高压AlGaN/GaN HEMTs的新结构与场优化技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在功率半导体器件的应用中,以氮化镓为代表的宽禁带(WBG)化合物半导体由于其高于硅三倍的禁带宽度而获得越来越广泛的关注。III-V族氮化合物AlGaN/GaN高迁移率晶体管(High Mobility Electron Transistors, AlGaN/GaNHEMTs)相比于SiC功率器件由于其易于实现的异质结构(Heterojunction)、高浓度的二维电子气(2-DEG)、高的沟道电子迁移率、高的击穿电场以及相对简单的工艺实现而成为宽禁带化合物半导体器件应用于高压集成电路(High VoltageIntegrated Circuit, HVIC)中具有里程碑意义的典型代表。在获得较小的比导通电阻(Ron_sp)的同时而得到最大的耐压是功率半导体器件的关键问题,而二维表面电场的优化问题是横向功率器件的固有问题。为此,国内外学者提出了一系列新的结构和新的工艺,以提高AlGaN/GaN HEMTs的耐压和解决由场引起的可靠性问题。但迄今为止,国内外学者对于AlGaN/GaN HEMTs新结构的提出缺乏有效的数值模拟和理论分析,这将大大增加实验所付出的成本。
     针对AlGaN/GaN HEMTs的二维电场优化问题,本文利用Crosslight-APSYSTCAD数值分析法建立自发极化和碰撞电离模型,通过求解二维和三维泊松方程,获得表面和体内电场的分布从而指导实验。基于降低漏端栅极边缘的表面电场以防止过早的栅极击穿、提高器件的整体耐压水平、有效抑制漏极到栅极的泄漏电流的思路出发,结合Crosslight-Csuprem TCAD工艺模拟软件,对AlGaN/GaNHEMTs进行了创新性和探索性研究。主要内容为:
     1.具有单层源金属场板(Source connected Field Plate)AlGaN/GaN HEMT的设计与制造。此结构利用工艺兼容的源金属场板作为栅极边缘电场的屏蔽层,以优化表面电场分布,进而提高器件耐压。数值分析结果表明:当漂移区长度为6微米、栅极长度0.8微米、氮化镓外延层厚度为2微米时,器件耐压达到150V,与常规型器件60V比较,提高了150%。作为仿真结果的验证,实验结果表明:在与仿真相同的物理参数和结构的情况下,优化的器件耐压达到125V,较常规器件的37V提高了237%。数值分析显示了与实验结果相同的趋势。基于实验结果,利用击穿电压的温度特性测试、栅极泄漏电流与温度的关系以及击穿电压的温度系数与场板长度的关系,得出器件击穿机理为陷阱辅助型栅极肖特基结的遂穿泄漏以及由漏端电压引起的栅极热载流子注入所引发的器件提前泄漏击穿。
     2.具有局域Mg掺杂(Magnesium doped)高压AlGaN/GaN HEMT的设计。此结构利用电荷补偿理论,在氮化镓缓冲层中(GaN buffer)、栅极二维电子气下方三百纳米处引入一Mg局部埋层。该Mg埋层在器件正向导通过程中不引入电阻,在正向耐压过程中辅助耗尽沟道二维电子气,从而使得电场峰值从器件表面转移到漂移区内Mg埋层的边缘。通过优化和调整Mg埋层的长度以及浓度后,分析结果表明:当栅极长度为1微米、漂移区长度为10微米、氮化镓外延层厚度为3微米、Mg埋层长度为1.5微米、浓度为8×10~(17)cm~3时,器件耐压达到900V。相比传统型HEMT结构560V,提高了61%。相比于金属源场板结构的栅极边缘电场,带有局域Mg埋层的器件栅极边缘电场得到更有效地抑制。这意味着该结构能进一步地抑制由电场引起的热载流子注入电流。在带有局域Mg埋层的新结构的基础上,本论文还提出一种带有漏端金属场板的局域化Mg掺杂结构,从而能继续优化从Mg埋层到漏端边缘漂移区内电场,进一步提高耐压。分析结果表明:当Mg埋层长度为1微米、漏端金属场板为3微米时,器件耐压达到1390V。相比于仅带Mg掺杂的结构,新结构器件耐压进一步提高了55%。
     3.提出了AlGaN/GaN HEMTs的降低表面电场的概念,利用引入Mg埋层调制器件的体内电场,从而调制了器件的表面电场。带有局部Mg埋层的器件与带有优化了的传统源金属场板以及源金属场板结合栅极金属场板的器件相比,在相同的器件物理尺寸下击穿时,漏端栅极边缘的电场峰值为0.6MV/cm,与带有源金属场板器件的3.3MV/cm相比,降低了5倍以上;与带有源金属场板以及栅极金属场板的1.7MV/cm相比,降低了3倍。
     4.设计并制造了一种具有空气桥场板(Air-bridge Field Plate, AFP)结构的高压AlGaN/GaN HEMT,以解决传统源场板基于薄介质层无法进一步提高器件耐压的事实。此结构突破常规源极金属场板的一贯做法,通过利用特殊的光刻胶工艺,使得金属跳过栅源以及栅极区域,落到漂移区内。与带传统源金属场板的HEMT相比,AFP在抑制栅极边缘电场的同时,使得表面电场分布更加均匀,从而大大提高了耐压。同时,空气桥场板结构与常规场板技术相比,空气桥场板结构避免了引入寄生电容Cgs和场板引起的寄生导通电阻,从而不牺牲开关速度和损耗。数值分析结果表明:当漂移区长度为6微米、栅极长度0.8微米、氮化镓外延层厚度为2微米时,器件耐压达到450V,较传统不带场板结构的60V击穿电压相比,耐压提高了650%;较传统金属源场板结构的150V击穿电压相比,耐压提高了200%。试验结果表明:具有空气桥场板的新型结构,耐压达到了375V,较传统型无场板结构37V相比,耐压提高了913%。较传统型源极金属场板结构耐压125V相比,耐压提高了200%。新结构获得了比导通电阻(Ron-sp)为0.58m·cm~2。与传统不带场板结构0.56m·cm~2相比,寄生电阻增加了3.4%。与带传统场板器件结构0.79m·cm~2相比,寄生电阻减少了37%。
For power electronics applications, to break through the material limits of siliconand to realize the drastic performance improvement, Wide Band Gap (WGB) compoundsuch as SiC and GaN have attracted much attention because of their superior physicalprosperities. AlGaN/GaN High Electron Mobility Transistors (HEMTs) are promisingcandidates to replace the existing silicon devices in High Voltage Integrated Circuit(HVIC) due to their AlGaN/GaN heterojunction, high breakdown field, high mobility2D electron gas (2-DEG), excellent thermally stability, high saturation velocity and easyto realize than that of SiC counterpart. As in case of the power semiconductor devices,blocking capability is one of the most important features. For lateral power devices, thechallenge of achieving high breakdown voltage with the minimum Ron_sp dictates anoptimal field distribution in the drift region. Major efforts are being carried out toimprove the OFF-state blocking capability. However, most of these works lacknumerical simulations and theoretical analysis.
