脱盐咸鸭蛋蛋清的水解规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验深入研究了咸鸭蛋蛋清的碱水解、酸水解、单酶水解、双酶水
     解和发酵水解的规律及其相应水解产物的理化特性,从而为利用咸鸭蛋蛋
     清生产生物活性多肽提供理论基础。主要试验结果如下:
     一、碱、酸水解
     (1)咸鸭蛋蛋清的水解度随着 NaOH(或盐酸)浓度的增大、反应温度的
     升高和水解时间的延长而增大。
     (2)通过碱水解或酸水解,蛋清水解物的水溶性得到改善,受溶液PH
     的影响减小。当水解度达到21%时,碱水解物水溶性指数可达到
     10 mg/ml以上,酸水解物水溶性指数可达到8mg/ml以上。水解度
     再增加时,水溶性指数有少量的增加。
     (3)碱、酸水解物的热稳定性显著提高。水解度在21%以上的水解物热
     稳定性指数分别达到9 mg/ml和 7mg加 以上。水解度相同时,碱
     水解物比酸水解物的热稳定性指数要高。
     (4)经碱水解的咸鸭蛋蛋清的乳化稳定性有较大增加,当水解度达
     4.14%时,乳化稳定性最好,随着水解度的进一步增加,乳化稳定
     性降低。经过酸处理的咸鸭蛋蛋清的乳化性降低。
     (5)SDS-PAGE电泳图谱显示:经过碱、酸处理后的蛋清,小分子量的
     成分增加,大分子蛋白质减少。
     (6)50℃时的碱水解液呈浅黄绿色,有白色沉淀。75℃时的碱水解液呈
     黄绿色,反应液底部出现白色絮状沉淀或悬浮物。100℃时的水解
     液呈黄褐色,有白色沉淀。反应过程中有氨气放出,且随水解度的
    升高而增多。酸水解液随着盐酸浓度和温度的增加,产物的颜色可
     变为淡红、浅红、浅褐色或深棕褐色。碱、酸水解液呈鲜咸味,略
     有异味,无苦味。
     (7)碱处理蛋白质引起氨基酸变旋和赖丙复合物的生成。由于D-型氨
     基酸不能被生物利用以及赖丙复合物有潜在的毒害作用,因此碱处
     理蛋白质的安全性受到置疑。酸水解蛋白质中常含有因脂肪分解而
     产生的致癌物质——氯丙醇而应在食品中慎用。
     二、单酶水解
     (1)从水解度、水解时间和用酶水平的角度考虑,各种蛋白酶水解蛋清
     的最佳条件如下:
     底物:蛋清(蛋白质浓度8.8%)经过胶体磨处理,100℃加热15
     分钟变性。胰酶水平2000u/g、PH8.0、 温度37℃、水解5小时可
     以得到水解度为 17.9%的水解液;风味酶水平 160 LAPU/G、PH7.5、
     温度 50℃、水解 7小时可以得到水解度为 12.7%的水解液;As1,398
     蛋白酶水平 6000u/g、PH7.3、温度 45 ℃、水解 6小时可以得到水
     解度为 19.4%的水解液。
     (2)在 PH2-10 之间,脱盐鸭蛋蛋清蛋白酶水解物的可溶性氮含量不受
     水解度影响。在 PH4时,水解度为 15.2%的胰酶水解物水溶性指数
     可达7.8mg/ml:水解度为10%的风味酶水解物水溶性指数达到8.3
     mg/ml;水解度为15%的As1.398蛋白酶水解物水溶性指数达到8.72
     mg/ml。而脱盐鸭蛋蛋清水溶性指数为 3.17 mg/ml。
     (3)在PH4,脱盐鸭蛋蛋清85℃受热5分钟发生凝固,而酶水解物不
     产生凝胶,水解度为 15.2%的胰酶水解物热稳定性指数为
     8.5mg/ml,水解度为 10%的风味酶水解物热稳定性指数为
    9.21mg/ml,水解度为15%的As1.398蛋白酶水解物热稳定性指数
     为9.1。热稳定性随水解度提高而增强。
     (4)脱盐鸭蛋蛋清经过有限地水解,可以增加乳化稳定性。经过胰酶水
     解,水解度为9.3%时的水解物乳化稳定性指数在PH10达到最大
     值,57mm。用风味酶水解所得产物乳化稳定性增加不大。而用
     As1.398蛋白酶水解得到的水解物乳化稳定性有所减小。
     (5)脱盐鸭蛋蛋清经过酶水解后,当水解度达到 15%-20%以上时,绝大
     部分的大分子蛋白质被水解成分子较小的多肽。
     (6)脱盐鸭蛋蛋清经过酶水解、离心后的上清液透明:胰酶水解物略带
     动物脏器的气味,风味酶水解物风味芳香宜人;各种水解物口感涩
     鲜,强度随水解度增加而增大,没有明显苦味。
     三、双酶水解结论
     (1)经过双酶水解,又有一部分变性的大分子蛋白质的肽链断裂,水解
     度进一步增大,产生大量的短肽甚至是氨基酸,使水解度可以达到
     81%。
     (2)水解度的提高可使可溶性氮含量提高,水?
