半夏刺激性毒性成分、炮制减毒机理及工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本项目研究来源于江苏省自然科学基金项目(项目编号:BK2004153)。论文主要针对具有强烈刺激性毒性的半夏,对其刺激性毒性成分进行研究,在阐明半夏的刺激性毒性成分的基础上,进行了半夏的炮制减毒机理和工艺研究,并由此对半夏所属天南星科部分植物的刺激性成分及作用进行了初步研究。
     在确定半夏刺激性毒性成分的研究工作中,主要工作内容和研究结果包括:
     半夏刺激性毒性作用研究,通过对半夏生品的急性毒性实验研究,测得半夏生品的LD_(50)为3359mg/kg,而水煎液未能测出LD_(50);半夏生品混悬液能引起动物毛细血管通透性显著增强,引起小鼠腹腔渗出液中的PGE_2含量显著增加,组胺含量显著增加:生品混悬液能引起家兔眼部的强烈水肿和充血,具有极强烈的刺激性作用。研究表明半夏的毒性表现为对接触部位的刺激性炎症反应,当刺激性反应达到一定程度时,可引起动物死亡的毒性反应,因此可以说明半夏的毒性主要表现为刺激性毒性。同时研究还确定了以操作简单方便,可重复,并有客观明确的刺激性强度分值的家兔眼刺激模型和眼刺激性强度作为本课题刺激性研究的主要药理指标。
     在明确半夏的毒性即为刺激性毒性后,进行了半夏刺激性毒性成分的初步筛选。通过对半夏的水及各种有机溶剂提取物的家兔眼刺激性实验表明,上述提取物均未表现出半夏所特有的刺激性毒性作用,但提取后的残渣均对家兔眼表现出强烈的刺激性,显微观察表明,残渣中含有大量的草酸钙针晶,而不具备刺激性作用的各提取物中则不合草酸钙针晶;进一步加热和酸碱处理,发现半夏经过高温加热后,仍然保留着刺激性活性,不同pH值酸碱溶液对半夏浸泡后,仅强酸强碱浸泡的残渣基本无刺激感,其余均有较强的刺激性,经显微观察,加热后的半夏针晶形状无明显变化,强酸强碱溶液浸泡的半夏中草酸钙针晶的数量大大减少,针晶形状也被不同程度破坏,而其余具有刺激性的残渣中仍然含有数量不等的较完整的草酸钙针晶。因此,认为半夏的刺激性成分可能就是其中大量的形态特殊的草酸钙针晶。
     刺激性毒性研究结果表明,半夏中含有的草酸钙针晶可能为半夏主要的刺激性成分,进一步的研究通过低速逐级离心从生半夏中分离纯化得到草酸钙针晶,经过显微,理化鉴别和X衍射分析,鉴定提取物为由草酸钙形成的针晶;对草酸钙针晶的急性毒性试验表明,半夏纯草酸钙针晶的半数致死量(LD_(50))为15.94mg/kg,而半夏生品混悬液的LD_(50)为3395mg/kg,半夏中草酸钙针晶的毒性是半夏生品的212倍。说明当草酸钙针晶对机体的刺激性达到一定强度时,能够引起机体的死亡,进一步表明半夏的毒性即通过刺激性表现;与不含草酸钙针晶的半夏粉末刺激性比较作用表明,去除了草酸钙针晶的半夏没有刺激性作用,说明半夏中的草酸钙针晶正是引起半夏产生刺激性作用的主要成分;等效性和量效分析表明,相同含量的半夏纯针晶和药材中针晶的刺激性作用具有等效关系,随着针晶浓度的增加,其刺激性强度也在不断增强,呈现出典型的量效关系;显微观察发现针晶能够深入刺入小鼠肠系膜表面并引起组织肿胀,提示针晶刺入后,引起组织的肿胀,而产生炎症反应,引起对机体的刺激性作用,进一步验证刺激性作用即由草酸钙针晶引起。此外考察了加热前后的草酸钙针晶的刺激性作用,两者刺激性作用没有显著性差异。
     进一步的研究表明半夏的草酸钙针晶是由草酸钙和蛋白结合而成。将提取得到的草酸钙针晶进行含量测定,按草酸量进行折算后,其中含有草酸钙的含量为53.3961%,说明半夏中的草酸钙针晶并不仅仅由草酸钙形成。根据国际植物生理学杂志文章中关于草酸钙结晶的研究结果和方法,从草酸钙针晶中提取分离得到半夏针晶结合蛋白,刺激性实验表明半夏针晶结合蛋白具有刺激性作用,而半夏的水溶性蛋白没有刺激性作用。将两者进行了SDS-聚丙烯酰胺凝胶电泳分析,经过比对标准蛋白质分子量,发现有刺激性作用的半夏针晶结合蛋白在20KD和31KD之间有两条清晰的谱带,而半夏的水溶性蛋白则没有,推测具有刺激性的半夏针晶结合蛋白的分子量可能为25KD和27KD。
     上述研究证实半夏中草酸钙针晶及其结合蛋白具有刺激性作用。实验进一步从草酸钙针晶本身的显微结构,机械压力和黏液细胞对针晶刺激性作用的影响,以及草酸钙针晶结合蛋白刺激性作用研究等方面探讨了半夏草酸钙针晶产生刺激性的作用机制。研究结果表明半夏草酸钙针晶极细长的具针尖末端、倒刺及凹槽,这种结构为针晶刺破粘膜细胞提供基础条件,而草酸钙成分本身并不具备毒性和刺激性;机械压力和黏液细胞通过作用力推动草酸钙针晶刺入组织;针晶结合蛋白对组织具有一定的刺激作用,这种刺激作用与整体针晶作用相比较小,但能加重对破损皮肤的炎症反应。研究表明半夏中草酸钙针晶的刺激性作用是由草酸钙针晶特殊的晶形引起的机械刺激和针晶结合蛋白的化学刺激综合作用的结果。
     研究同时比较了数种无毒药材,如茜草、山药、麦冬中草酸钙针晶的异同。研究表明,半夏中含有大量细长的草酸钙针晶,其余药材中不含或只有少量的细长针晶,表明细长针晶的大量存在可能是产生刺激性作用的主要原因;半夏针晶具有特殊的针尖状末端、针晶表面有凹槽和倒刺,其他植物针晶则不具备类似的细微结构;显微观察残留在小鼠肠系膜中的针晶,发现半夏针晶大量残留在肠系膜表面,并多以竖直刺入肠系膜的状态存在,而茜草针晶仅有少量残留,并且仅仅停留在肠系膜表面,没有刺入肠系膜当中,进一步解释了为何同样含有草酸钙针晶,半夏能够产生刺激性作用,而茜草则没有刺激性作用;X-衍射分析的结果则表明半夏和茜草针晶在晶粒大小上存在较大差异,这可能导致了两者针晶在柔韧性和强度上的差别,从而导致针晶刺激性的有无。
     通过上述研究,可确定半夏中的刺激性毒性成分主要是由蛋白结合草酸钙形成的特殊晶形的草酸钙针晶。在此基础上,围绕着草酸钙针晶这一刺激性成分经过炮制后所发生的变化,初步探讨了半夏炮制的减毒机理。主要的工作内容和结果包括:
     以HPLC法,对经过pH1~pH14浸泡的半夏,市场流通的半夏炮制品种姜半夏和法半夏,以及按照药典法炮制明矾及石灰水浸泡的半夏,分别测定各炮制样品中草酸钙针晶的含量,结果表明,强酸强碱液及明矾、石灰水浸泡的样品中草酸钙针晶含量明显下降,姜半夏和法半夏中的草酸钙针晶含量也明显减少;通过光学显微观察和扫描电镜研究,发现在强酸强碱或明矾、石灰水浸泡条件下,半夏的特殊草酸钙针晶被锈蚀或消解,而使针晶数量减少,即使残留的针晶,也以断碎针晶为主,针晶细微结构均已被破坏,没有针尖状末端和凹槽、倒刺等特殊结构,不再具有刺激性作用;同时在强碱(pH13~14)条件下,有部分针晶成束状被凝固在黏液细胞当中,不能被从黏液细胞中释放出来,针晶内部被锈蚀成半透明状(即针晶的蛋白母核),使针晶完全丧失了应有的柔韧性和强度,从而不能发挥刺激性作用。而以明矾(pH3.34)和石灰水(pH12以上)炮制半夏,除可用酸碱理论解释外,根据沉淀平衡理论,由于明矾中含有硫酸根离子(SO_4~(2-)),在一定浓度下,可将草酸根离子(C_2O_4~-)从不溶性草酸钙中置换出来,从而达到破坏针晶晶形的目的;而石灰水的强碱性亦可使针晶蛋白变性,同时[OH~-]在一定的浓度条件下也可以使得草酸钙溶解,不再具有刺激性作用;另外,两者成分本身也能使部分针晶凝固,不易被释放出来,而使刺激性降低。
     在初步明确了半夏炮制减毒机理的基础上,同样以草酸钙针晶的含量变化为线索,结合药效试验,进行了半夏炮制减毒工艺的研究,主要工作内容和研究结果包括:
     采用正交设计,选取辅料用量,浸泡时间和温度三因素,以半夏中所含草酸钙针晶的含量以及对家兔眼刺激性的强度分值为指标,优选最佳的炮制减毒工艺。由综合加权评分结果和方差分析结果表明,炮制因素辅料用量,浸泡时间和温度对明矾和石灰水减毒炮制品种的质量均没有显著影响,明矾炮制减毒的最佳工艺为8%明矾,在30℃下浸泡48小时,石灰水炮制减毒的最佳工艺为15%石灰水,在室温下浸泡24小时。得出结论认为明矾的最佳用量符合药典规定要求,石灰水的用量,由于在实验过程中,随着时间的延长,pH值在不断下降,因此,要以较高浓度较短时间浸泡,才能维持pH12以上,并达到最佳减毒目的。
     此外,还开展了对天南星科植物刺激性毒性作用的初步研究,主要工作内容和研究结果包括:
     通过光学显微和扫描电镜分析天南星科其它刺激性植物,如白附子,天南星和水半夏中的草酸钙针晶,并进行X-衍射分析,结果白附子、天南星和水半夏中的草酸钙针晶与半夏中草酸钙针晶在形态上相似,均具有针尖状末端,倒刺和凹槽的特殊细微结构,认为这可能提示了这些植物中的草酸钙针晶同样可能是其中主要的刺激性成分;对水半夏、白附子、天南星药材提取的草酸钙针晶的刺激性作用及其量效关系试验表明,生水半夏、生白附子、生天南星中的草酸钙针晶具有强烈刺激性;各药材提取的针晶与各药材生品混悬液在针晶含量相同的条件下,对家兔的眼刺激性作用基本相同,具有等效性;针晶浓度与家兔眼刺激程度呈现确切的量效关系。认为天南星科部分具有刺激性作用的植物中的草酸钙针晶为其主要刺激性成分。
This project came from Natural Science Found of Jiangsu province(No. BIC2004153). Irritant component of pinelliae tuber were mainly studied in this paper. After illuminating the stimulating component, the attenuation mechanism and technology of processing were studied and discussed. Based on the results mentioned above, we studied the irritant effect of some plants in Araceae family.
     In order to determining the stimulating component in pinelliae tuber, The main works were done as follows.