     In this dissertation, to optimize two-dimensional electric field in AlGaN/GaNHEMTs, spontaneous-polarization and impact ionization model are proposed by usingCrosslight-APSYS TCAD tool. Surface and bulk electric field distributions are obtainedby solving2-dimensional and3-dimensional Poisson equations. In order to furtherenhance the breakdown voltage and suppress schottky gate premature breakdown, somekinds of novel structures are simulated and experimentally verified in detail, including:
     1.AlGaN/GaN HEMT with source-connected field plate: The proposed structurecan re-shape the surface electric field distribution to enhance the breakdown voltage.Simulation results show that breakdown voltage of150V was obtained with a driftregion length of6μm, a gate length of0.8μm, a GaN buffer thickness of2μm.Breakdown voltage of the conventional HEMT without field plate is60V. Experimentwas also carried out in order to calibrate with the simulation results. Experimentalresults show that the breakdown voltage of the optimized HEMT with conventionalsource-connected field plate is125V, which is237%better than the conventionalHEMTs without field plate (37V). Numerical analysis exhibits good agreement and the same trend as the fabrication results. Furthermore, breakdown mechanism is studied byusing temperature dependant measurement.
     2.Breakdown voltage enhancement for GaN High Electron Mobility Transistorswith localized Mg doping: a localized Mg buried layer is introduced underneath the2-DEG channel. The Mg layer can help deplete the2-DEG without introducing theforward ON resistance. The introduced Mg layer can modulate the electric fielddistribution. After optimization, the peak electric field shifted from the surface drainside gate edge to the bulk Mg layer edge. Simulation results indicated that900V of thebreakdown voltage was obtained with the gate length of1μm, a drift length of10μm, aGaN buffer layer of3μm. Breakdown voltage of the conventional HEMT is560V,which is61%lower than that of the Mg doped one. Mg doped HEMT with drain metalextension structure is also proposed to further optimize the surface electric fielddistribution. Simulation results showed that breakdown voltage of1390V was achievedwith drain metal length of3μm, which can be translated into55%breakdown voltageimprovement than the Mg doped only structure.
     3.Reduced Surface Electric Field was proposed for AlGaN/GaN HEMTs.Compared to the HEMT with conventional source-connected field plate and combinedwith source and gate field plate structures, drain side gate edge of surface electric fieldfor HEMT with Mg doped layer is reduced by5×and3×, respectively.
     4.A high voltage AlGaN/GaN HEMT with a source-connected Air-bridge FieldPlate: The device features a metal field plate that jumps from the source over the gateregion and lands between gate and drain. The Air-bridge Field Plate can minimize theparasitic gate to source input capacitance and channel resistance. The new HEMT alsoexhibits higher OFF-state breakdown voltage and one order of magnitude lower of drainleakage current. In a device with gate to drain distance of6μm, gate length of0.8μm,three times higher forward blocking voltage of375V was obtained at VGS=5V whencompared to that of an optimized conventional Field Plate device (125V). The specificON resistance for the device with the proposed air-bridge field plate is0.58m·cm~2atVGS=0V, which compares favorably with0.79m·cm~2for the device with aconventional Field Plate. Numerical analysis was also carried out to calibrate thefabrication results. Simulation results showed450V of the breakdown voltage for theHEMT with air-bridge field plate while the conventional HEMT with the breakdown voltage of only65V.
