基于功率全程可调的风电场优化调度策略
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来风电产业发展迅速,随着风力发电容量在新能源电力系统中的比重日益增加,为保证电力系统安全运行,风电场有必要进一步提高自身的运行水平。为了减少出力波动性和随机性对电网的冲击,风电场需要增加自身出力的控制调度水平,保证机组输出功率满足电网侧的负荷需求。围绕这一目标,本文在短期风速预测,风电机组全程功率可调,风电场机组优化调度策略三个方面进行了研究,主要进行了以下工作:
     建立了基于AdaBoost-BP神经网络和最小二乘支持向量机算法的短期风速预测模型,并用风电场现场数据进行仿真验证,证明了短期风速预测的有效性。风速信号在各个频域上分别具有相同的特点和规律,在风速预测过程中的数据预处理方法中,选择最优小波包变换作为信号分析手段,在小波分解的基础上,增加了更多高频信号的分析,提供了比小波变换更高的分辨率。论文建立了最优小波包变换与最小二乘支持向量机结合的短期风速预测模型,通过实际风速数据测试,结果表明了采用最优小波包变换多尺度分析方法的预测精度有了明显提升,更有助于风力发电系统的安全运行和经济调度。
     针对短期风速预测的不同应用途径,给出了两种短期风速预测方式:多步预测与信息粒化预测,通过仿真实例分析了两种应用方式的对比。电网对区域能源中风电场的调度往往都是连续的过程,风速多步预测可以更好的反映未来风速变化的趋势,为电网连续调度提供条件;粒化预测能够消除冗余数值,计算较准确的风速水平和分布,更适用于分析不同风电场或不同机组未来的出力特性。
     提出了基于风机有功功率模型的单一机组有功功率全程可调策略。传统的风机运行方式是在额定风速下尽可能地吸收风能,保持桨距角为最小值,调节转速值达到最优叶尖速比:额定风速以上调节桨距角保持额定功率。本文通过建立风机的有功功率模型,分析风机运行特性,提出机组有功功率全程可调策略,在风速允许的条件下,小范围功率调节通过发电机侧的转子转矩来调节,中大范围功率调节通过桨距角和转速联合调节,实现对风电机组功率全程可调。
     提取机组特征向量,建立了风电场特征矩阵,通过历史数据分析风电场各机组性能;其次由于机组众多,对所有机组进行聚类分析,设置不同的机组调度群,降低调度问题的维数;最后在电网调度指令对风电场出力进行限制的情况下,考虑机组相对损耗,建立机组功率优化调度策略。
In recent years, wind power has developed rapidly. As the proportion of wind power capacity in the new energy power system is increasing, wind farms should improve the operation and control level in order to ensure the safety. For the less volatility and less impact from randomness, wind farms should increase their output control level to meet the demand of power grid. Around this goal, paper did some research on short-term wind speed forecast, adjustable power of wind turbine unit, optimal load dispatch strategy in wind farm.
     The thesis includes the following aspects:
     This paper established short-term wind speed forecast model based on AdaBoost-BP neural network and least squares support vector machine (LSSVM), then did the simulation with field data and proved the effectiveness of the short-term wind speed forecast. As characteristics and laws are the same in wind speed signal of the same frequency part, we choose the wavelet packet transform as the data preprocessing method. In basis of wavelet transform, wavelet packet transform provides more analysis of high frequency signal with higher resolution. Paper established short-term wind speed forecast model with optimal wavelet packet transform and LSSVM. Through the test with field data, results show higher prediction precision by using optimal wavelet packet transform.
     For the different purpose of short-term wind speed forecast, paper gave two types of wind speed forecast:multistep forecast and information granulation forecast. Then paper analyzed the contrast of two application modes through the simulation. Scheduling instruction to wind farm from power grid are usually serial numbers. Wind speed multistep forecast can show the variation trend in the future for grid continuous scheduling. Information granulation forecast can eliminate data redundancy and get accurate wind speed level and distribution for analyzing output of different wind farms or different wind power units in the future.
     It is proposed the adjustable power strategy based on wind power model. Traditional wind unit operation uses the most power strategy and keeps the pitch angle minimum and optimal tip speed ratio; keep rated power by adjusting the pitch angle. Paper established the wind turbine power model, analyzed wind units characteristic, proposed adjust wind turbine power strategy in the full range. Within wind speed, strategy chooses generator torque for small range adjustment and pitch angle and generator torque together for large range adjustment.
