基于多点连续肌电控制的仿生康复手关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仿生康复是现阶段康复医学及康复器械研究领域的核心思想。传统的康复器械,尤其是针对手部的康复器械,存在结构简单、自由度少、控制策略单一、运动模式少以及适应性、灵活性较弱等不足之处,限制了手部康复器的进一步发展和深入研究。本文设计的仿生康复手是一种模拟人手布局、结构、尺寸,具有多自由度、多种弯曲关节的,采用多点连续肌电控制的新型手部康复器,其结构的灵活性和适应性,控制策略的连续性仿生性,积极推动手部康复器的研究和发展,具有研究意义与应用价值。
     随着科技的发展和患者需求的提高,依靠电机驱动刚性结构的传统康复手在研究和应用两方面都出现了瓶颈。仿生康复概念的提出,为手部康复器的研究提供了新的理论基础,指出新的研究方向。本文总结了现有康复手的优缺点,在此基础上提出一种气体驱动刚柔性结构的新型仿生康复手,具有良好的被动柔性,同时在控制策略方面弥补了现有康复手的不足,提高了仿生效果。
     本文主要完成的研究工作如下:
     (1)根据人类手指关节运动特性对关节弯曲性能的不同要求及关节结构大小的限制,设计具有两种类型弯曲关节、两个自由度的仿生康复手单指基本结构,和具有五个手指、十个自由度的仿生康复手本体结构。以人手布局和实际尺寸为标准,优化仿生康复手的整体布局方案和结构参数。在此基础上,设计仿生康复手的总体控制方案。总结了本文设计的仿生康复手的特色之处。
     (2)设计了采用双气动柔性驱动器驱动的、模拟人手指关节弯曲运动的新型气动弯曲关节。基于静力学和弹性力学理论,对关节FPA的活动端进行力平衡分析,建立关节转角的静态模型,分析关节结构参数对其弯曲性能的影响;对静态模型进行了简化,并验证了其与理论模型的误差;在简化模型的基础上,根据热力学第一定律和关节动力学方程,推导了关节的转角动态方程组;仿真分析了关节结构参数与弯曲角度之间的关系。实验结果表明,当FPA内腔气压在0.1MPa~0.35MPa时,实际弯曲角度与理论值偏差较小;随着FPA内腔气压增大,偏差也随之增大;当达到理论最大气压时,偏差值为7.5。,偏差率为6.8%;因此可以认为,弯曲关节的转角静态特性与理论模型基本吻合。
     (3)基于稀疏理论,提出表面肌电信号的特征重构算法。在正交匹配算法的基础上,结合以K-SVD算法构造的自适应原子库,对表面肌电信信号进行稀疏分解。根据稀疏参数与稀疏结果之间的关系,优化稀疏结果。在特征重构算法的基础上,再次提取稀疏结果的特征参数并对其进行重构。对比特征参数曲线与手指关节实际弯曲角度,验证与人手实际角度变化规律的符合度,为后续研究提供理论基础;通过与传统平均幅值算法处理结果的对比,验证本章提出的特征重构算法的优越性,并分析传统算法处理效果欠佳的原因。
     (4)基于幅值乘方理论,提出表面肌电信号的预处理算法。在表面肌电信号集中参数模型的基础上,分析算法的理论依据。根据人工神经网络理论和误差反向传播算法,设计了用于表面肌电信号模式识别的神经网络分类器。对比预处理前后信号特征参数的分类器训练结果及其识别率,验证预处理算法对信号特征的加权效果。在预处理算法的基础上,对第四章的特征参数曲线进行了修正。
     (5)在传统肌电控制理论的基础上,根据仿生康复手的整体布局和结构特点,提出多点连续肌电控制方法,模拟人手的运动规律,详细阐述了两者的联系和区别;详细分析表面肌电信号特征参数与仿生康复手控制信号之间的映射关系,并提出其数学模型。在MATLAB和DELPHI编译环境下,设计仿生康复手的控制系统。搭建实验平台,完成仿生康复手的系统控制效果实验。实验结果表明:系统可以较好地识别出信号的动作部位,其整体识别率为96.33%,总体控制误差稳定在5%之内,控制点的平均误差值约为0.5087°,最大偏差控制在1°之内。
     本文设计的仿生康复手,采用本课题组自主研发的气动柔性驱动器FPA直接驱动,其结构简单、便于控制、易于实现整体结构的小型化、具有良好的被动柔性,同时仿生康复手的刚性结构保证了其整体刚度。仿生康复手的多点连续肌电控制策略使其比传统康复手更符合人手的自然运动规律和动作习惯,更能体现仿生康复的概念。多点连续肌电控制策略不仅仅可以应用于康复器械领域,对于实现其他类型机器人(如工业生产机器人,农业采摘机器人等)的远程操作、仿生操作也有积极的指导意义。
The bionic rehabilitation is core ideology in the field of rehabilitation medicine and equipment at this stage. Because of simple structure, fewer DOFs, singleness control strategy, less movement patterns, weak adaptability, poor flexibility and some other shortcomings, the development and application of traditional rehabilitation equipment is severely limited, especially for hand rehabilitation equipment. Simulating the arrangement, structure and size of human hand, bionic rehabilitation hand designed in this paper with multiple DOFs, multiple joints and multi-point continuous myoelectric control is a new type of hand rehabilitation equipment. And its flexible and adaptable structure, as well as its consecutive and biomimetic control strategy plays a positive role to promote research and development of hand rehabilitation equipment. Therefore bionic rehabilitation hand has both great research significance and application value.
     With the development of science and technology and the increment of patients'needs, the traditional rehabilitation hand with rigid structure driven by motor has turned up bottlenecks in both aspects of research and application. And bionic rehabilitation provides a new theoretical foundation and points out a new research direction of rehabilitation hand. Base on the shortcomings of existing rehabilitation hand summarized in this paper, a new type of bionic rehabilitation hand with rigid and flexible structure driven by gas is designed. It has good passive flexibility, makes up for the deficiencies of the existing rehabilitation hand in the aspect of control strategy and improves the bionic effect of rehabilitation hand.