引文
[1] B. J. Baliga, S. K. Ghandhi. Analytical solution for the breakdown voltage of the abruptcylindirical and spherical junction. Solid-State Electronics,1976,19:739-744
    [2] Y. C. Kao, E. D. Wolley. High voltage planar p-n junctions. IEEE Transactions on ElectronDevices,1966,55(8):1409-111
    [3] S. Yasuda, T. Yomezawa. High voltage planar junction with a field-limiting ring. Solid-StateElectronics,1982,25:423-427
    [4] K. P. Brieger, W. Gerlach, J. Pelka. Blocking capability of planar devices with field limitingrings. Solid-State Electronics,1983,26(8):739-745
    [5] M. Zibulevsky, Y. Zeevi. Extraction of a source from multichannel data using sparsedecomposition. Neurocomputing,2002,49:163-173
    [6] D. G. Bae, S. K. Chung. An analytic model of planar junctions with multiple floating fieldlimiting rings. Solid-State Electronics,1998,42(3):349-354
    [7] M. M. De Souza, J. V. Subhas Chandra Bose, E. M. Sankara Narayanan, et al. A novel areaefficient floating field limiting ring edge termination technique. Solid-State Electronics,2000,44:1381-1386
    [8] D. G. Bae, S. K. Chung. An analytical model for punch-through limited breakdown voltage ofplanar junction with multiple floating field limiting rings. Solid-State Electronics,2000,44:2109-2116
    [9] J. He, M. S. Chan, X. Zhang, et al. A new analytic method to design multiple floating fieldlimiting rings of power devices. Solid-State Electronics,2006,50:1375-1381
    [10] J. K. Oh, M. W. Ha, M. K. Han, et al. A new junction termination method employing shallowtrenches filled with oxide. IEEE Electron Device Letters,2004,25(1):16-18
    [11] M. S. Adler, V. A. K. Temple, A. P. Ferro, et al. Theory and breakdown voltage for planardevices with a single field limiting ring. IEEE Transactions on Electron Devices,1977,24(2):107-113
    [12] X. Cheng, J. K. O. Sin, J. Shen, et al. A general design methodology for the optimalmultiple-field-limiting-ring structure using device simulator. IEEE Transactions on ElectronDevices,2003,50(10):2273-2279
    [13] F. Conti, M. Conti. Surface breakdown in silicon planar diodes equipped with field plate.Solid-State Electronics,1972,15:93-105
    [14] I. E. Clarc, D. S. Zoroglu. Enhancement of breakdown properties of overlay annular diodes byfield shaping resistive films. Solid-State Electronics,1972,15:653-657
    [15] N. Fujishima, M. Saito, A. Kitamura, et al. A700V lateral power MOSFET with narrow gapdouble metal field plates realizing low on-resistance and long-term stability of performance.ISPSD,2001,255-258
    [16] J. V. Subhas Chandra Bose, M. M. De Souza, E. M. Sankara Narayanan, et al. A novel metalfield plate edge termination for power devices. Microelectronics Journal,2001,32:323-326
    [17] A.S. Kluchnikov, A.Y. Krasukov. Application of Field Plate to Increase Breakdown Voltage ofDMOS.8th International Siverian Workshop and Tutorials EDM,2007,107-108
    [18] S. K. Chung, S. Y. Han. Design curves of breakdown voltage at field plate edge and effect ofinterface charge. Microelectronics Journal,2002,33:399-402
    [19] Z. Hossain, T. Ishiguro, L. Tu, et al. Field-plate effects on the breakdown voltage of anintegrated high-voltage LDMOS transistor. ISPSD,2004,237-240
    [20] G. Charitat, D. Jaume, A. Peyre-Lavigne, et al.1000and1500V planar devices using field plateand semi-resistive layers design and fabrication. IEDM,1990,803-806
    [21] C. Basavana Goud, K. N. Bhat. Breakdown voltage of field plate and field-limiting ringtechniques numerical comparison. IEEE Transactions on Electron Devices,1992,39(7):1768-1770
    [22] J. He, X. Zhang, Y. Y. Wang. Linearly varying surface-implanted n layer used for improvingtrade-off between breakdown voltage and on-resistance of RESURF LDMOS transistor.Microelectronics Journal,2001,32:969-971
    [23] B. S. Avset, L. Evensen. The effect of metal field plates on multiguard structures with floatingp+guard rings. Nuclear Instrments and Methods in Physics Research A,1996,377:397-403
    [24] S. K. Chung. Analytic model for field-plate-edge breakdown of planar devices terminated withfield plate and semiresistive layer. IEE Proceedings Science, Measuremnt and technology,2004,151(1):21-24