     We calculated the unit feature vector, established wind farm feature matrix. As the number of units in wind farm, we analyzed the clustering of all units, then set up several level clusters to reduce the dimension of unit commitment problem. Last, in the condition of wind farm power limit from power grid, we solved the unit commitment problem by considering units relative loss.
引文
[1]肖创英.欧美风电的发展与启示[M].中国电力出版社.
    [2]中国可再生能源学会风能专业委员会(CWEA).2011年中国风电装机容量统计[J].风能.2012,3:40-48.
    [3]A. D. Hansen, F. Iov, F. Blaabjerg, et al. Review of contemporary wind turbine concepts and their market penetration[J]. Wind Engineering,2004,28(3): 247-263.
    [4]王建东,汪宁渤,何世恩,等.甘肃酒泉风电基地风电预测预报阶段性研究[J].中国电力,2010,43(10):66-69.
    [5]张丽英,叶廷路,辛耀中,等.大规模风电接入电网的相关问题及措施[J].中国电机工程学报,2010,30(25):1-9.
    [6]V. Akhmatov. Variable-speed wind turbines with doubly-fed induction generators Part Ⅰ:Modelling in dynamic simulation tools [J]. Wind Engineering, 2002,26(2):85-108.
    [7]V. Akhmatov. Variable-speed wind turbines with doubly-fed induction generators, Part Ⅱ:Power system stability [J]. Wind Engineering,2002,26(3): 171-188.
    [8]V. Akhmatov, H. Knudsen, A. H. Nielsen. Electromechanical interaction and stability of power grids with windmills[C]. Proceedings of IASTED International Conference Power and Energy Systems,2000,398-405.
    [9]霍志红等.风力发电机组控制技术[M].北京:中国水利水电出版社,2010.
    [10]David P. Cashman, John G. Hayes, Michael G. Egan,S.Djurovic, Alexander C. Smith, Comparison of Test Methods for Characterization of Doubly Fed Induction Machines[J]. IEEE Trans.Ind.Applicat.,2010.46(5):1936-1949.
    [11]吴佳佳,卫志农,韩连山.采用智能控制的DFIG风力发电系统[A].电力系统及其自动化学报.2009.21(6):40-44.
    [12]蔺红,晁勤.电网故障下直驱式风电机组建模与控制仿真研究[J].电力系统保护与控制,2010,38(21):189-195.
    [13]L. Mihet-Popa, F.Blaabjerg, I.Boldea. Wind Turbine Generator Modeling and Simulation Where Rotational Speed is the Controlled Variable[J]. IEEE Trans.Ind.Applicat.,2004,40(1):3-10.
    [14]刘少辉.风力发电系统仿真模型的研究与设计.[A].北京:华北电力大 学,2009.
    [15]范晓旭.变速恒频风力发电机组建模、仿真及其协调优化控制:[A].北京:华北电力大学,2010.
    [16]王江.风力发电变桨矩风力发电变桨距控制技术研究:[A].合肥:合肥工业大学,2009.
    [17]肖劲松,倪维斗,姜桐.大型风力发电机组的建模与仿真[J].太阳能学报,1997,18(2):117-127.
    [18]李东东,陈陈.风力发电机组动态模型研究[J].中国电机工程学报,2005,25(3):115-119.
    [19]Yin Ming, Li Gengyin, Zhou Ming, et al. Analysis and comparison of dynamic models for the doubly fed induction generator wind turbine[J], Automation of Electric Power Systems,2006,30(13):22-27.
    [20]尹明,李庚银,赵辉等.双馈式感应风力发电机组建模及其控制研究[J].华北电力大学学报,2007,34(5):17-21.
    [21]S.Peresada, A.Tilli, A.Tonieili. Robust output feedback Control of a doubly-fed induction machine[C]. The25th annual Conference of the IEEE Industrial Electronics Soeiety IECON,99Proceedings,1999:1348-1354.
    [22]Y.Tang, L.Xu. Fuzzy Logic Application for Intelligent Control of a Variable Speed Drive[J]. IEEE Trans and Energy Conversion.1994,9(4):679-685.
    [23]M.Malesani, L.Rossett, P.Tomasin. AC/DC/AC PWM Converter with Reduced Energy Storage in the DC Link. IEEE Trans.Ind.Applicat.,1995,31(2):287-292.
    [24]XiaoxuFan, YuegangLv, YanBai, DapingXu. Hybrid system modeling and analysis for Power grid side converter modulated by SVPWM[C]. Technology of the double-fed induction wind Power generator ICNC 2008, jinan, China, 2008,10:143-148.
