的应用[J].红水河,2002(4);
    [80] E.H. Wi 工son.用射流稳定水跃[A].水工水力学译文集工[C].南京:华东水利学院,1978(3 );
    [81] 刘永川等.无塘水跃[J].泄水工程与高速水流,1991(3);
    [82] 杨敏,于向军,左战军.拱网消能工体型优化的试验研究[J].东北水利水电,1997(2);
    [83] 陈忠礼.拱网消力池模型试验研究[J].东北水利水电,1998(8);
    [84] 夏叶青,王莉.皂市水利枢纽泄洪消能建筑物水力设计[J].水利水电快报,2004(08);
    [85] 柏秀坤,王福济.拱型垂直网板消能工在小型水库配套工程中的应用[J].吉林水利,1995(04);
    [86] 杨敏,滕显华.拱网消力池网板过流能力及流速系数的试验研究[J].吉林水利,1996(10);
    [87] 侯庆国.水流对拱形网板作用力的试验研究[J].吉林水利,2003(5);
    [88] 吴婉玲,毛根海,章军军.合江电站库面流消能的水力设计[J].中国农村水利水电,2004(4);
    [89] 花立峰,卢军,陈素文.联合式消能工在引大入秦工程中的应用[J]. 西北水电,1999(1);
    [90] 唐峥嵘,贾国忱,张绍春.孔板消能是缩短消力池的有效途径[J].云南水力发电,2003(2);
    [91] 刘凡成.东西关水电站水工模型试验研究综述[J].水电站设计,1995(03);
    [92] 李强,郑国华.低佛氏数水跃跃后最大波高的研究[J].石河子大学学报(自然科版),2001(02);
    [93] 徐正凡主编.水力学.[M].上册.高等教育出版社,1994;
    [95] 清华大学董曾南主编.水力学.[M].上册.高等教育出版社,1981;
    [100]窦国仁.紊流力学.[M].上册.高等教育出版社.1987(2);
    [101]窦国仁.紊流力学.[M].下册.高等教育出版社.1987(2);
    [102]苏联云,张明文,王秀芬等.低佛氏数水跃消能理论在水闸设计中的应用[J].黑龙江水利科技1996(4)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700