The law of hydrolysis and the physicochemical and functional
    properties of desalted duck egg white hydrolysates generated with
    alkaline, hydrochloric acid, and proteases respectively was investigated.
    The results achieved were as the follows:
    Alkaline and Hydrochloric Hydrolysis:
    1. The degree of hydrolysis (DH) of desalted duck egg white increased
    with the increase of the hydrolysis temperature, time and
    concentration of NaOH and HCl respectively
    2. In the case of alkaline hydrolysis or hydrochloric hydrolysis, soluble
    nitrogen increased when DH of the hydrolysate getting was higher.
    Hhydrolysed by alkaline, the soluble nitrogen of hydrolysate did not
    increase obviously after the DH exceed 2l .04%,and hydrolysed by
    hydrochloric, the corresponding DH is 2l%.
    3. The thermal stability of the hydrolysates also increased obviously
    when the DH was getting higher The thermal stability index can
    reach 9mg/ml and 7mg/ml in the case of alkaline hydrolysis and
    hydrochloric hydrolysis respectively.
    4. After limited hydrolyzed by alkaline, the protein hydrolysates'
    emulsion stability increased, and at DH 4. l4%,it reach its biggest
    point. If the DH rose higher, the emulsion stability decreased
    insteadly. But the hydrochloric hydrolysates' emulsion stability is
    lower than that of duck egg white.
    5. The result of the SDS-PAGE showed that the protein molecular had
    gotten smaller. Most big molecular protein had been discovered
    when the DH exceed 8%.
    6. The duck egg white turn pistachio with some white deposit when
    the duck egg white was hydrolyzed by NaOH. When temperature
    reached l00℃the color turn brownish red because of Maillard
    reaction. Free ammonia gave off when the duck egg white was
    hydrolyzed by NaOH. In hydrochloric hydrolysis, there was little red
     in the duck egg white. when the temperature got l00℃ the colour
    turn brown. After neutralized, both alkakline hydrolysate and
    hydrochloric hydrolysate have no bitterness.
    7. Treatment of food protein with NaOH can cause amino acyl residues
    racemization and formation of isopeptide,such as Lysinoalaine(LAL).
    While in hydrochloric hydrolysis, chloropropanol was produced.
    thcse new resultant can do harm to man.
    One Enzyme Hydrolysis
    1. At PH8.0, 37℃, 2000u/g, the Pancreatin was working to its best. In
    this condition, the DH can reach l7.5% in 5 hours. The best
    hydrolytic condition of Flavourzyme is l60LAPU/G, PH 7.5, 50℃.
    For As l .398 protease, the best condition is PH7.3, 45℃, 6000u/g.
    2. Between PH2 and PHl0, the soluble nitrogen of the hydrolysate is
    more stable than desalted duck egg white. When the DH reached
    l5.2%, the pancreatin hydrolysate's soluble nitrogen can reach
    7.8mg/ml, and. As1 .398 protease hydrolysate reach 8.72mg/ml at
    pH2. The soluble nitrogen of Flavourcyme hydrolysate is 8.3mg/ml
    at pH2. While the soluble nitrogen of duck egg white is 3. l7 at the
    same condition.