     Determinantion of irritation or toxicity effect of Pinelliae tuber. In this part, the acute toxicity testing was first performed, LD50 of raw Pinelliae tuber suspl was 3359mg/kg, but couldn't measured in Pinelliae tuber water decoct. Pinelliae tuber suspl also leaded capillary permeability of Jimpy mice to strengthen notably, the content of Jimpy mice's peritoneal exudates increaseed notably, and the content of histamine increased either. The rabbits' eyes showed intensive dropsy and congestion by Pinelliae tuber suspl, indicating the fierce irritation of Pinelliae tuber. From the results, we came to the conclusion that Pinelliae tuber, could induced irritation through inflammatory reaction and inflammatory factor. When irritative response got to some degree, animals would die. At the same time, we made sure the stimulus intensity of rabbits' eyes as the main pharmaco-index in our study because of its simplicity, convenience, reproducibility and definite parameter.
     After determining the toxicity was showed as irritation, we started the preliminary screening of irritant component in Pinelliae tuber. After irritation test with the model of rabbits' eyes, no irritation was found in extraction of water and various solvents, but the remain of them showed strong irritation which were observed by light microscope, lots of calcium oxalate crystals could be seen, while there's no calcium oxalate crystals in those non-irritant extraction. After being heated and soaked in mild acid base solution, strong irritation remained, but no irritation found in strong acid base solution. Observed under light microscope, the crystals remained no visible change after being heated and soaked in mild acid base, but the number and form of crystals of those soaked in strong acid base changed largely. So the special calcium oxalate crystals were considered as the main stimulating component in Pinelliae tuber.
     Since the calcium oxalate crystal may be the main stimulating component in Pinelliae tuber, the pure crystals was isolated from raw Pinelliae tuber by centrifugalization with low speed, the extract was determined through observation by light microscope, chemi-detecting and X-diffraction analysis as the calcium oxalate monohydrate. The results of acute test of calcium oxalate crystals indicated that a little pure crystals could lead to death(LD_(50) was 15.94mg/kg), explaining that the organism would dead when irritation got to some degree, which confirmed the toxicity of Pinellia tuber showed as irritation all the more. Comparing the irritation of Pinelliae tuber with and without calcium oxalate crystals, we found the latter had no irritation which indicated the crystals were just the main component leading to irritation all the better. The results of isoeffect and quantity-effect relationship analysis confirmed our propose. That was, with the same content of crystals, the pure crystal and Pinelliae tuber had almost the same irritation effect, and with the density of crystals increased gradually, the irritation intensity increased gradually either, showed the typical quantity-effect relationship. Furthmore, crystals could prick into mice's mesenterium deeply, leading to swell of tissue and cell, producing inflammatory reaction and the irritation then. In addition, with being heated or not, there's no significant different on irritation effect, supposing that the attachment protein on crystals mentioned in some foreign papers may have a little irritation but be not the key factor.
     To ensure the irritation of attachment protein(binding protein) on crystals, the content of canlcium oxalate and composition of crystals were determined, the water protein in Pinelliae tuber without calcium oxalate crystals and crystals binding protein were compared, the former had no irritation and latter showed just opposite. The SDS-PAGE was employed in determining the difference between the two protein. The results showed the protein with irritation had two clear band between 20KD and 31KD which couldn't be seen in the protein without irritation. Contrasting to the standard protein, we presumed that the molecular weight of stimulating binding protein may be 25KD and 27KD.
     From results above, the irritation of calcium oxalate crystals and the binding protein were comfirmed. The irritation mechanism of crystals was studied then from the microstructure of calcium oxalate crystals, the contribution to crystals' irritation effect of mechanical pressure outsid and idioblast in plants, and the irritation of crystals binding protein as well. The results showed that it's the needle tip, barb and groove on the surface of crystals that provided convenience condition for crystals pricing into the mucous cell, not the calcium oxalate component itself, the latter had no toxity and irritation. Mechanical pressure and idioblast also made crystals pricking into tissue easier through driving force. Binding protein could aggravate the inflammatory reaction of damaged skin. We concluded that the irritation mechanism of raphides(needle-like calcium oxalate crystals) could be combination of mechanical release of the raphides with special sharp end disrupting the barrier, which results in traumatic injury, and penetration of irritation protein carried on the crystals' surfaces and grooves to make further chemical injury.