    [25] Z. Hossain, T. Ishiguro, L. Tu, et al. Field-plate effects on the breakdown voltage of anintegrated high-voltage LDMOS transistor. ISPSD,2004,237-240
    [26] A. Rusu, O. Pietrreanu, Buluces. Reversible breakdown voltage collapse in silicongate-controlled diodes. Solid-State Electronics,1980,23:473-480
    [27] K.Y.Yang, D. Byeon, M. Han, et al. Optimum design of the field plate in the cylindrical p+njunction: analytical approach. Solid-State Electronics,1998,42(9):1651-1655
    [28] S. K. Chung. Analytic model for field-plate-edge breakdown of planar devices terminated withfield plate and semiresistive layer. IEE Proceedings Science, Measuremnt and technology,2004,151(1):21-24
    [29] Shenoy P. M., Bhalla A., G. M. Dolny, et al. Analysis of the effect of charge imbalance on thestatic and dynamic characteristics of the super junction MOSFET. ISPSD,1999,99-102
    [30] Shuming Xu, Pangdow Foo, Jiangqing Wen, et al. RF LDMOS with extreme low parasiticfeedback capacitance and high hot carrier immunity. IEDM,1999,201-204
    [31] R. Stengl, U.Gosele, C. Fellinger, et al. Variation of lateral doping as a field terminator forhigh-voltage power devices. IEEE Transactions on Electron Devices,1986,33(3):426-428
    [32] S. Merchant, E. Arnold, H. Baugart, et al. Realization of high breakdown voltage (>700V) inthin SOI devices. ISPSD,1991,31-35
    [33] S. Hardikar, Y. Z. Xu, M. M. De Souza, et al.1200V fully implanted JI technology. IEEEElectronics Letters,2000,36(18):1587-1589
    [34] J. He, X. Zhang, Y. Y. Wang. Linearly varying surface-implanted n layer used for improvingtrade-off between breakdown voltage and on-resistance of RESURF LDMOS transistor.Microelectronics Journal,2001,32:969-971
    [35] S. Hardikar, R. Tadikonda, D. W. Green, et al. Realizing High-Voltage Junction IsolatedLDMOS Transistors With Variation in Lateral Doping. IEEE Transactions on Electron Devices,2004,51(12):2223-2228
    [36] I. Cortes, J. Roig, D. Flores, et al. Degradation analysis in SOI LDMOS transistors with steepretrograde doping profile and source field plate. Conference on Electron Devices,2005,91-96
    [37] S. Zhang, J. K. O. Sin, T. M. L. Lai, et al. Numerical modeling of linear doping profiles forhigh-voltage thin-film SOI devices. IEEE Transactions on Electron Devices,1999,46(5):1036-1041
    [38] J. Roig, D. Flores, I. Cortes et al. Thin film SOI and SOS LDMOS structures with LinearDoping Profile and enlarged field plate.24th International Conference on Microelectronics,2004,141-144
    [39] Y. Guo, Z. Li, B. Zhang. Design and Fabrication of a High Performance LDMOSFET with StepDoped Drift Region on Bonded SOI Wafers. ICSICT,2006,2741-2744
    [40] R. Zhu, V. Khemka, A. Bose, et al. Stepped-Drift LDMOSFET: A Novel Drift RegionEngineered Device for Advanced Smart Power Technologies. ISPSD,2006,1-4
    [41] J. S. Ajit, D. Kinzer, N. Ranjan.1200V high-side lateral MOSFET in junction-isolated powerIC technology using two field-reduction layers. ISPSD,1993,230-235
    [42] V. Khemka, V. Parthasarathy, R. Zhu, et al. A floating RESURF (FRESURF) LD-MOSFETdevice concept. IEEE Electron Device Letters,2003,24(10):664-666
    [43] A. W. Ludikhuize. A versatile700-1200V IC process for analog and switching applictionas.IEEE Transactions on Electron Devices,1991,38(7):1582-1589
    [44] M. H. Kim, J. J. Kim, Y. S. Choi, C.K. Jeon, et al. A low on resistance700V charge balancedLDMOS with intersected well structure. ISPSD April2003,220-223
    [45] X. B. Chen. Semiconductor power devices with alternating conductivity type high-voltagebreakdown regions, U.S. Patent5,216,275,1993
    [46] S. G. Nassif-Khalil, C.A.T. Salama.170V super junction-LDMOST in a0.5μm commercialCMOS/SOS technology. ISPSD,2003,228–231
    [47] I. Y. Park, C. A. T. Salama. Experimental implementation and characterization of a CMOScompatible buffered SJ-LDMOST. ISPSD,2006,1-4
    [48] F. Udrea, T. Trajkovic, C. Lee, et al. Ultra-fast LIGBTs and superjunction devices in membranetechnology. in Proc. ISPSD,2005,267–270