    3. At pH7, desalted duck egg white gels when it is heated by 85℃ for
    5 min. But the enzymatic hydrolysates keep liquid in the same
    condition. It indicate that the thermal stability of the enrymatic
    hydrolysates is better than desalted duck egg white.
    4. Limited hydrolyzed by protease, the protein hydrolysates emulsion
    stability increased. For pancreatin hydrolysate, when the DH reach
    about 9%, emulsion stability can get highest point. But the emulsion
    stability of Flavourryme hydrolysate didn't increase remarkably.
    While the emulsion stability of As1 .398 protease hydrolysate
    decreased observably comparing with the duck egg white.
    8. Hydrolyzed by protease, the big protein molecule reduced. When DH
    was over 20%, most polypeptides were too small to be dotected by
    SDS-PAGE.
    9. After centrifuged, the supematant ofhydrolysate was transparent.
    The pancreatin hydrolysate had the smell of viscera. The
    flavourzyme hydrolysate smell nice. All kinds ofhydrolysate taste
    delicious without bittemess.
    enzymatic hydrolysis by two kinds of proteases
    l. The degree ofhydrolysis can b
引文
1.A.H.恩斯明格等,疾病与饮食,北京,农业出版社,PP-176-177
    2.A.H.恩斯明格等,饮食与保键,北京,农业出版社,PP-9
    3.A.H.恩斯明格等,营养素,北京,农业出版社,PP-216
    4.Adler-Nissen,J.(1979). Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid.Journal of Agricultural and Food Chemistry, 27,12564±1262.
    5.Adler-Nissen, J. (1986). Some fundamentals aspects of food proteins hydrolysis.In Enzymic hydrolysis of food proteins.New York: Else-vier Applied. Science(Chapter 2).
    6.Alaiz, M.,Navarro, J. L.,Giro(?)n, J., & Vioque, E.(1992). Amino acid analysis by high-performance liquid chromatography after derivati-sation with diethyl-ethoxy-methylenemalonate.Journal of Chroma-tography,591,181±186.
    7.Antonios,T.F.T.;MacGregor, G.A.,1996.Salt-more adverse effects.Lancet 348(9022):250-251
    8.AOAC (1990).Official methods of analysis(15th ed.).Arlington:Association of Official Analytical Chemists.
    9.Arrese,E.L.,Sorgentini,D.A.,Wager,J.R.,Anon,M.C.1991.Electrophoretic solubility and functional properties of commercial soy protein isolates.J.Agric. Food Chem.39:1029-1032
    10.Brich G G,Blakebrough N,Parker K J.Enzyme adn food singproces[M].London:Applied Science Publisher Ltd,1981.
    11.Ce'zard JP,Tran TA,Macry J,et al.Effects of two protein hydolysates on growth,nitrogen balance and small intestine adaptation in growing rats. Biol Neonate 1994;65:60
    12. Chandrasena G, Sunitha I, Lan C, Nanthakumar NN, Hennings SJ. Expression of sucrase-isomaltase mRNA along the villus crypt axis inthe rat small intestine. Cell Mol Biol 1992;38:3,243
    13. Chen HM, Muramoto K, Yamauchi F. Structural analysis of antioxidative peptides from soybean b-conglycinin. J Agric Food Chem 1995;43:564-78.
    14. Chi,S-P and K-H,Tseng. 1998. Physicochemical properties of salted pickled yolks from duck and chicken eggs.J.Food Sci.63(1) :27-30
    15. Chung DH, Evers BM, Townsend CM, et al. Burn-induced transcrip-tional regulation of small intestinal ornithine decarboxylase. Am J Surg 1992; 163:157
    16. Cordle, C. T. (1994) . Control of food allergies using protein hydro-lysates. Food Technology, 48, 72±76.
    17. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956) . Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350±356.