     The calcium oxalate crystals in non-irritatant in other plants, such as Indian Madder Root, Common Yan Rhizome and Dwarf Lilyturf Tuber were also compared with those in Pinellia Tuber. Through observation with light microscope and scanning electron microscope, we found there were lots of slender and flexible calcium oxalate crystals in Pinelliae tuber and almost no such crystals in other non-irritation plants, indicating that the flexible calcium oxalate crystals may be the key factors to cause irritation. Moreover, the needle-like tip, barb and groove were the special feature of crystals just in Pinellia Tuber but not those in other non-irritant plants. Furthermore, it's Pinelliae tuber crystals that could be found a lot on the surface of mice' mesenterum and pricked into it deeply, but not the indian madder root crystals. The latter remained little on the mesenterium surface and didn't prick into it, which explaining the Pinelliae tuber crystals could leading to irritation and indian madder root couldn't. The results of X-diffraction analysis also showd that there was very different in crystals size of the two kinds of crystals, which might result in the difference of flexible and strength of crystals and then the difference in irritation.
     On the base of the conclusion that the calcium oxalate crystals were the main stimulating component, the attenuation mechanism of Pinelliae tuber precessing were then studied according to the qualitative and quantitative alternation of calcium oxalate crystals after being processed.
     The contents of calcium oxalate crystals in Pinelliae tuber samples soaked in acid base solution, the prepared Rhizoma pinelliae with juice of rhizima zingiberis recens and with alumen radix glyrrhigae calcaren bought from market, and Pinelliae tuber samples soaked in alum and limewater were determined by HPLC. The results made clear that the contents of calcium oxalate crystals in samples soaked in strong acid base solution decreased sharply, as the ones soaked in alum and limewater. Meanwhile, the pH of alum and limewater were about 3 and 12 respectively, indicating under the circumstance of strong acid base, the crystals' contents reduced and irritation lowered. Through the results of observation by light microscope and scanning electron microscope, we thought that the attenuation mechanism of processing be the special calcium oxalate crystals in Pinelliae tuber destroyed in strong acid base, which not only reduced the content but destroyed the shape of crystals, the needle-like ends, the barb and groove were all disappeared and no irritation remained. On the condition of strong base(pH13~14), some crystals were corroded to be semitransparent and coagulated in the idioblast, thus couldn't be released and lose their flexible and strenth, leading to non-irritant. The mechanism of processing with alum and limewater could explained by the acid base theory, except that, the two adjuvant themselves could flocculate some crystals and made them not easy to release, which also reduced the irritation.
     At the same time, the attenuation technology of Pinelliae tuber was studied on the basis of content change of calcium oxalate crystals, together with pharmacodynamic test. The main research works were as follows.
     The orthogonal test was employed to determine the best attenuation technology of the three factors affiliated with three levels including the quantity of adjuvant、soaking temperature and time accounting on the indexes of the contents of calcium oxalate crystals and irritation intension value with the model of rabbits' eyes. Through combination weighing score and analysis of variance, the three factors had no significant influence on the processed products. The best attenuation technology of alum solution was temperature at 600C, time at 48 hours and adding 8% alum per 100kg drugs, such quantities consisting with Chinese Pharmacopeia(Edition 2005). The best attenuation technology of limewater was temperature at ordinary temperature, time at 24 hours and adding 15% limewater per 100kg drugs which was more than that in Chinese Pharmacopeia. Because as time went by, the pH value reduced continuously, and the higher density meant pH value could keep 12 or more, the time was shortened and the density of limewater increased.