     The main research work in this paper is as follows:
     (1) According to different requirement on the bending property of motion characteristics of human finger joints and limit to the structure size of joint, the single finger basic structure and the body structure of bionic rehabilitation hand have been designed. The single finger basic structure has two joints and two DOFs, while the body structure of bionic rehabilitation hand is designed with five fingers and ten DOFs. The structural parameters and layout scheme are optimized based on layout and actual size of human hand. On this basis, overall control scheme is designed. And characteristic of bionic rehabilitation hand designed in this paper is summarized.
     (2) A new type of pneumatic bending joint driven by double FPAs is designed to simulate bending movement of human hand. Base on the theory of statics and elasticity, force equilibrium equation of the FPA free end is analyzed. The static model of joint's bending angle is obtained to analyze the influence of structural parameters on the flexural properties of joint. The simplified model is proposed and its error is analyzed. According to the first law of thermodynamics and the joint's dynamic equation, joint's angle dynamic equation is performed. Simulation is carried out to analyze the relationship between structural parameters and bending angle of joint. The result show:when inner pressure of FPA is in0.1Mpa~0.35Mpa, the deviation between actual bending angle and its theoretical value is smaller. With the increment of inner pressure, the deviation increases. When pressure reaches the theoretical maximum value, its corresponding deviation is7.5°and deviation rate is6.8%. Therefore, it can be considered that static characteristics agree with its theoretical model.
     (3) The feature reconstruction algorithm of sEMG signal is proposed based on the sparse theory. According to orthogonal matching pursuit algorithm, and combined with the adaptive atoms library structured by K-SVD, sEMG signal is decomposed. The relationship between sparse parameters and sparse result is analyzed to optimize the sparse result. Based on feature reconstruction algorithm, the feature of sparse result is extracted and reconstructed. The feature curve is compared with the actual bending angle of joint to verify the conformity of the feature curve, and to provide the theoretical basis for follow-up research. The advantage of feature reconstruction algorithm proposed in this paper can be proved by contrasting with the traditional average amplitude algorithm. And the reason of poor effect of traditional algorithm is analyzed.
     (4) Based on amplitude power theory, the preprocessing algorithm of sEMG signal is proposed. According to lumped parameter model of sEMG signal, theory evidence of preprocessing algorithm is analyzed. BP neural network classifier is designed for pattern recognition of sEMG signal base on artificial neural network theory and error back-propagation algorithm. The weighted effect of the preprocessing algorithm is proved by contrasting the training results and recognition rate of classifier. And the feature curve of sEMG signal is fixed based on the algorithm proposed.