    18. FAO/WHO/ONU (1985) . Energy and requirements. Technical report series, No 724.
    19. Fouchereau-Peron M, Duvail L, Michel C, Gildberg A, Batista I, Legal Y. Isolation of an acid fraction from fish protein hydrolysate with a calcitonine-gene-related-peptide-like biologi-calactivity. Biotechnol Appl Biochem 1999;29:87-92.
    20. Frokjaer, S. (1994) . Use of hydrolysates for protein supplementation. Food Technology, 48, 86±88.
    21. Gagne N, Simpson BK. Use of proteolytic enzymes to facilitathe recovery of chitin from shrimp waste. Food Biotechnol,993;7:253-63.
    22. Geneva. Friedman, M. (1996) . Nutritional value of proteins from different food sources. A review. Journal of Agricultural and Food Chemistry, 44,26±29.
    23. George, S., Sivasankar, B., Jayaraman, K., & Vijayalakshni, M. A. (1997) . Production and separation of the methionine rich fraction from chickpea hydrolysate generated by proteases of Bacillus amy-loliquefaciens. Process Biochemistry, 32, 401±404.
    24. Goodle.R, 1996. The food industry fights for salt.British Medical Journal 312(7041) : 1239-1240
    25. GueAguen, J., Chevalier, M., Barbot, J., & Schae er, F. (1988) . Dis-sociation and aggregation of pea legumin induced by pH and ionic strength. Journal of the Science of Food and Agriculture, 44, 167±182.
    26. Hidalgo. J and Gamper. E.1977. Solubility and heat-stability whey protein concentrates J. Dairy sci 60 :1515-1518
    27. Hsien Y L, Regenstein J M,Rao M A.Gel point of whey and egg protein using dynamic Theological data [J] J.Food Sci,1993,58(1) :116-119.
    28. Hsu, H. W., Vavak, D. L., Satterlee, L. D., & Miller, G. A. (1977) . A multyenzyme technique for estimating protein digestibility. Journal of Food Science, 42, 1269±1273.
    29. Kester.JJ.and Richardson,T. 1984. Modification of whey proteins to improve functionality.J.Daity Sci.67:2757-2774
    30. Kim S Y.Park P S-W,Rhee K C.Functional properties of proteolytic enzyme modified soy protein isolate [J] J.Agric.Food Chem, 1990,38:651-656.
    31. Kim SK, Lee HC, Byun HG, Jeon YJ. Isolation and characteri-zation of antioxidative peptides from enzymatically hydrolysates of yellowfin sole skin gelatin. J Korean Fish Soc 1996;29:246-55.
    32. Kim,S.Y.,Park,P.S-W.,Rhee,K.C.,1990. Functional properties of proteolytic enzyme modified soy protein isolate .J.Agric.Food.Chem.38:651-656
    33. Kinoshita E, Yamakoshi J, Kikuchi M. Purification and identifi-cation of an angiotensin I-converting enzyme inhibitor from soy sauce. Bios iotechnolBiochem 1993 ;57:1107-10.
    34. Knorr,D and A.J.Sinskey. 1985. Biotechnology in food production and processing.Science 229(9) :1224-1229
    35. Lahl, W,J and S.D.Braun. 1994. Enzymatic production of protein hydrolysates for food use.Food Technol (10) :68-71
    36. Lee C R,Yonkers N Y.Process of the preparation of protein for hydrolysis [P] . U.S.Patent.4482574,1984.
    37. Mahmoud M I.Malone W T,Cordle,C.T.Eynzmatic hydrolysis of casein :Effect of degree of hydrolysis on antigenicity and physical properties [J] J.Food Sci,1992,57:1223-1229.
    38. Masters,P,M;Friedman M.Recemization of amino acids in alkali treated food proteins Agric Food Chem; 1979,27,507-511
    39. Matsui T, Matsufuji H, Seki E, Osajima K, Nakashima M, Osajima Y. Inhibion of angiotensin I-converting enzyme by Bacillus licheniformis alkaline protease hydrolyzates derived fromsardine muscle. Biosci Biotechnol Biochem 1993:57:922-5.