    [49] J. Lin, M. Lin, L. Lin. Characteristics of Superjunction Lateral-Double-Diffusion Metal OxideSemiconductor Field Effect transistor and degradation after electrical stress. Japanese Journal ofApplied Physics,2006,45(4A):2451-2454
    [50] I. Y. Park, C. A. T. Salama. Super junction LDMOS transistors-implementing super junctionLDMOS transistors to overcome substrate depletion effects. IEEE Circuits and DevicesMagzine,2006,22(6):10-15
    [51] T. P. Chow, R. Tyagi. Wide bandgap compound semiconductors for superior high-voltageunipolar power devices. IEEE Transactions on Electron Devices,1994,41(8):1481-1483
    [52] Ferry, D. K. High-field transport in wide-band-gap semiconductors. Physical Review B(Solid-State),1975,12(6):2361-2369
    [53] Lin, M. E., Ma, Z., Huang, F. Y., Fan, Z. F., et al. Low resistance ohmic contacts on wideband-gap GaN. Applied Physics Letters,2004,48(9):1555-1562
    [54] Wataru Saito, Ichiro Omura, Tsuneo Ogura, Hiromichi Ohashi. Theoretical limit estimation oflateral wide band-gap semiconductor. Solid-State Electronics,1983,26(8):739-745
    [55] Mishra, U. K. Parikh, P. Yi-Feng Wu. AlGaN/GaN HEMTs-an overview of device operation andapplications. Proceedings of the IEEE,2002,90(6):1022-1031
    [56] J. B. Casady, R. W. Johnson. Status of silicon carbide (SiC) as a wide-bandgap semiconductorfor high-temperature applications: A review. Solid-State Electronics,1996,39(10):1409-1422
    [57] Yoder, M. N. Wide bandgap semiconductor materials and devices. IEEE Transactions onElectron Devices,1996,43(10):1633-1636
    [58] Asif Khan M., Kuznia J. N., Olson D. T., et al. Microwave performance of a0.25μm gateAlGaN/GaN heterostructure field effect transistor. Applied Physics Letters,1994,65(9):1121-1123
    [59] Kevin F Brennan, Enrico Bellotti, Maziar Farahmand, et al. Material theory based modeling ofwide band gap semiconductors: from basic properties to devices. Solid-State Electronics,2000,44(2):195-204
    [60] G. F. Neumark. Achievement of well conducting wide band-gap semiconductors: Role ofsolubility and of nonequilibrium impurity incorporation. Physical Review Letters.,1989,62(15):1800-1803
    [61] Trew R. J. Wide bandgap semiconductor transistors for microwave power amplifiers. IEEETransactions on Microwave Magazine,2000,1(1):46-54
    [62] Palmour J. W., Sheppard S. T., Smith R.P., et al. Wide bandgap semiconductor devices andMMICs for RF power applications. IEDM,2001,17.4.1-17.4.4
    [63] Binari S. C., Rowland L. B., Kruppa W., et al. Gaskill D. K. Microwave performance of GaNMESFETs. Electronics Letters,1994,30(15):1248-1249
    [64] Hudgins J. L., Simin G. S., Santi E., Khan M. A. An assessment of wide bandgap semi-conductors for power devices. IEEE Transactions on Power Electronics,2003,18(3):907-914
    [65] Micovic M., Kurdoghlian A., Hashimoto P., et al. GaN HFET for W-band power Applications.IEDM,2006,1-3
    [66] Yi-Feng Wu, Kapolnek D., Ibbetson J. P., et al. Very-high power density AlGaN/GaN HEMTs.IEEE Transactions on Electron Devices,2001,48(3):586-590
    [67] Zolper J. C. Wide bandgap semiconductor microwave technologies: from promise to practice.IEDM,1999,389-392
    [68] A. A Bruk Jr., et al. SiC and GaN wide bandgap semiconductor materials and devices.Solid-State Electronics,1999,43(8):1459-1464
    [69] Milligan J. W., Sheppard S., Pribble W., et al. SiC and GaN Wide Bandgap Device TechnologyOverview. IEEE Radar Conference,2007,960-964
    [70] Millan J. Wide band-gap power semiconductor devices. Circuits, Devices&Systems2007,1(5):372-379
    [71] O. Ambacher. Growth and applications of group III-nitrides. Applied Physics,1998,31:2653-2710
    [72] Neudeck P. G., Okojie R. S., Liang-Yu Chen. High-temperature electronics-a role for widebandgap semiconductors?. Proceedings of the IEEE,2002,90(6):1065-1076
    [73] Baliga B. J. Power semiconductor device figure of merit for high-frequency applications. IEEEElectron Device Letters,1989,10(10):455-457
    [74] I. P. Smorchkova, L. Chen, T. Mates, L. Shen, et al. AlN/GaN and (Al,Ga)N/AlN/GaNtwo-dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy.Jounal of Applied Physics,2001,90(10):71-73