     (5) According to characteristics of overall layout and structure of bionic rehabilitation hand, the multi-point continuous myoelectric control method is proposed based on traditional theory to imitate human movement rule. The connection and difference between two theories is elaborated. The mathematical model is deduced based on analyze of mapping relationship between feature parameters of sEMG signal and control signals of bionic rehabilitation hand. The control system is designed in the MATLAB and DELPHI complier environment. Experimental platform is built for experiment of bionic rehabilitation hand control system. The experimental results show:the system can identify the different action parts of the signal. The overall recognition rate is96.33%, while the overall control error is within5%. The average error value of control points is about0.5087°, and the maximum deviation is less than1°.
     A new type of bionic rehabilitation hand designed in this paper is directly driven by flexible pneumatic actuator developed by our research team. FPA has characteristics of simple structure, easy control, and easy miniaturization of overall structure and so on. It has better passive flexibility. Meanwhile, overall stiffness is ensured by rigid structure of the hand. Compared with the traditional strategy, multi-point continuous myoelectric control strategy is more in line with human hand movement rule. And this strategy not only can be applied to rehabilitation equipment, but also has positive significance for remote operation and bionic operation of other type of robots, such as industrial robot, agricultural picking robot.
引文
[1]陈景藻.康复医学[M].北京:高等教育出版社,2001:26-177.
    [2]Jenkins W M.Reorganization of neocortical representations after brain injury:a neurophysiological model of the bases of recovery from stroke [C].Progress in Brain Research,1987,71:249-266.
    [3]Pons T P, Garraphty P E, Ommaya A K, et al.Massive cortical reorganization after sensory deafferentation in adult macaques [J].SCIENCE.1991,252:1857-1860.
    [4]Lum P S, Reinkensmeyer D J. Robotic assist devices for bi-manual physical therapy:Preliminary experi ments [J]. IEEE Transactions on Rehabilitation Engineering,1993,1(3):184-191.
    [5]Dario P, Gu Glielmelli E, Allotta B, et al. Robotics for medical applications [J]. IEEE Robotics and Automation Magazine,1996,3(3):44-56.
    [6]杨毅.康复医学概论[M].上海:复旦大学出版社,2009.7.
    [7]吴銮.基于FPA的手指康复器研究[D].杭州:浙江工业大学,2011.
    [8]励建安.康复医学[M].北京:科学出版社.2008.
    [9]叶超群.康复医学概论[M].北京:北京体育大学出版社,2010.7.
    [10]贾红星.康复仪器的现状与展望[C].内蒙古医学会第一届医学工程专业学术研讨会,2001.6.
    [11]唐庆玉,冉凡英.康复仪器的现状与发展[J].中国医疗器械信息.2001,2:4-6.
    [12]Krebs H I, Volpe B T, Aisen M L, et al. Increasing productivity and quality of care:Robot-aided neuro-rehabilitation[J]. Journal of Rehabilitation Research and Development.2000,37 (6):639-652.
    [13]李庆铃.基于sEMG信号的外骨骼式机器人上肢康复系统研究[D].哈尔滨:哈尔滨工业大学,2009.
    [14]李庆玲,孙立宁,杜志江.上肢康复机器人发展现状的分析与研究[J].机械设计.2008,25(9):1-3,70.
    [15]Nef T, Riener R. ARMin-design of a novel arm rehabilita-rehabilitation robot [C]. Proceeding of the 9th IEEE Conference on Rehabilitation Robotics.2005:57-60.
    [16]Mihelj M, Nef T, Riener R. ARMin Ⅱ-7 DOF rehabilitation robot:mechanics and kinematics[C]. Proceeding of the 2007 IEEE International Conference on Robotics and Automation.2007: 4120-4125.
    [17]董宪奇.肘关节神经康复用机器人之改进与临床应用[D].台湾:国立成功大学,2002.
    [18]佟杰.手臂康复训练机器人控制及实验研究[D].哈尔滨:哈尔滨工程大学,2007.