     Additionaly, we studied the irritation of some plants in Araceae family, such as giant typhonium rhizome, jackinthepulpit tuber and Rhizoma typhonii flagelliformis.
     The crystals in Giant Typhonium Rhizome, Jackinthepulpit tuber and Rhizoma Typhonii Flagelliformis were studied through light microscope, scanning microscope andⅩdiffraction analysis, which all had the same shape with those in Pinelliae tuber, such as the same microstructure of needle-like ends, barb and groove, which may indicating the crystals in these plants be the stimulating components either. The test with the model of rabbits' eyes were also employed to determine the irritation of calcium oxalate crystals extracted from these plants. The results indicated that crystals isolated from Giant Typhonium Rhizome, Jackinthepulpit tuber and Rhizoma Typhonii Flagelliformis showed strong irritation. With the same content of calcium oxalate crystals, the irritation of raw medicinal materials and pure calcium oxalate crystals had no difference. The density of calcium oxalate crystal and irritation strength on rabbits' eyes showed undoubted quantity-effect relationship, which meant the calcium oxalate crystal was also the main acridity principle in some Araceae plants.
引文
[1] 吴皓,束建清,蔡宝昌,等.半夏姜制对β-谷甾醇和总生物碱含量的影响.中国中药杂志,1995,20(11):662~6643
    [2] 王锐,倪京满,马蓉.中药半夏挥发油成分的研究.中国药学杂志,1995,30(8):457~4594
    [3] 李先端,胡世林,杨连菊.半夏类药材氨基酸和无机元素分析.中国中药杂志,1990,15(10):37~385
    [4] 陶宗晋,徐琴钰,吴克佐,等.半夏蛋白的分离、结晶、生物活性和一些化学性质.生物化学与生物物理学报,1981,13 (1):77
    [5] 修彦凤,洪筱坤,王智华.半夏的炮制研究进展.中成药,2004,26 (1):38~40
    [6] 杨守业,叶文华,吴子伦,等.半夏炮制前后对小白鼠急性、亚急性和蓄积性毒性的研究[J].中成药,1988,(7):18~19
    [7] 中医研究院中药研究所药理室、生药室炮制组.半夏炮制的毒性研究[J].新医药杂志,1997,(7):38~40
    [8] 林玉贞,林坤成.姜半夏对小鼠早孕毒副反应及胚胎发育影响的实验研究[J].福建中医学院学报,2002,12(1):42~43
    [9] 杨守业,何民,王来苏,等.半夏对大白鼠妊娠及胚胎的毒性研究[J].中西医结合杂志,1989,9(8):481~483
    [10] 杨守业,何民,王来苏,等.半夏对妊娠家兔和胚胎的毒性研究[J].中国医药学报,1989,4(6):27~29
    [11] 王光明,周蓉.半夏中药药理研究进展.中医药导报.2007,13 (2):97~99
    [12] 游素碧,韩宗先,周先容.半夏蛋白研究进展,科技情报开发与经济,2006,16 (16):165~166
    [13] 熊素芳,龚梅芳,蒋文弘,等.几种不同炮制半夏对妊娠小白鼠致畸作用的研究[J].北京中医,1987,(6):51~51
    [14] 杨守业,何民,钟永,等.半夏对小鼠骨髓嗜多染红细胞核及人体外周血培养淋巴细胞SCE频率的影响[J].中西医结合杂志 1990,10(6):356~357
    [15] 王小红,江洪,夏明珠.姜半夏致突变性实验研究[J].江苏中医药,2002,23(8):42~43
    [16] 夏林纳,李超荆.半夏蛋白对小鼠的抗生育作用及抗早孕的机理探讨[J].上海第一医学院学报,1985,12(3):193~197
    [17] 龚梅芳,邹季.三种炮制半夏对妊娠小白鼠致畸作用的研究[J].北京中医杂志,1990,(1)::36~37
    [18] 熊素芳,杨益寿,李鸣,等.两种不同炮制半夏诱导小白鼠骨髓细胞染色体畸变的研究[J].湖北医科大学学报,1993,14 (3):225~227
    [19] 国家中医药管理局《中华本草》编委会.中华本草(精选本下册).上海:上海科技出版社,1998,2212
    [20] 汤玉妹,周学优:半夏炮制前后的药效比较,中成药,1994,16(9):21~22,
    [21] 吴皓,蔡宝昌,荣根新:半夏姜制对胃肠道功能的影响,中国中药杂志,1994,19 (9):535~537
    [22] 吴皓,季睿,邱鲁婴,等.半夏刺激性(动物实验)量化指标的研究[J].中成药,2000,22 (6)::419~421
    [23] 中医研究院中药研究所药理室、生药室炮制组.半夏炮制的毒性研究[J].新医药杂志,1997,(7):38~40
    [24] 罗国亮.半夏的毒性及临床应用.中草药,1999,(2):156
    [25] 刘守义,尤春来,王义明.半夏抗溃疡的实验研究[J].中药药理与临床,1993,9 (3):27~29
    [26] 赵建英.用辅料炮制半夏解毒机理分析.中国新医药,2004,3 (9):90~91
    [27] 江苏新医学院.中药大辞典(上册).上海:上海科技出版社,1986,776
    [28] 中医研究院中药研究所药理室、生药室炮制组.半夏炮制的毒性研究.新医药学杂志,1977,(7):38
    [29] 董子红,史万瑞.半夏炮制中值得探讨的几个问题.新疆中医药,2004,22 (1):35
    [30] 上海医药工业研究所药物制剂研究室.中药半夏炮制的研究.药学通报,1960,(5):267
    [31] Masako Suzuki. Arzneimittelforach, 1969, 19(8): 1307
    [32] 吴皓,李伟,韩洪涛,等.半夏刺激性成分的研究.中国中药杂志,1999,24 (12):725~730
    [33] 周佐林.原儿茶醛为半夏中刺激性成分值得商榷.中国中药杂志,1994,19 (1):59
    [34] Roger W. Gfeller, DVM and Shawn R Messonnier, DVM. Handbook of Small Animal Toxicology & Poisonings. 2nd. Mosby-Year Book, 1998, 251
    [35] Lampe, K. E, McCann, M. A.. AMA Handbook of Poisonous and Injurious Plants. American Medical Assoc. Chicago, Ill, USA: 1985, 432
    [36] Wendell Home. Some of the most toxic molecules on the planet occur in nature. Lifestyles- Home & Garden -Columnist, 2003, 10: 1
    [37] Mrvos R, Dean BS, Krenzelok EP. Philodendron/dieffenbachia ingestions: are they a problem? J Toxicol Clin Toxicol. 1991; 29 (4): 485~491 .
    [38] 王潮奎,慕文静.半夏炮制的实验探讨.河南中医药学刊,2001,16 (4):12
    [1] 伊廷双,李恒,李德铢.天南星科分类系统的沿革.武汉植物学研究,2002,20(1):48.
    [2] Rao Srinivas K. D. O, Kumar S. Krishna M. D, Biswas Jyotirmay M. S. et al. Self-induced corneal crystals: a casereport. Cornea, 2000, 19(3): 410.
    [3] 中国药典.2005.39,70,78.
    [4] 吴皓.汉至宋代半夏炮制的沿革研究.南京中医药大学学报,2001,17 (1):45.
    [5] 吴皓,李伟,韩洪滔等.半夏刺激性成分的研究,中国中药杂志,1999,24 (12):725.
    [6]Nikolaos Bouropoulos, Dr., Steve Weiner, Prof., Lia Addadi, Prof , Calcium Oxalate Crystals in Tomato and Tobacco Plants: Morphology and in Vitro Interactions of Crystal-Associated Macromolecules, Chemistry, 2001, 7 (9) : 1881-1888
    