    40. Meguid MM, Landek AM, Terz JJ, Akrabawawi SS. Effect of diet on albumin and urea synthesis: comparison with partially hydrolysed protein diet. J Surg Res 1984;37:46
    41. Meredith JW, Ditesheim JA, Zalogo GP. Visceral protein levels in trauma patients are greater with peptide than with intact protein diet. J Trauma 1990:30:825
    42. Mester M, Tompkins RG, Gelfand JA, et al. Intestinal production of interleukin-1 during endotoxemia in the mouse. J Surg Res 1993;54:584
    43. Mine Y.Tatsushi N.Noriyuki H.Thermally induced changes in egg white proteins.J.Agric.Food Chem, 1990,3 8:2122-2125.
    44. Nisen 1979. Determination of degree of hydrolysis of food. Pratein Hydrolysates by trinitrob enzen esulponic acid J Agric.food chem.. 21:1256-1262
    45. Noguchi Y, Meyer TA, Tiao G, et al. Sepsis increases putrescine concentration and protein synthesis in mucosa of small intestine in rats. Shock 1996;5:5,333
    46. Ochiai K, Kamata Y, Shibasaki K. Effect of tryptic digestion on emulsifying properties of soy protein. Agric Biol Chem 1982;46:91-6.
    47. Oshima G, Shimabukuro H, Nagasawa K. Peptide inhibitors of angiotensin I-converting enzyme in digests of gelatin by bacterial collagenase. Biochim Biophys Act,79;556,-37.
    48. Park EH, Won MS, Lee HH, Song KB. Angiotensin converting enzyme inhibitory pentapeptide isolated from supernatant of pig plasma treated by trichloroacetic acid. Biotechnol Tech 996; 10:479-80.
    49. Pederson,B.1994. Removing bitterness from protein hydrolysates.Food Technol.(10) :96-98
    50. Poullain MG, Ce'zard JP, Roger L, Mendy F. Effects of whey proteins, their oligopeptide hydrolysate and free amino acid mixtures on growth and nitrogen retention in fed and starved rats. JPEN 1989; 13:382
    51. Provansal, M. M. P.; Cuf, J. L. A.; Cheftel, J. C. Chemical and nutritional modifications of sunflower proteins due to alkaline processing. Formation of amino acid cross-link and proteins. J. Food Sci. 1984,49, 1282-1288.
    52. Schmidl,M.K.,S.L.Taylor and J.A.Nordlee.1994. Use of hydrolysate-based products in special medical diets. Food Technol(10) :77-81
    53. Shahidi F, Synowiecki J, Balejko J. Proteolytic hydrolysis of uscle protein of harp seal (Phoca groenlandica). J Agric Food hem 1994;42:2634-8.
    54. Slattery H.Fitzgerald R J.Functional properties and bitterness of sodium caseinate hydrolysates prepared with a Bacillus proteinase J.Food Sci,1998, 63(3) : 418-422.
    55. Terabe,S.;Shibata,H,;Miyashita,Y,Chiral seperation by eletrokinetic chromatography with bile salt micelles. J.Chromatogr. 1989, 103-411
    56. Thelle.D.S. 1996. Salt and blood pressure revisited. British Medical Journal 312(7041) : 1240-1241
    57. Tian,H-G.,Hu,G.,Dong,Q-N.,Yang,X-L.,Nan,Y.,Pietinen,P.,Nissinen,A. 1996. Dietary sodium and potassium.socioeconomic status and blood presure in a Chinese population.Appetite 26(3) 235-246
    58. Turgeon S.L Gauthier.S.F Paqin,P. 1992A. Emulsifying property of whey Peptide fractions as a fraction of Phand ionic strength,.j. Food Sci. 57:601-604, 634.
    59. Turgeon.S.L and Gautheir S.F.1990 Whey Peptide fractions obtained with a tow-step ultrafiltration process :prduction and characterization j. Food Sci. 55:106-110
    60. Umetsu,H.,Matsuoka,H.,and Ichishima,E.Debittering mechanism of bitter peptides from milk casein by wheat carboxypeptidase. J.Agric.Food Chem. 1983 ,31,50-53
    61. wastes and the production of single cell protein from the hydrolysate. Bioresource Technol 1996;57:55-60.