    [19]张立勋,杨勇,张今瑜等.手臂康复机器人阻抗控制实验研究[J].哈尔滨工程大学学报,2008,26(1):69-72.
    [20]胡宇川,季林红.一种偏瘫上肢复合运动的康复训练机器人[J].机械设计与制造,2004,(6):47-49.
    [21]Caldwell D G, Medrano-Cerda G A, Goodwin M J. Braided Pneumatic Actuator Control of a Multi-Jointed Manipulator [A], IEEE Int. Conf on Systems, Man and Cybernetics Proceedings, Le Touquet, France,1993:423-428.
    [22]Ching-Ping Chou, Black Hannaford, Static and Dynamic Characteristics of McKibben Pneumatic Artificial Muscles [A], IEEE Conf. on Robotics and Automation, San Diego, USA, May 1994, 281-286.
    [23]Ching-Ping Chou, Black Hannaford, Measurement and Modeling of McKibben Pneumatic Artificial Muscles [J], IEEE Transaction on Robotics and Automation,1996,12(1):90-102.
    [24]Tsagarakis N, Caldwell D G. Improved Modeling and Assessment of Pneumatic Muscle Actuators [A], Proceedings of 2000 IEEE International Conference on Robotics & Automation, San Francisco, Ca April 2000,3641-3646.
    [25]Suzumori K, Iikura S, and Tanaka H. Flexible Microactuator for Miniature Robots [A], Proc. IEEE Micro Electro Mechanical Systems Conf., Nara, Japan,1991,204-209.
    [26]Koichi Suzumori, Shoichi Likura, hiroshisa Tanaka. Development of Flexible Microactuator and Its Applications to Robotic Mechanisms [A], Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, California, April 1991,1623-1627.
    [27]Toshiro Noritsugu, Mitsuhiko Kubota, Sadaharu Yoshimatsu, Development of Pneumatic Rotary Soft Actuator Made of Silicone Rubber [J], Journal of Robotics and Mechatronics,2001,13(1):17-22.
    [28]Schulz S, Pylatiuk C, Bretthauer G. A New Ultralight Anthropomorphic Hand [A], Proceedings of the 2001 IEEE International Conference on Robotics & Automation, Seoul, Corea, May 2001.
    [29]Yang Qinghua, Zhang Libin, Bao Guanjun, Ruan Jian, Research on Novel Flexible Pneumatic Actuator FPA [A], IEEE Conference on Robotics, Automation and Mechatronics.2004:384-389.
    [30]张立彬,鲍官军,杨庆华,阮健.一种气动柔性驱动器[P].中国:ZL200520101465.2,2006.3.
    [31]Sasaki D, Noritsugu T, Takaiwa M. Development of Active Support Splint driven by Pneumatic Soft Actuator (ASSIST), Robotics and Automation [C]. Proceedings of the 2005 IEEE International Conference on Robotics and Automation,2005:520-525.
    [32]赵亮,冯培恩,潘双夏.设计方法学在产品创新中的应用[J].机械设计,2000,1:12—14,23.
    [33]张立勋,董玉红,智能手部康复训练器[P].中国:200420019014.X,2005.9.
    [34]昌立国,智能仿生康复手的研制[J].新技术/新工艺/新设备,2005,1:81-83.
    [35]张付祥.床上手指康复机械手系统研究[D].哈尔滨:哈尔滨工业大学,2007.
    [36]Yili Fu, Fuxiang Zhang, Shuguo Wang. Development of an Embedded Control Platform of a Continuous Passive Motion Machine, [C]//Proceedings of the 2006 IEEE International Conference on Intelligent Robots and Systems, Beijing, China,2006:1617-1622.
    [37]Koeneman E J,Schultz R S,Wolf S L,et al.A pneumatic muscle hand therapy device.In:Proc.26th Annual Int.Conf.of the IEEE EMBS,San Francisco,CA,USA:2004.2711-2713.
    [38]http://www.nittokohki.com/en/.
    [39]http://www.mdsin.com/?menu_id= 1207.
    [40]Merletti R, Farina D, Gazzoni M, et al. Surface electromyography:A window on the muscle, a glimpse on the central nervous system[J].Europa Medicophysica,2001,37:57-69.