    [7]Vincent R. Franceschil and Paul A. Nakata, Calcium Oxalate Oxalate in Plant: Formation and Function, Annual Review of Plant Biology, 2005, 56: 41 —71
    
    [8]Vincent R. Franceschi, Paal Krokene, Erik Christiansen, Trygve Krekling, Anatomical and chemical defenses of conifer bark against bark beetles and other pests.New Phytologist. 2005, 167(2): 353—361
    
    [9]Ryall RL, Fleming DE, Grover PK, Chauvet M, Dean CJ, Marshall VR., The hole truth: intracrystalline proteins and calcium oxalate kidney stones. Mol Urol. 2000, 4(4): 391 ~402
    
    [13-10]Xingxiang Li, Dianzhong Zhang, Valerie J. Lynch-Holm, Thomas W. Okita, and Vincent R. Franceschi. Isolation of a Crystal Matrix Protein Associated with Calcium Oxalate Precipitation in Vacuoles of Specialized Cellsl, Plant Physiology, 2003, 133,549 ~ 559;
    
    [11]Franceschi VR. Function of calcium oxalate crystals in plants. Trends Plant Sci. 2001, 6: 331 ~ 332
    
    [12]Guo SW, Ward MD, Wesson JA. Direct visualization of calcium oxalate monohydrate crystallization and dissolution with atomic force microscopy and the role of polymeric additives. Langmuir. 2002. 18: 4284-4291
    
    [13]Horner HT, Kausch AP, Wagner BL. Ascorbic acid: a precursor of oxalate in crystal idioblasts of Yucca torreyi in liquid root culture. Int J Plant Sci. 2000,161: 861 ~ 868
    
    [14]Hoyer JR, Asplin JR, Otvos L. Phosphorylated osteopontin peptide suppress crystallization by inhibiting the growth of calcium oxalate crystals. Kidney Int. 2001, 60: 77 ~ 82
    
    [15]Keates SA, Tarlyn NM, Loewus FA, Franceschi VR. 1- ascorbic acid and 1-galactose are sources of oxalic acid and calcium oxalate in Pistia stratiotes. Phytochemistry. 2000, 53: 433 ~ 440
    
    [16]Kostman TA, Franceschi VR, Nakata PA. Endoplasmic reticulum sub-compartments are involved in calcium sequestration within raphide crystal idioblasts of Pistia stratiotes L. Plant Sci. 2003, 65: 205 ~ 212
    
    [17]Kostman TA, Tarlyn NM, Loewus FA, Franceschi VR. Biosynthesis of 1-ascorbic acid and conversion of carbons 1 and 2 of 1-ascorbic acid to oxalic acid occurs within individual calcium oxalate crystal idioblasts. Plant Physiol. 2001,125: 634 ~ 640
    
    [18]McConn MM, Nakata PA. Calcium oxalate crystal morphology mutants from Medicago truncatula. Planta. 2002, 215: 380 ~ 386
    
    [19]Nakata PA. Calcium oxalate crystal morphology. Trends Plant Sci. 2002,7: 324
    
    [20]Nakata PA. Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Sci. 2003, 164: 901 ~ 909
    [21]Nakata PA, Kostman TA, Franceschi VR. Calreticulin is enriched in the crystal idioblasts of Pistia stratiotes. Plant Physiol Biochem. 2003, 41: 425 ~ 430
    
    [22]Nakata PA, McConn MM. Influence of the calcium oxalalte defective 4 (cod4) mutation on the growth, oxalate content, and calcium content of Medicago truncatula. Plant Sci. 2003, 164: 617 ~ 621
    
    [23]Pennisi SV, McConnell DB. Inducible calcium sinks and preferential calcium allocation in leaf primordial of Dracaena sanderiana Hort. Sander ex M.T. Mast (Dracaenaceae). HortScience. 2001, 36: 1187-1191
    
    [24]Volk GM, Lynch-Holm VM, Kostman TA, Franceschi VR. The role of druse and raphide calcium oxalate crystals in tissue calcium regulation in Pistia stratiotes leaves. Plant Biol. 2002, 4: 34 ~ 45
    
    [25]T.A.Kostmanl, and V.R.Franceschi. Cell and calcium oxalate crystal growth is coordinated to achieve high-capacity calcium regulation in plants, Protoplasma. 2000, 214: 166—179
    
    [26]Todd A. Kostman, Nathan M. Tarlyn, Frank A. Loewus, and Vincent R. Franceschi. Biosynthesis of L-Ascorbic Acid and Conversion of Carbons 1 and 2 of L-Ascorbic Acid to Oxalic Acid Occurs within Individual Calcium Oxalate Crystal Idioblasts. Plant Physiology. 2001,125,634 ~ 640;
    
    [27]Smirnoff N, Wheeler GL. Ascorbic acid in plants: biosynthesis and function. CRC Crit Rev Plant Sci. 2000, 19: 267-290
    
    [28]GAYLE M. VOLK, LENORA J. GOSS and VINCENT R. FRANCESCHI, Calcium Channels are Involved in Calcium Oxalate Crystal Formation in Specialized Cells of Pistia stratiotes L., Annals of Botany. 2004,93(6): 741-753
    
    [29]Bouropoulos N, Weiner S, Addadi L. Calcium oxalate crystals in tomato and tobacco plants: morphology and in vitro interactions of crystal-associated macromolecules. Chemistry: European Journal. 2001, 7: 1881-1888
    
    [30]Harper JF. Dissecting calcium oscillators in plant cells. Trends in Plant Science. 2001, 6: 395— 397
    
    [31]Kostman TA, Koscher JR.. L-galactono-g-lactone dehydrogenase is present in calcium oxalate crystal idioblasts of two plant species. Plant Physiology and Biochemistry. 2003, 41: 201 —206
    
    [32]Kostman TA, Franceschi VR, Nakata PA. Specialized ER-subcompartments may play a role in calcium regulation in crystal idioblasts of Pistia stratiotes. Plant Science. 2003, 165: 205—212
    
    [33]Li X, Zhang D, Lynch-Holm VM, Okita TW, Franceschi VR. Isolation of a crystal matrix protein associated with calcium oxalate precipitation in vacuoles of specialized cells. Plant Physiology. 2003, 133:549-559.
    