    [25]肖运启,吕跃刚,徐大平.基于综合无功目标的整流器直接电流控制[J].电工技术学报,2008,23(3):66-71.
    [26]高粱.风力发电机组控制技术的研究:[A].成都:西华大学,2008.
    [27]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2002.
    [28]王馨凝,夏加宽,卢爽埴.模糊PID变桨距控制器研究[J].电气开关,2011,No.4:33-34.
    [29]刘吉宏,吕跃刚,徐大平.风力发电机组桨距角鲁棒控制器的设计与仿真[J].计算机仿真,2010,27(3):267-313.
    [30]M. Fard, R. Rahmani, M. W. Mustafa. Fuzzy logic based pitch angle controller for variable speed wind turbine[C].2011 IEEE Student Conference on Research and Development.36-39.
    [31]Anca D. Hansen. Centralised power control of wind farm with doubly fed induction generators[J]. Renewable Energy.2006,31:935-951
    [32]Le-Ren Chang-Chien, Yao-Ching Yin. Strategies for operating wind power in a similar manner of conventional power plant[J].2009,24(4):926-934.
    [33]Poultangari, Iman; Shahnazi, Reza; Sheikhan, Mansour. RBF neural network based PI pitch controller for a class of 5-MW wind turbines using particle swarm optimization algorithm. ISA TRANSACTIONS.51 (5):641-648.
    [34]M. Alexiadis, P. Dokopoulos, H. Sahsamanoglou, et al. Short-term Forecasting of Wind Speed and Related Electrical Power[J]. Solar Energy,1998,63(1): 61-68.
    [35]B. G. Brown, R. W. Katz, A. H. Murphy. Time serial models to simulate and forecast wind speed and wind power[J]. Journal of Climate and Applied Meteorology,1984,23(8):1184-1195.
    [36]潘迪夫,刘辉,李燕飞.风电场风速短期多步预测改进算法[J].中国电机工程学报,2008,28(26):87-91.
    [37]E. A. Bossanyi. Short-term wind prediction using Kalman [J]. Wind Engine-ering,1985,9(1):1-8.
    [38]王耀南,孙春顺,李欣然.用实测风速校正的短期风速仿真研究[J].中国电机工程学报,2008,28(11):94-100.
    [39]G. N. Kariniotakis, G. S. Stavrakakis, E. F. Nogaret. Wind power forecasting using advanced neural networks models[J]. IEEE Transactions on Energy Conversion,1996,11(4):762-767.
    [40]Li Shu-hui, Wunsch, Giesselmann, et al. Using neural networks to estimate wind turbine power generation [J]. IEEE Transactions On Energy Conversion, 2001,16(3):276-282.
    [41]范高峰,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报,2008,28(34):118-123.
    [42]M. Carolin, E. Femandez. Analysis of wind power generation and prediction using ANN:A case study[J]. Renewable energy,2008,33(5):986-992.
    [43]张国强,张伯明.基于组合预测的风电场风速及风电机功率预测[J].中国电机工程学报,2009,33(18):92-95.
    [44]潘迪夫,刘辉,李燕飞.基于时间序列分析和卡尔曼滤波算法的风电场风 速预测优化模型[J].电网技术,2008,32(7):82-86.
    [45]孟勇.风电功率预测系统的研究与开发[D].天津大学,2010.
    [46]冯双磊,王伟胜,刘纯,等.风电场功率预测物理方法研究[J].中国电机工程学报,2010,30(2):1-5.
    [47]G. Sideratos, N. D. Hatziargyriou. An advanced statistical method for wind power forecasting [J]. IEEE Transactions on Power Systems,2007,22(1): 258-265.
    [48]肖金香,穆彪,胡飞.农业气象学[M].北京:高等教育出版社,2009:141.
    [49]李文良,卫志农,孙国强,等.基于改进空间相关法和径向基神经网络的风电场短期风速分时预测模型[J].电力自动化设备,2009,29(6):89-92.
    [50]M. A. Mohandez. Support vector machines for wind speed Prediction [J]. Renewable Energy,2004,29:939-947.
    [51]戚双斌,王维庆,张新燕.基于支持向量机的风速与风功率预测方法研究[J].华东电力,2009,37(9):1600-1603.
    [52]E. Hernandez, G. L. Weiss. A first course on Wavelet [M]. New York:CRC Press.Inc,1996.