    [41]Bigland-Ritchie B, Donovan E F, Roussos C S. Conduction velocity and EMG power spectrum changes in fatigue of sustained maximal efforts[J]. Journal of Applied Physiology.1981,51(5): 1300-1305
    [42]杨春红,王健,王笃明.基于准稳态信号的动态肌肉疲劳表面肌电信号变化特征[J],体育科学,2005,25(7):16-20.
    [43]张海红,王健,杨春红.肱二头肌离心和向心收缩的肌电信号特征[J].浙江大学学报,2006,40(11):1937-1941.
    [44]Carary M A, Carnaby G D, Groher M E, et al. Functional benefits of dysphagia therapy using adjunctive sEMG biofeedback[J]. Dysphagia.2004,19(3):160-16.
    [45]Dorcas D, Scott R N. A three state myoelectric control[J].. Medical and Biological Engineering. 1966,4:367-372
    [46]Childress D A. A myoelectric three state controller using rate sensitivity[C]. Proceeding of the 8th IEEE International Conference on Medical and Biological Engineering.1969:S4-S576.
    [47]Hudgins B, Parker P, Scott R N. A new strategy for multifunction myoelectric control[C]. IEEE Transactions on Biomedical Engineering.1993,40(1):83-94.
    [48]Moon I, Lee M, Chu J. Wearable EMG-based HCI for Electric-Powered Wheelchair users with motor Disabilities[C]. Proceedings of the 2005 IEEE International Conference on Robotics and Automation.2005:2649-2654.
    [49]李强.表面肌电信号的运动单位动作电位检测[D].北京:中国科学技术大学,2008,4.
    [50]Graupe D. Function separation of EMG signal via ARMA identification methods for prosthesis control purposes[C]. IEEE Transactions on System, man, and Cybernetics.1975,5(2):253-259.
    [51]Luh J J, Chang G C, Cheng C K, et al. Using time-varying autoregressive filter to improve EMG amplitudeestimator[C]. Proceeding of the 17th IEEE International Conference on Engineering in Medicine and Biology Society.1995:1343-1344.
    [52]Lamounier E, Soares A, Andrade A, et al. A virtual prosthesis control based on neural networks for EMG pattern classification[C]. Proceeding of the Artificial Intelligence and Soft Computing.2002
    [53]Zhao J D, Xie Z W, Jiang L, et al. Levenberg-Marquardt based neural network control for a five-fingered prosthetic hand[C]. Proceeding of the 2005 IEEE International Conference on Robotics and Automation.2005:4483-4487.
    [54]Jones D L, Park T W. A resolution comparison of several time-frequency representations [J].SP, 1992,40(1):413-420.
    [55]周丹.短时傅里叶变换和提升小波变换在脉象信号分析中的应用[D].重庆:重庆大学,2008,4.
    [56]蔡立羽,王志中.肌电信号分析方法的研究及进展[J].中国医疗器械杂志,1999,23(4):219-222.
    [57]余付平,冯有前,高大化,安芹力.联合过完备库下的信号稀疏分解[J].控制与决策,2012,27(8):1237-1340,1245.
    [58]井爱雯,刘云,马轶丽.基于MP算法的语音信号稀疏分解[J].计算机工程与应用,2009,45(5).
    [59]王建英,尹忠科,张春梅.信号与图像的稀疏分解及初步应用[M].成都:西南交通大学出版社,2006.
    [60]王春光.基于稀疏分解的心电信号特征波检测及心电数据压缩[D].北京:国防科技大学,2009,1.
    [61]李雨听.语音信号MP稀疏分解快速算法及在语音识别中的初步应用[D].成都:西南交通大学,2009,5.
    [62]赵章琰.表面肌电信号检测和处理中若干关键技术研究[D].北京:中国科学技术大学,2010.
    [63]焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1995.
    [64]Simon Haykin神经网络原理[M].叶世伟,史忠直,译.北京:机械工业出版社,2004.
    [65]崔小平.几种前馈神经网络分类性能的比较分析研究[D].太原:中北大学,2011,4.
    [66]Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition [J]. Data Mining and Knowledge Discovery,1998(2):121-167.
    [67]Cortes C. Vapnik V. Support-vector networks[J]. Machine Learning,1995(20):273-297.
    [68]Bishop C. Pattern recognition and machine learning[M]. Springer,2006.