    [34]Pittman JK, Hirschi KD. Don't shoot the (second) messenger: endomembrane transporters and binding proteins modulate cytosolic Ca2+ levels. Current Opinions in Plant Biology. 2003, 6: 257—262
    [35]Zindler-Frank E, Honow R, Hesse A. Calcium and oxalate content of the leaves of Phaseolus vulgaris at different calcium supply in relation to calcium oxalate crystal formation. Journal of Plant Physiology. 2001, 158: 139-144
    
    [36]Paul A. Nakata. Advances in our understanding of calcium oxalate crystal formation and function in plants, Plant Science. 2003,164(6): 901 -909
    
    [37]Atmani F, Khan SR. Effects of an extract from Herniaria hirsuta on calcium oxalate crystallization in vitro. BJU Int. 2000, 85(6) :621 -625
    
    [38]Todd A. Kostmana, Vincent R. Franceschib and Paul A. Nakata, Endoplasmic reticulum sub-compartments are involved in calcium sequestration within raphide crystal idioblasts of Pistia stratiotes L. Plant Science. 2003,165(1): 205—212
    
    [39]Thongboonkerd V, Semangoen T, Chutipongtanate S. Factors determining types and morphologies of calcium oxalate crystals: molar concentrations, buffering, pH, stirring and temperature. Clin Chim Acta. 2006,367(1-2): 120-131
    
    [40]Shen Y, Yue W, Xie A, Li S, Qian Z. Effects of amino acids on crystal growth of CaC_2O_4 in reverse microemulsion. Colloids Surf B Biointerfaces. 2005, 45(3-4):120—124
    
    [41] V Beasley. Plants of the Araceae family (plants containing oxalate crystals and histamine releasers). Vet Hum Toxicol, 1999, 2639-2889.
    
    [42] Lampe, K F, McCann, M A. AMA handbook of poisonous and injurious plants. American Medical Assoc. Chicago, Ill, USA. 1985, 432
    
    [43] Roger W Gfeller , Shawn P Messonnier . Handbook of small animal toxicology & poisonings. 2nd. Mosby-Year Book, 1998, 251—253
    
    [44] Fochtman F W, Manno J E, Winek C L, et al. Toxicity of the genus Dieffenbachia. Toxicol AppPharmacol, 1969, 7 (15): 38-45
    
    [45] Wendell Home. Some of the most toxic molecules on the planet occur in nature. Lifestyles- H&G Columnist, 2003, 10: 1 — 12.
    
    [46] Mrvos R, Dean B S, Krenzelok E P. Philodendron/dieffenbachia ingestions: are they a problem? J Toxicol Clin Toxicol. 1991, 29(4): 485-498.
    
    [47] Kuo-Fang Hsueh, Pei-Yu Lin, Shui-Mei Lee, et al. Ocular Injuries from Plant Sap of Genera Euphorbia and Dieffenbachia. J Chin Med Assoc. 2004, 67:93—98
    
    [48] McIntire M S, Guest J R, Porterfield J F. Philodendron~an infant death. J Toxicol Clin Toxicol. 1990, 28(2): 177-187
    
    [49] Pamies R J, Powell R, HeroldAH, et al. The dieffenbachia plant-Case history. J Fla Med Assoc, 1992, 79(11): 760-778.
    [50] Fuller, T C, McClintock, E. Poisonous plants of California. Univ. California Press, Berkeley, Calif., USA, 1986, 432-440.
    
    [51]Sakai WS, Hanson M, Jones RC. Raphides with barbs and grooves in Xanthosoma sagittifolium (Araceae). . Sci, 1972, 178(58): 314-320.
    
    [52]Howard Bradbury and Roger W Nixon. The Acridity of Raphides from the Edible Aroids. J Sci Food Agric. 1998, 76, 608-616
    
    [53]Hay A, Wise R. The genus Alocasia (Araceae) in Austral- asia. Blumea. 1991, 35: 499—545.
    [54]Holloway W D, Argall M E, Jealous W T, Lee J A, Bradbury J H. Organic acids and calcium oxalate in tropical root crops. J Agric Food Chem. 1989, 37 337—341
    
    [55]vanAkker L, Alfaro RI. Brockley R. Effects of fertilization on resin canal defences and incidence of Pissodes strobi attack in interior spruce. Canadian Journal of Forest Research. 2004.34: 855—862
    
    [56]Bonello P, Storer AJ, Gordon TR, Wood DL. Systemic effects of Heterobasidion annosum on ferulic acid glucoside and lignin of presymptomatic ponderosa pine phloem, and potential effects on bark beetle-associated fungi. Journal of Chemical Ecology. 2003, 29:1167—1182
    
    [57]Bonello P, Blodgett JT. Pinus nigra-Sphaeropsis sapinea as a model pathosystem to investigate local and systemic effects of fungal infection of pines. Physiological and Molecular Plant Pathology 2003,63:249-261.
    
    [58]Byun McKay SAB, Hunter WL, Godard K-A, Wang SW, Martin DM, Bohlmann J, Plant AL. Insect attack and wounding induce traumatic resin duct development and gene expression of (-)-pinene synthase in Sitka spruce. Plant Physiology. 2003,133: 368—378
    
    [59]Farmer EE, Almeras E, Krishnamurthy V. Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Current Opinion in Plant Biology. 2003, 6: 372—378.
    
    [60]Seybold SJ, Bohlmann J, Raffa KF. Biosynthesis of coniferophagous bark beetle pheromones and conifer isoprenoids: evolutionary perspective and synthesis. Canadian Entomologist. 2000,132: 697— 753
    
    [61]Webb MA. Cell-mediated crystallization of calcium oxalate in plants. Plant Cell. 1999, 11: 751 —761
    
    [62]Rob W. H. M. van Tol, Dale E. James , Willem Jan de Kogel & David A. J. Teulon . Plant odours with potential for a push-pull strategy to control the onion thrips, Thrips tabaci. Entomologia Experimentalis et Applicata. 2007, 122: 69—76
    
    [63]Lustin Lippert, Sunita Chowrira, Steven Gregory Ralph, Jun Zhuang, Dana Aeschliman, Carol Ritland, Kermit Ritland, Jorg Bohlmann. Conifer defense against insects: Proteome analysis of Sitka spruce (Picea sitchensis) bark induced by mechanical wounding or feeding by white pine weevils (Pissodes strobi). PROTEOMICS. 2007, 7(2): 248
    [64]TEVEN G. RALPH, HESTHER YUEH, MICHAEL FRIEDMANN, DANA AESCHLIMAN, JEFFREY A. ZEZNIK, COLLEEN C. NELSON, YARON S. N. BUTTERFIELD, ROBERT KIRKPATRICK, JERRY LIU, STEVEN J. M. JONES, MARCO A. MARRA, CARL J. DOUGLAS, KERMIT RITLAND & JORG BOHLMANN. Conifer defence against insects: microarray gene expression profiling of Sitka spruce (Picea sitchensis) induced by mechanical wounding or feeding by spruce budworms (Choristoneura occidentalis) or white pine weevils (Pissodes strobi ) reveals large-scale changes of the host transcriptome. Plant, Cell & Environment. 2006, 29(8): 1545 ~ 1570
    