    [75] Shen L., Heikman S., Moran B., Coffie R., Zhang N.-Q., et al. AlGaN/AlN/GaN high-powermicrowave HEMT. IEEE Electron Device Letters,2001,22(10):457-459
    [76] Baliga B. J. Trends in power semiconductor devices. IEEE Transactions on Electron Devices,1996,43(10):1717-1731
    [77] Qun Zhao, Lee F. C. High-efficiency, high step-up DC-DC converters. IEEE Transactions onPower Electronics,2003,18(1):65-73
    [78] Morita T. Tamura S., Anda Y., Ishida M., et al.99.3%Efficiency of three-phase inverter formotor drive using GaN-based Gate Injection Transistors. APEC,2001:481-484
    [79] Hisanaga K., Nagao M., Harada K. The effect of the power line impedance to the stability of thesystem adopting the intermediate bus power supply architecture. INTELEC,2007,327-332
    [80] Dora Y., Suh C., Chakraborty A., Heikman S., Chandrasekaran S., et al. Switchingcharacteristics of high-breakdown voltage AlGaN/GaN HEMTs. Device Research ConferenceDigest,2005:191-192
    [81]方键,张正潘,雷宇,等.有n埋层结构的1200V横向变掺杂双RESURFLDMOS研制.半导体学报,2005,26(3):541-546
    [82]乔明,方键,肖志强,等.1200V MR D-RESURF LDMOS与BCD兼容工艺研究.半导体学报,2006,27(8):1447-1452
    [83]陈星弼.表面电荷对具有场限环的P+N结电场及电位分布的影响.电子学报,1988,16(5):14-19
    [84]唐本奇,高玉民,罗晋生.表面电荷效应对场限环优化设计的影响.微电子学与计算机,1997,4:1-4
    [85]唐本奇,高玉民,罗晋生.单场限环结构击穿电压的表面电荷效应分析.半导体学报,1998,19(1):38-42
    [86]张波,段宝兴,李肇基.具有n+浮空层的体电场降低LDMOS结构耐压分析.半导体学报,2006,27(4):730-734
    [87] S. G. Nassif-Khalil, Z. H. Li and C. A. T. Salama. SJ/RESURF LDMOST. IEEE Transactions onElectron Devices,2004,51(7):1185-1191
    [88] Shinya MIZUNO, et al. Large Gate Leakage Current in AlGaN/GaN High Electron MobilityTransistors. Japanese Journal of Applied Physics,2002,41(1):5125-5126
    [89] Chuan Xu, Jinyan Wang, Hongwei Chen, et al. The Leakage Current of the Schottky Contact onthe Mesa Edge of AlGaN/GaN Heterostructure. IEEE Electron Device Letters,2007,28(11):942-944
    [90] Tamotsu Hashizume, Junji Kotani, Hideki Hasegawa. Leakage mechanism in GaN and AlGaNSchottky interfaces. Applied Physics Letters,2004,84(24):4884-4887
    [91] E. J. Miller, X. Z. Dang, E. T. Yu. Gate leakage current mechanisms in AlGaN/GaNheterostructure field-effect transistors. Journal of Applied Physics,2000,88(10):5951
    [92] Hideki Hasegawa, Takanori Inagaki, Shinya Ootomo, et al. Mechanisms of current collapse andgate leakage current in AlGaN/GaN heterostructure field effect transistors. J. Vac. Sci. Technol.B,2003,21(4):1844
    [93] E. J. Miller, E. T. Yu, P. Waltereit, J. S. Speck. Analysis of reverse-bias leakage currentmechanisms in GaN grown by molecular-beam epitaxy. Applied Physics Letters,2004,84(4):535
    [94] P. Kozodoy, J. P. Ibbetson, H. Marchand, et al. Electrical characterization of GaN p-n junctionswith and without threading dislocations. Applied Physics Letters,1998,73(7):975
    [95] Shreepad Karmalkar, D. Mahaveer Sathaiya, M. S. Shur. Mechanism of the reverse gate leakagein AlGaN/GaN high electron mobility transistors. Applied Physics Letters,2003,82(22):3976
    [96] Wataru Saito, Yoshiharu Takada, and Tsuneo Ogura, et al. Design and Demonstration of HighBreakdown Voltage GaN High Electron Mobility Transistor (HEMT) Using Field PlateStructure for Power Electronics Application. Japnese Journal of Applied Physics,2004,43(4B):2239-2242
    [97] Wataru Saito, Yoshiharu Takada, and Hiromichi Ohashi, et al. High Breakdwon VotageAlGaN-GaN Power-HEMT Design and High Current Density Switiching Behavior. IEEETransactions on Electron Devices,2003,50(12):2528-2531
    [98] Huili Xing, Dora Y., Chini A., et al. High Breakdwon Votage AlGaN-GaN HEMTs achieved bymultiple field plates. IEEE Electron Device Letters,2004,25(4):161-163
    [99] Bahat-Treidel, E. Hilt, O. Brunner, F. Sidorov, V. Wu rfl, J. Tra nkle, G. AlGaN-GaNHEMTs DH-HEMTs Breakdown Voltage Enhancement Using Multiple Grating Field Plates(MGFPs). IEEE Transactions on Electron Devices,2010,57(6):1208-1216
    [100] Kyu-Heon Cho, Young-Hwan Choi, Jiyong Lim, et al. High breakdown voltage AlGaN/GaNHEMTs employing fluoride plasma treatment. Physica Scripta,2005,78(6)
    [101] B. Lu, E. L. Piner, T. Palacios, Schottky-Drain Technology for AlGaN/GaN High-ElectronMobility Transistors. IEEE Electron Device Letters,2010,31(4):302-304