    [69]汤健.骨科临床测量[M].合肥:安徽科学技术出版社,2001.
    [70]陶泉.手部损伤康复[M].上海:上海交通大学出版社,2006.
    [71]镰仓矩子.手指运动学[J].物理医学与康复学分册,1991,3:122~125.
    [72]Yang Qinghua, Zhang Libin, Bao Guanjun, Ruan Jian, Research on Novel Flexible Pneumatic Actuator FPA [A], IEEE Conference on Robotics, Automation and Mechatronics.2004:384-389.
    [73]杨庆华,张立彬,胥芳,等.气动柔性弯曲关节的特性及其神经PID控制算法研究[J].农业工程学报,2004,20(4):88-91.
    [74]钱少明,杨庆华,鲍官军,等.基于气动柔性驱动器的弯曲关节的基本特性研究[J].中国机械工程,2009,24:2903-2905.
    [75]张玉茹,李继婷,李剑锋.机器人灵巧手:建模、规划与仿真[M].北京:机械工业出版社,2007:190-191.
    [76]张永德,刘廷荣.机器人多指灵巧手的结构参数优化设计[J].机器人,1999,21(3):234-240.
    [77]刘云峰,杨利平,董星涛,等.基于现代设计与制造技术的小儿发育性髋脱位精确治疗外科手术研究[J].浙江工业大学学报,2009,37(2):208-212.
    [78]吕洋,曲娴,王朝辉.神经生理学[M].吉林:吉林大学出版社,2007.
    [79]李阳.智能仿生手臂肌电信号-运动模型化与模式识别理论方法研究[D].吉林:吉林大学,2012.
    [80]阮迪云,寿天德.神经生理学[M].合肥:中国科学技术大学出版社,1992.
    [81]陈伟婷.基于熵的表面肌电信号特征提取研究[D].上海:上海交通大学,2008.
    [82]Farrell T R, Weir R F. A Comparison of the effects of electrode implantation and targeting on pattern classification accuracy for prosthesis control [C]. IEEE Transactions on Biomedical Engineering. 2008(55):2198-2200.
    [83]Hargrove L J, Englehart K, Hudgins B. A Comparison of Surface and Intramuscular Myoelectric Signal Classification [C]. IEEE Transactions on Biomedical Engineering,2007(54):847-853.
    [84]Eriksson L, Sebelius F, Balkenius C. Neural control of a virtual prosthesis [C]//Proceedings of the 8th International Conference on Artificial Neural Networks. Skovde, Sweden:Springer,1998.
    [85]林奇.人体解剖学图谱及纲要[M].北京:北京大学医学出版社,2008.
    [86]杨大鹏,赵京东,姜力,刘宏.基于肌电信号的人手姿态多模式识别方法[J].上海交通大学学报,2009,43(7):1071-1080.
    [87]鲍官军.气动柔性驱动器FPA的特性及其在多指灵巧手设计中的应用研究[D].杭州:浙江工业大学,2006.
    [88]张立彬,鲍官军,杨庆华,等.气动柔性扭转关节静态模型[J].机械工程学报,2008,44(7):134-138.
    [89]鲍官军,王志恒,杨庆华,等.气动柔性扭转关节动态特性研究[J].农业机械学报,2010,41(6):204-207,226.
    [90]鲍官军,邵铁峰,李尚会,等.气动柔性摆动关节静态模型[J].农业机械学报,2011,42(6):198-202,212.
    [91]张立彬,王志恒,鲍官军,等.基于气动柔性驱动器的侧摆关节特新[J].农业工程学报,2009,25(8):77.
    [92]王志恒,杨庆华,钱少明,等.气动侧摆关节的动态特性[J].农业工程学报,2012,28(7):19-26.
    [93]WarkK.热力学(第6版)[M].北京:清华大学出版社,2006.
    [94]John B F. Engines, energy, and entropy[M]. Pittsburgh:Global View Publishing,2003.
    [95]骆涵秀,李世伦,朱捷,等.机电控制[M].杭州:浙江大学出版社,2003
    [96]阮健.电液(气)直接数字控制技术[M].杭州:浙江大学出版社,2000
    [97]田中久浴.液压与气动的数字控制及应用[M].重庆:重庆大学出版社,1992.