    62. 戴有盛,食品的生化与营养,北京,科学出版社,1994,153-154
    63. 葛谷文,骨质疏散症的营养疗法,国外医学地理分册,1991,34-35
    64.葛可佑等,90年代中国人群的膳食与营养情况,北京,人民卫生出版社,1996.
    65.国内外信息,中国畜产与食品.2000,6:144
    66.韩冬,水溶性凝胶色谱中的非体积排除效应,色谱1995,13(6):432-436
    67.何照范、张迪,健食品化学及其检测技术,国轻工业出版社,998
    68.湖南医学院,生理生化学与医学,北京,科学出版社,1979,330-340
    69.华家圣等,实用蛋白质化学技术,1982,上海科学技术出版社
    70.黄健政,蔡震寿,张瑞郎,干燥方法对咸鸭蛋蛋白粉性质及其功能特性之影响[J].食品科学(台湾),1996,23(6):819-829.
    71.黄伟坤,食品检验与分析,北京,轻工业出版社,1999,PP-226-227
    72.金世琳,乳品生物化学,下册,北京,中国轻工业出版社,1988
    73.赖小铃声、刘文群、李晓玲等 血球水解蛋白乳化性及发泡性质食品工业科技1997:NO4 P29—31
    74.李复兰等,动物脑水解物研究概况,中国生化药物杂志,1996,17V,第4期
    75.林庆文,姜延年,苏和平,等.咸鸭蛋蛋白液之乳化性及其于法兰克福香肠之应用[J].食品科学(台湾),1996,23(2):244-254
    76.刘海静.翟惠民,脑活素简易检测法及国产脑活素研制品的质量考察,中国,1997,18 V 3
    77.刘亮清等,无机化学原理,1988,中国科学技术大学出版社,PP-68
    78.刘茂宏,张胜善,沈华山,等.蛋白溶菌酵素对贡丸之保存效果[J].中国畜牧学会会志(台湾),1994,23:244-254.
    79.乔伟伟等,骨质疏散症大鼠模型,上海实验动物科学,1997,174-176
    80.沈同,生物化学,上册1990,北京,高等教育出版社,pp-92
    81.使献猷,医用实验动物学,西安科学技术出版社,1989,PP-37-38
    82.王章,食品酶学,北京,中国轻工业出版社,1990,PP.180
    83.徐秀鄣,蛋白质顺序分析技术,1998,北京,科学出版社,pp34-36
    84.许永红 蛋白质酶法水解物苦味的控制食品工业科技 1997;NO 3
    85.杨兰,刘通迅.酶法水解鸡肉蛋白及其水解液脱苦方法的研究[J].食品工业科技,1999,20(2):4—6.
    86.游海 甘果等.鳝鱼废弃物蛋白水解液脱苦方法研究.中国畜产与食品5卷.1期 1998
    87.于江虹,蛋白酸肽 (CCP) 的生理活性及其在功能中的应用,国食品添加剂,995。NOl:PP14-20
    88.张树政,酶制剂工业,1984,北京,科学出版社,pp-446
    89.张亚非等,酪蛋白磷酸肽(CPP)对大鼠钙吸收利用的影响。营养学报 1994。16(1:73-77)
    90.张亚非等,酪蛋白磷酸肽对大鼠钙吸收利用的影响,营养学报,1994,73-77
    91.张延坤、刘炳智,大豆肽在食品工业中的应用,食品工业1997年第3期.
    92.张英君,陈有亮.碱处理对蛋白质的影响:氨基酸变旋和赖丙复合物的形成。肉类工业 2000(8)
    93.赵新淮,冯志彪.大豆蛋白水解物水解度测定的研究.东北农业大学学报,1985,26(2):178-181
    94.中国医学科学院卫生所,食物成分表,北京,人民卫生出版社,1985,PP4-152

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700