    [65]hristopher I. Keeling and Jorg Bohlmann. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytologis. 2006, 170(4): 657-675
    
    [66]Steven J. Seybold, Dezene P. W. Huber, Jana C. Lee, Andrew D. Graves, Jorg Bohlmann. Pine monoterpenes and pine bark beetles: a marriage of convenience for defense and chemical communication. Phytochemistry Reviews. 2006, 5(1): 143
    
    [67] J. W. Hudgins , Trygve Krekling , Vincent R. Franceschi. Distribution of calcium oxalate crystals in the secondary phloem of conifers: a constitutive defense mechanism? New Phytologist. 2003, 159(3): 677-689
    
    [68]Hatice Demiray. Calcium oxalate crystals of some Crataegus (Rosaceae) species growing in Aegean region. Biologia. 2007, 62(1): 46—50
    
    [69]J. W. Hudgins, G. L McDonald, P. J. Zambino, N. B. Klopfenstein and V. R. Franceschi. Anatomical and cellular responses of Pinus monticola stem tissues to invasion by Cronartium ribicola. Forest Pathology. 2005, 35(6): 423 ~ 443
    
    [70]Ahmed M. A. Mazen, Dianzhong Zhang and Vincent R. Franceschi. Calcium oxalate formation in Lemna minor: physiological and ultrastructural aspects of high capacity calcium sequestration. New Phytologist. 2004, 161(2): 435 ~ 448
    
    [71]Watson JT, Jones RC, Siston AM, Diaz PS, Gerber SI, Crowe JB, Satzger RD, Outbreak of food-borne illness associated with plant material containing raphides, Clin Toxicol (Phila). 2005, 43(1): 17—21
    
    [72]Kenneth L. Korth*, Sarah J. Doege, Sang-Hyuck Park, Fiona L. Goggin, Qin Wang, S. Karen Gomez2, Guangjie Liu, Lingling Jia and Paul A. Nakata. Medicago truncatula Mutants Demonstrate the Role of Plant Calcium Oxalate Crystals as an Effective Defense against Chewing Insectsl, Plant Physiology. 2006, 141:188-195
    
    [73]S. Debolt, V. Melino, and C. M. Ford. Ascorbate as a Biosynthetic Precursor in Plants. Ann. Bot. 2007, 99(1): 3-8
    [74]Arnott HJ, Webb MA. Twinned Raphides of Calcium Oxalate in Grape (Vitis): Implications for Crystal Stability and Function, Int J Plant Sci. 2000, 161(1):133—142
    
    [75]Gardner D G. Injury to the oral mucous membranes caused by the common houseplant, dieffenbachia. A review. Oral Surg Oral Med Oral Pathol. 1994, 78 (5): 631 —635
    
    [76] Lin T J, Hung D Z, Hu W H, et al. Calcium oxalate is the main toxic component in clinical presentations of alocasis macrorrhiza (1) Schott and Endl poisonings. Vet Hum Toxicol. 1998, 40(2): 93-98
    
    [77]Paul A. Nakata. Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Science. 2003,164(6): 901—909
    
    [78] Rauber A. Observations on the idioblasts of Dieffenbachia. J Toxicol Clin Toxicol. 1985,23(2-3): 79-87
    