    [98]李建藩.气动传动系统动力学[M].广州:华南理工大学出版社,2009.
    [99]李衍达,常迥.信号重构理论及其应用[M].北京:清华大学出版社,1991.
    [100]Merletti R, Farina D, Gazzoni M, et al. Surface electromyography:A window on the muscle, a glimpse on the central nervous system[J]. Europa Medicophysica,2001,37:57-69.
    [101]康晨晖,崔玲丽,王婧,高立新,胥永刚.基于信号特征的复合字典多原子匹配算法研究[J].机械工程学报,2012,48(12):1-6.
    [102]张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633.
    [103]Candes E J, Donoho D. Curvelets-a surprisingly effective nonadaptive representation for objects with edges [R]. Technical Report, Department of Statistics, Stanford University,1999.
    [104]Pennec E, Mallat S. Sparse Geometric Image Representation with Bandelets [C]. IEEE Transactions on Image Processing,2003.
    [105]Do M N, Vetterli M. The Contourlet Transform:An Efficient Directional Multiresolution Image Represesntation [C]. IEEE Transactions on Image Processing,2003.
    [106]Mallat S, Zhang Z. Matching pursuit with time-frequency dictionaries [C]. IEEE Trans, on Signal Processing,1993,41(12):3397-3415.
    [107]Chen S, Donoho D, Saunders M. Atomic decomposition by basis pursuit [J]. SIAM Journal on Scientific Computing,1999,20:33-61.
    [108]Donoho D, Huo X. Uncertainty prnciples and ideal atomic decompositons [C]. IEEE Trans Inform. Theory,2001,47:2845-2862.
    [109]Friedman J, Stuetzle W. Projection pursuit regression [J]. Journal of the American Statistical Association,1981,76(376):817-823.
    [110]Tropp J. Greed is good:algorithmic results for sparse approximation [J]. Information Theory, IEEE Trans,2004,50(10):2231-2242.
    [111]Aharon M, Elad M, Bruckstein A M. K-SVD and its non-negative variant for dictionary design [C]. Proceedings of the SPIE conference wavelets,2005.5914:591411.
    [112]Englehart K, Hudgins B. A robust, real-time control scheme for multifunction myoelectric control [C]. IEEE Transactions on Biomedical Engineering.2003(50):848-854.
    [113]何乐生.基于肌电信号的人机接口技术的研究[D].江苏:东南大学,2006.6.
    [114]周浩敏,王睿.测试信号处理技术[M].北京:北京航天航空大学出版社,2009.
    [115]Whale A.D噪音中信号的检测[M].北京:科学出版社,1977.
    [116]张桂才,赵万镒.幅值三次方法-一种新的齿轮故障信号预处理方法[J].机械传动,1994:10-13.
    [117]陈超,王强.比例因子与幅值三次方法在信号处理中的应用[J].华北电力大学学报,2007,34(1):78-81.
    [118]杨福生,高上凯.生物医学信号处理[M].北京:高等教育出版社,1989.
    [119]王飞,罗志增.基于AR模型和BP网络的表面EMG信号模式分类[J].华中科技大学学报(自然科学版),2004,32:100-102.
    [120]张桂才,史铁林,杨叔子.机械信号分析中消噪方法的研究[J].振动、测试与诊断,1998,18(1):29-33.
    [121]黄文虎,夏松波,刘瑞岩.设备故障诊断原理、技术及应用[M].北京:科学出版社,1996.
    [122]Bishop C M. Neural networks for pattern recognition [M]. Clarendon press, Oxford,1995.
    [123]刘明亮.基于BP神经网络输油泄漏检测识别技术研究[J].信息技术,2006,30(3):49-51.
    [124]施彦,韩力群,廉小亲.神经网络设计方法与实例分析[M].北京:北京邮电大学大学出版社,2009.
    [125]丛爽.面向MATLAB工具箱的神经网络理论与应用[M].北京:中国科技大学大学出版社,2009.
    [126]Auatriamicrosystems. AS5045 12 bit programmable magnetic rotary encoder data sheet.2005:1-24.
    [127]王志恒.基于FPA的新型气动机器人多指灵巧手研究[D].杭州:浙江工业大学,2011.6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700