    [102] Takuma Nanjo, Misaichi Takeuchi, Muneyoshi Suita, et al. Remarkable breakdown voltageenhancement in AlGaN channel high electron mobility transistors. Applied Physics Letters,2008,92(26):26352-26354
    [103] Hiroaki Mizuno, Shigeru Kishimoto, Koichi Maezawa, Takashi Mizutani. Quasi-normally-offAlGaN/GaN HEMTs fabricated by fluoride-based plasma treatment. Physica Stauts Solidi(c),2007,4(7):2732-2735
    [104] S. Yagi, M. Shimizu, M. Inada, et al. High breakdown voltage AlGaN/GaN MIS-HEMT withSiN and TiO2gate insulator. Solid-State Electronics,2005,50(6):1057-1061
    [105] Chunhua Zhou, Chen W., Piner E. L., et al. Schottky-ohmic Drain AlGaN/GaN Normally OffHEMT With Reverse Drain Blocking Capability. IEEE Electron Device Letters,2010,31(7):668-670
    [106] Zhigang Wang, Bo Zhang, Wanjun Chen, et al. A novel hybrid-anode AlGaN/GaN field-effectrectifier with low operation voltage. ICSICT,2010,1889-1891
    [107] Medjdoub F., Van Hove M., Cheng K., et al. Novel E-Mode GaN-on Si MOSHEMT Using aSelective Thermal Oxidation. IEEE Electron Device Letters,2010,31(9):948-950
    [108] L. F. Eastman, J. R. Shealy, V. Tilak, et al. AlGaN/GaN HEMT microwave CW power limits.Fourth International Conference on Nitride Semiconductors,2001
    [109] Y. F. Wu, P. M. Chavarkar, M. Moore, et al. A50-W AlGaN/GaN HEMT amplifier. IEDM,2000
    [110] V. Kumar, W. Lu, R. Schwindt, A. Kuliev, G. Simin, et al. AlGaN/GaN HEMTs on SiC With ftwith ft of over120GHz. IEEE Electron Device Letters,2002,23(8):455-457
    [111] S. Wu, R. T. Webster, A. F. M. Anwar. Physics-based intrinsic model for AlGaN/GaN HEMTs.MRS Internet Journal of Nitride Semiconductor Research,1999,4S1
    [112] J. D. Albrecht, P. P. Ruden, S. C. Binari, M. G. Ancona. AlGaN/GaN Heterostructurefield-effect transistor model including thermal effects. IEEE Transactions on Electron Devices,2000,47(11):2031-2036
    [113] Feng Z. H., Cai S. J., Chen K. J., Lau K. M. Enhanced-performance of AlGaN-GaN HEMTsgrown on grooved sapphire substrates. IEEE Electron Device Letters,2005,26(12):870-872
    [114] Wu Y. F., Thibeault B.J., Xu J. J., et al. GaN HEMTs grown on sapphire substrates formicrowave power amplification.57th Annual Device Research Conference Digest,1999,50-51
    [115] F. A. Ponce, B. S. Krusor, J. S. Major, W. E. Plano, D. F. Welch. Microstructure of GaNepitaxy on SiC using AlN buffer layers. Applied Physics Letters,1995,67(3):410
    [116] A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, I. Akasaki. The growth ofsingle crystalline GaN on a Si substrate using AlN as an intermediate layer. Journal of CrystalGrowth,1993,128(1-4):391-396
    [117] S. A. Nikishin, et al. High quality GaN grown on Si(111) by gas source molecular beamepitaxy with ammonia. Applied Physics Letters,1999,75(14):2073
    [118] Tetsuya Takeuchi, Hiroshi Amano, Kazumasa Hiramatsu, et al. Growth of single crystallineGaN film on Si substrate using3C-SiC as an intermediate layer. Journal of Crystal Growth,1991,115(1-4):634-338
    [119] P. B. Klein, J. A. Freitas, S. C. Binari, A. E. Wickenden. Observation of deep traps responsiblefor current collapse in GaN metal-semiconductor field-effect transistors. Applied PhysicsLetters,1999,75(25):4016
    [120] D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, et al. Optical constants of epitaxialAlGaN films and their temperature dependence. Journal of Applied Physics,1997,82(10):5090
    [121] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, et al. Optical constants ofepitaxial AlGaN films and their temperature dependence. Journal of Applied Physics,1997,82(10):5090-5096
    [122] C. I. Wu, A. Kahn, N. Taskar, D. Dorman, D. Gallagher. GaN (0001)-(1x1) surfaces:Composition and electronic properties. Journal of Applied Physics,1998,83(8):4349-4352
    [123] V. M. Bermudes, C. I. Wu, A. Kahn. AlN films on GaN: Sources of error in the photoemissionmeasurement of electron affinity. Journal of Applied Physics,2001,89(3):1991
    [124] H. T. Grahn, Introduction to Semiconductor Physics: World Scientific Publishing Co.,1999.