    [53]葛哲学.小波分析理论与MATLAB R2007实现[M].北京:电子工业出版社,2007:63-67.
    [54]宋琳.输油管道泄漏检测及定位的仿真研究[J].大庆石油学院,2008.
    [55]石志强,任震,黄雯莹.小波分析及其在电力系统中的应用(二)理论基础[J].电力系统自动化.1997(02):13-17.
    [56]何建军.小波变换及其在电机故障信号检测和分析中的应用研究[D].重庆:重庆大学,1999.
    [57]Santoso, et al. Power quality disturbance data compression using wavelet transform method[J]. IEEE Trans Power Delivery,1997,12(3):1250-1257.
    [58]李登峰,杨晓慧.小波基础理论和应用实例[M].北京:高等教育出版社,2010:133-135.
    [59]郝云虎.小波变换在齿轮箱故障诊断中的应用[D].中北大学,2009.
    [60]高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2005
    [61]Y. H. Zweiri, J. F. Whidborne, L. D. Seneviratne. A three-term backpropagation algorithm[J]. Neurocomputing,2003,305-318.
    [62]Efficient backpropagation learning using optimal learning rate and momentum[J]. Neural network,1997, vol.10(3):517-527.
    [63]朱大奇,史慧.人工神经网络原理及应用[M].北京:科学出版社.2006
    [64]Vapnik V. N. An overview of statistical learning theory[J]. Neural Networks, IEEE Transactions on,1999,10(5):988-999.
    [65]唐发明.基于统计学习理论的支持向量机算法研究[D].华中科技大学,2005.
    [66]李海生.支持向量机回归算法与应用研究[D].华南理工大学,2005.
    [67]Li Z., Weida Z., Licheng J. Wavelet support vector machine[J]. Systems, Man, and Cybernetics, Part B:Cybernetics, IEEE Transactions on,2004,34(1):34-39.
    [68]Wan V., Renals S. Speaker verification using sequence discriminant support vector machines[J]. Speech and Audio Processing, IEEE Transactions on,2005, 13(2):203-210.
    [69]Van Gestel T., Suykens J. A. K., Baestaens D. E., et al. Financial time series prediction using least squares support vector machines within the evidence framework[J]. Neural Networks, IEEE Transactions on,2001,12(4):809-821.
    [70]Suykens J., Vandewalle J., De Moor B. Optimal control by least squares support vector machines[J]. Neural Networks,2001,14(1):23-35.
    [71]Vapnick V. N. Statistical learning theory[J]. J. Wiley and Sons Inc. Nova York, 1998.
    [72]Vapnik V. The nature of statistical learning theory[M]. springer,1999.
    [73]孙春顺,王耀南,李欣然.小时风速的向量自回归模型及应用[J].中国电机工程学报,2008,28(14):112-117.
    [74]Sanchez I. Short-term prediction of wind energy production[J]. International Journal of Forecasting,2006,22(1):43-56.
    [75]Ahlstrom, Jones L., Zavadil R., et al. The future of wind forecasting and utility operations[J]. Power and Energy Magazine, IEEE,2005,3(6):57-64.
    [76]丁明,张立军,吴义纯.基于时间序列分析的风电场风速预测模型[J].电力自动化设备,2005,25(8):32-34.
    [77]Sfetsos A. A comparison of various forecasting techniques applied to mean hourly wind speed time series[J]. Renewable Energy,2000,21(1):23-35.
    [78]申洪,王伟胜.一种评价风电场运行情况的新方法[J].中国电机工程学报,2003,23(9):90-93.
    [79]杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5.
    [80]杜颖,卢继平,李青,等.基于最小二乘支持向量机的风电场短期风速预测[J].电网技术,2008,32(15):62-66.
    [81]李丹,高立群,王珂,等.基于动态多种群粒子群支持向量机的短期负荷预测[J].计算机科学,2008,35(7):133-136.
    [82]Sideratos G., Hatziargyriou N. D. An Advanced Statistical Method for Wind Power Forecasting[J]. Power Systems, IEEE Transactions on,2007, 22(1):258-265.
    [83]王晓兰,王明伟.基于小波分解和最小二乘支持向量机的短期风速预测[J].电网技术,2010,(1):179-184.
    [84]李宇佳.考虑风电并网的短期负荷预测方法研究[D].华北电力大学(北京),2011.
    [85]朱锋.风电场风速短期多步预测方法的研究[D].大连理工大学,2009.
    [86]黄小华,李德源,吕文阁,等.基于人工神经网络模型的风速预测[J].太阳能学报,2011,(2):193-197.