    [79] Plumlee K H. Plant hazards. Vet Clin North Am Small Anim Pract. 2002, 32: 383
    [80]Wiegand W, Thaer AA, Kroll P, Geyer OC, Garcia AJ. Optical sectioning of the cornea with a new confocal in-vivo slit-scanning video-microscope. Ophthalmology. 1995,102:568—575
    [1] Aniijima, Mkubo, Khashimoto, etal. Effect of oraladminis-trationof Pinell. iaternata Zingiberi rhizoma and their mixture on the efferent activity of the gastric branch of the vagus nerve in the rat. NeurosiLett, 1998, 258(1): 5~8
    [2] 贾良栋.半夏炮制研究进展.中国现代中药,2007,9 (2):31-34
    [3] 修彦凤,杨守娟,张永太.中华中医药杂志.2007,22 (2):87-89
    [4] 王金华,薛宝云.生姜与干姜药理活性的比较研究.中国药学杂志,2000,35 (3):163~165
    [5] 吴皓,舒武琴,邱鲁婴,等.生姜解半夏毒的实验研究.中成药,1998,21 (3):137~140
    [6] 吴皓,陆跃鸣,孙黎清,等.姜汁用量对姜浸半夏炮制品的影响.中药材,1998,21 (6):291~294
    [7] 王潮奎,慕文静.半夏炮制的实验探讨.河南中医药学刊,2001,16 (4):12
    [8] 陆跃鸣,吴皓,王耿.半夏各炮制品总生物硷对慢性髓性白血病细胞(K562)的生长抑制作用.南京中医药大学学报,1995,11 (2):84~85
    [9] 董子红,史万瑞.半夏炮制中值得探讨的几个问题.新疆中医药,2004,22 (1):35
    [10] 张贵君.中药师考试千题析(下).哈尔滨:黑龙江科学技术出版社,1997,303.
    [11] 赵建英.用辅料炮制半夏解毒机理分析.中国新医药,2004,3 (9):90~91
    [12] 高昌琨,吴琼,张陆军.半夏及炮制品对动物黏膜刺激性比较.安徽中医学院学报,2001,20 (6):49~50
    [13] 修彦凤,洪筱坤,王智华.半夏的炮制研究进展.中成药,2004,26 (1):38~40
    [14] 汤玉妹,周学优:半夏炮制前后的药效比较,中成药,1994,16 (9):21~22
    [15] 吴皓,叶定江,刁和芳,等.正交法优选姜半夏的最佳炮制工艺.中国中药杂志,1996,21(11):660~663
    [16] 杨锡,罗兴平:正交设计法研究半夏的炮制工艺[J],中成药,1993,15(8):18~19
    [17] 胡昌江,李国民,马烈,等.法半夏炮制工艺改革的研究.中成药,1999,21 (1):18~21
    [18] 赵典刚,郝桂兰,王振海,等.半夏熟法炮制品与药典法炮制品药理作用比较的实验研究.中国中医药科技.2001:8(6):366;
    [19] 赵典刚,王兴华,郝桂兰,等:半夏熟法炮制工艺的研究,中国中医药科技,2004,11 (2):104~106
    [20] 吴皓,李伟,韩洪涛,等.半夏刺激性成分的研究.中国中药杂志,1999,24 (12):725~730
    [1] 江苏新医学院.中药大辞典(上册).上海:上海科技出版社,1986,776
    [2] 中医研究院中药研究所药理室、生药室炮制组.半夏炮制的毒性研究.新医药学杂志,1977,(7):38
    [3] 董子红,史万瑞.半夏炮制中值得探讨的几个问题.新疆中医药,204,22 (1):35
    [4][21] 吴皓,季睿,邱鲁婴,等.半夏刺激性(动物实验)量化指标的研究[J].中成药,2000,22 (6)::419~421
    [5] 吴皓,李伟,韩洪涛,等.半夏刺激性成分的研究[J].中国中药杂志,1999,24 (12):725~731
    [6] 刘彦群,刘凯,何静:壳聚糖家兔眼刺激实验,徐州医学院学报,2002,22 (3):201~202
    [1] Fochtman FW, Manno JE, Winek CL, et al. Toxicity of the genus Dieffenbachia. Toxicol Appl Pharmacol, 1969: 7 (15): 38~45
    [2] Wendell Home. Some of the most toxic molecules on the planet occur in nature. Lifestyles- Home & Garden -Columnist, 2003, 10: 1
    [3] Mrvos R, Dean BS, Krenzelok EP. Philodendron/dieffenbachia ingestions: are they a problem. J Toxicol Clin Toxicol. 1991; 29(4): 485~491
    [4] Kuo-Fang Hsueh, Pei Yu Lin, Shui-Mei Lee, et al. Ocular Injuries from Plant Sap of Genera Euphorbia and Dieffenbachia. J Chin Med Assoc, 2004; 67: 93~98
    [5] 俞乐,彭新湘,杨崇,等.反相高效液相色谱法测定植物组织及根分泌物中草酸[J].分析化学,2002,30 (9):1119~1122
    [6] 吴皓,李伟,韩洪涛,等.半夏刺激性成分的研究[J].中国中药杂志,1999,24 (12):725~731
    [1] 刘彦群,刘凯,何静:壳聚糖家兔眼刺激实验,徐州医学院学报,2002,22 (3):201~202
    [2] AUGUSTE G-Y CHIOU, Diagnosis of Dieffenbachia induced corneal injury by confocal microscopy, Br J Ophthalmol, 1997, 81: 168
    [3] 吴皓,李伟,韩洪涛,等.半夏刺激性成分的研究[J].中国中药杂志,1999,24 (12):725~731
    [1] Xingxiang Li, Dianzhong Zhang, Valerie J. Lynch-Holm, et. al. Isolation of a Crystal Matrix Protein Associated with Calcium Oxalate recipitation in Vacuoles of Specialized Cells, Plant Physiol, 2003, 133: 549~559
    [2] Robert E. Paull a, Chung-Shih Tang b, Ken Gross c, et, al. The nature of the taro acridity factor, Postharvest Biology and. Technology, 1999, 16: 71-78
    [3] 孙红详:浙江省天南星族药用植物块茎的蛋白质电泳分析,中草药,2002,33 (6):548~551
    [4] 殷丹,陈振江,刘焱文:人工牛黄蛋白质的凝胶电泳实验研究,湖北中医学院学报,2006,8 (1):42~44
    [1] 吴皓,李伟,韩洪滔等.半夏刺激性成分的研究,中国中药杂志,1999,24 (12):725~730
    [2] Wendell Home. Some of the most toxic molecules on the planet occur in nature. Lifestyles- H&G Columnist. 2003, 10: 1
    [3] 钟凌云、吴皓.天南星科植物中黏膜刺激性成分的研究现状与分析,中国中药杂志,2006,31(18):1561~1563
    [4] 钟凌云、吴皓、张科卫,等.生半夏中草酸钙针品刺激性作用研究,中国中药杂志,2006,31(20):1706~1710
    [5] 刘彦群,刘凯,何静.壳聚糖家兔眼刺激实验.徐州医学院学报,2002,22 (3):201~203
    [6] 陈奇.中药药理研究方法学.北京:人民卫生出版社,1993,118~119
    [7] 谢秀琼.中药新制剂开发与应用.第3版,北京:人民卫生出版社,2000:540
    [8] Xingxiang Li, Dianzhong Zhang, Valerie J. Lynch-Holm, et. al. Isolation of a Crystal Matrix Protein Associated with Calcium Oxalate recipitation in Vacuoles of Specialized Cells, Plant Physiol, 2003, 133: 549~559
    [9] Robert E. Paull a, Chung-Shih Tang b, Ken Gross c, et, al. The nature of the taro acridity factor, Postharvest Biology and Technology, 1999, 16: 71~78
    [10] 刘玉明,靳小青,黄宝康,等:依地红皮肤消毒剂对皮肤刺激性的实验研究,中医药导报,2006,12 (8):18~19
    [11] Gardner D G. Injury to the oral mucous membranes caused by the common houseplant, dieffenbachia. A review. Oral Surg Oral Med Oral Pathol. 1994, 78 (5): 631~640
    [12] Plumlee K H. Plant hazards. Vet Clin Noah Am Small Anim Pract, 2002, 32: 383
    [1] 吴皓,李伟,韩洪滔等.半夏刺激性成分的研究,中国中药杂志,1999,24 (12):725~730
    [1] 董子红,史万瑞.半夏炮制中值得探讨的几个问题.新疆中医药,2004,22 (1):35
    [2] 张贵君.中药师考试千题析(下).哈尔滨:黑龙江科学技术出版社,1997,303.
    [3] 赵建英.用辅料炮制半夏解毒机理分析.中国新医药,2004,3 (9):90~91
    [4] 高昌琨,吴琼,张陆军.半夏及炮制品对动物黏膜刺激性比较.安徽中医学院学报,2001,20 (6):49~50
    [5] 刘彦群,刘凯,何静:壳聚糖家兔眼刺激实验,徐州医学院学报,2002,22 (3):201~202
    [1] 钟凌云,吴皓.天南星科植物中黏膜刺激性成分的研究现状与分析,中国中药杂志,2006,31 (18):1561~1563
    [2] 钟凌云,吴皓,张科卫,等.生半夏中草酸钙针晶刺激性作用研究,中国中药杂志,2006,31 (20):1706~1710
    [3] 刘彦群、刘凯、何静.壳聚糖家兔眼刺激实验,徐州医学院学报,2002,22 (3):201~202
    [4] 吴皓,李伟,韩洪涛,等.半夏刺激性成分的研究[J].中国中药杂志,1999,24 (12):725~731

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700