    [125] J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBars, et al. Polarization effects, surface states,and the source of electrons in AlGaN/GaN heterostructure field effect transistors. AppliedPhysics Letters,2000,77(2):250-252
    [126] I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, et al. Polarization induced charge and electronmobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy.Journal of Applied Physics,1999,86(8):4520-4526
    [127] O. Ambacher. Growth and applications of Group III-nitrides. J. Phys. D: Appl. Phys.,1998,31(20):2653-2710
    [128] Chynoweth A. G. Ionization Rates for Electrons and Holes in Silicon. Physical Review,1958,109(5):1537-1540
    [129] Selberherr S. MOS device modeling at77K. IEEE Transactions on Electron Devices,1989,36(8):1464-1474
    [130] I. H. Oguzman, E. Bellotti, K. F. Brennan, J. Kolnik, R., et al. Theory of hole initiated impactionization in bulk zincblende and wurtzite GaN. Journal of Applied Physics,1997,81(12):7827-7834
    [131] Chunhua Zhou, W. Chen, Edwin L. Piner, Kevin J. Chen. Schottky-Ohmic Drain AlGaN/GaNNormally Off HEMT With Reverse Drain Blocking Capability. IEEE Electron Device Letters,2010,31(7):668-670
    [132] Gang Xie, Bo Zhang, Fu F. Y., Ng W. T. Breakdown voltage enhancement for GaN highelectron mobility transistors. ISPSD,2010:237-240
    [133] M. Imam, Z. Hossain, M. Quddus, et al. Design and Optimization of Double RESURF highVoltage Lateral Devices for a Manufacturable Process. IEEE transactons on Electron Devices,2003,20(7):1697-1701
    [134] S. K. Chung, D. K. Shin. An analytical model for interaction of SIPOS layer with underlyingsilicon of SOI RESURF devices. IEEE Transaction on Electron Devices,1999,46(8):1804-1807
    [135] Shuming Xu, K. P. Gan, G. S. Samudra, et al.120V interdigitated-drain LDMOS (IDLDMOS)on SOI substrated breaking power LDMOS limit. IEEE Transactions on Electron Devices,2000,47(10):1980-1985
    [136] V. Parthasarathy, V. Khemka, R. Zhu. SOA improvement by a double RESURF LDMOStechnique in a power IC technology. IEDM’00:75-79
    [137] S. K. Chung, D. K. Shin. An analytical model for interaction of SIPOS layer with underlyingsilicon of SOI RESURF devices, IEEE Transaction on Electron Devices,1999,46(8):1804-1807
    [138] M. M. D. Souza, E. M. S. Narayanan. Double RESURF Technology for HVIC. ElectronicsLetters,1996,32(12):1092-1093
    [139] Ando Y., Okamoto Y., Miyamoto H., Nakayama T., et al.10-W/mm AlGaN-GaN HFET with afield modulating plate. IEEE Electron Device Letters,2003,24(5):289-291
    [140] Rongming Chu, Andrea Corrion, Mary Chen, et al.1200V Normally off GaN-on-SiField-Effect Transistors With Low Dynamic ON-Resistance. IEEE Electron Device Letters,2011,32(5):632-634
    [141] Di Song, Jie Liu, Zhiqun Cheng, Wilson C., et al. Normally off AlGaN/GaN Low-DensityDrain HEMT (LDD-HEMT) With Enhanced Breakdown Voltage and Reduced CurrentCollapse. IEEE Electron Device Letters,2007,28(3):189-192
    [142] Junxia Shi, Lester F. Eastman, et al. High performance AlGaN/GaN power switch with HfO2insulation. Applied Physics Letters,2009,95(4):042103
    [143] Yutaka Ohno, Takeshi Nakao, Shigeru Kishimoto, et al. Effects of surface passivation onbreakdown of AlGaN/GaN high-electron-mobility transistors. Applied Physics Letters,2002,84(12):2184-2186
    [144] Junji Kotani, Masafumi Tajima, Seiya Kasai, et al. Mechanism of surface conduction in thevicinity of Schottky gates on AlGaN/GaN heterostructures. Applied Physics Letters,2007,91(9):093501-093503
    [145] Kao Y. C., E. D. Wolley High-voltage planar p-n junctions. Proceedings of the IEEE,1967,55(8):1409-1414
    [146] F. Conti, M. Conti. Surface breakdown in silicon planar diodes equipped with field plate.Solid-State Electronics,1972,15:93-105
    [147] R. Stengl, U.Gosele. Variation of lateral doping-A new concept to avoid high voltagebreakdown of planar junctions. IEDM,1985,153-157
    [148] J. A. Appels, H. M. J. Vaes, W. N. J. Ruis. Thin layer high-voltage junction FET (RESURFJFET). IEEE Electron Device Letters,1981,2(2):38-40
    [149] E. H. Stupp, S. Colak, J. Ni. low specific on-resistance400V ldmost. IEDM,1981,426-428
    [150]张波,段宝兴,李肇基.具有n+浮空层的体电场降低LDMOS结构耐压分析.半导体学报,2006,27(4):730-734
    [151] Lorenz L. Power semiconductor devices and smart power IC’s-the enabling technology forfuture high efficient power conversion systems. IEEE IPEMC,2009:193-201
    [152] M. L. Balzan, M. J. Drinkwine, T. A. Winslow. GaAs MESFET with Source-Connected FieldPlate for High Voltage MMICs. CS MANTECH Conference,2008
    [153] Hasegawa Hideki, Inagaki Takanori, et al. Mechanisms of current collapse and gate leakagecurrents in AlGaN/GaN heterostructure field effect transistors. Journal of Vacuum Science&Technology B: Microelectronics and Nanometer Structures,2003,21(4):1844-1855

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700