    [87]刘兴杰,米增强,杨奇逊,等.基于经验模式分解和时间序列分析的风电场风速预测[J].太阳能学报,2010,(8):1037-1041.
    [88]张华,曾杰.基于支持向量机的风速预测模型研究[J].太阳能学报,2010,(7):928-932.
    [89]卢晓亭,孙勇,笪良龙,等.基于EMD的BP神经网络海水温度时间序列预测研究[J].海洋技术,2009,(3):79-82.
    [90]Alexiadis M, Dokopoulos P, Sahsamanoglou H et al. Short term forecasting of wind speed and related electrical power[J]. Solar Energy,1998,63(1):61-68.
    [91]ZADEH L A. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic[J]. Fuzzy Sets and Systems,1997, 90(2):111-127.
    [92]ZADEH L A. Some reflections on soft computing, granular computing and their roles in the comception, design and utilization of information/intelligent systems[J]. Soft Computing,1998,2(l):23-25.
    [93]潘迪夫,刘辉,李燕飞.风电场风速短期多步预测改进算法[J].中国电机工程学报,2008,28(26):87-91.
    [94]刘其辉,贺益康,赵仁德.变速恒频风力发电系统最大风能追踪控制[J].电力系统自动化,2003,(20):62-67.
    [95]林成武,王凤翔,姚兴佳.变速恒频双馈风力发电机励磁控制技术研究[J].中国电机工程学报,2003,(11):126-129.
    [96]马洪飞,徐殿国,苗立杰.几种变速恒频风力发电系统控制方案的对比分析[J].电工技术杂志,2000,(10):1-4.
    [97]Lulian Munteanu, Antoneta luliana Bratcu, Nicolaos-Antonio Cutululis, Emil Ceanga.风力发电系统优化控制[M].北京:机械工业出版社.
    [98]Datta R., Ranganathan V. T. Direct power control of grid-connected wound rotor induction machine without rotor position sensors[J]. Power Electronics, IEEE Transactions on,2001,16(3):390-399.
    [99]刘其辉.变速恒频风力发电系统运行与控制研究[D].浙江大学,2005.
    [100]孙建锋.风电场建模和仿真研究[D].清华大学,2004.
    [101]王树坤.双馈式变速变桨距风力发电机模糊控制研究[D].燕山大学,2011.
    [102]林勇刚,李伟,叶杭冶,等.变速恒频风力机组变桨距控制系统[J].农业机械学报,2004,(4):110-114.
    [103]林勇刚.大型风力机变桨距控制技术研究[D].浙江大学,2005.
    [104]李华明.全球风电成本的初步分析[J].太阳能.2005(03):45-48
    [105]Holland J H. Adaptation in natural and artificial systems:An introductory analysis with applications to biology, control, and artificial intelligence. Ann Arbor:University of Michigan Press,1975
    [106]C F Moyano, J A P Lopes. An optimization approach for wind turbine commitment and dispatch in a wind park[J]. Electric Power Systems Research, 2009,79:71-79
    [107]高新波.模糊聚类分析及其应用[M].西安电子科技大学出版社,2004
    [108]周明,孙树栋,遗传算法原理及应用[M].北京:国防出版社,2002
    [109]王正志,薄涛.进化计算[M].长沙:国防科技大学出版社,2000
    [110]Chambers L. Practical handbook of genetic algorithms:complex coding systems[M].CRC Press, USA,1998
    [111]杨朋朋.机组组合理论与算法研究[D].山东大学,2008.
    [112]王鹏.发电市场合约管理与机组组合问题研究[D].华北电力(北京)大学,2001.
    [113]刘宁宁.优化旋转备用配置的机组组合研究[D].山东大学,2010.
    [114]孙元章,吴俊,李国杰,等.基于风速预测和随机规划的含风电场电力系统动态经济调度[J].中国电机工程学报,2009,(4):41-47.
    [115]乔颖,鲁宗相.考虑电网约束的风电场自动有功控制[J].电力系统自动化,2009,(22):88-93.
    [116]Janssens N. A., Lambin G., Bragard N. Active Power Control Strategies of DFIG Wind Turbines[C].2007.
    [117]Thomas Ackermann. Wind power in power systems. WILEY,2005
    [118]Anca D.Hansen, Poul Sorensen, Florin Iov, Frede Blaabjerg. Centralised power control of wind farm with doubly fed induction generators. Renewable Energy, 2006,31:935-951.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700