可见光-近红外遥感在月表物质信息提取的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究月表物质的可见光-近红外光谱特性是了解月球岩石矿物组成及结构的重要手段。根据矿物在可见光-近红外光谱中的吸收特征,我们可以反演月表的物质组成,识别关键性的元素和矿物,如FeO、TiO_2、斜长石、辉石等,并将这些数据应用于月球地质单元的成因和演化解释,取得很多重要的成果。
     首先,本文阐述了岩浆洋假设中对矿物形成和演化的内容,继而概述了经亿万年演化后月表主要的物质——月壤、玻璃物质和角砾岩。月球矿物的光谱特征是月球遥感应用的基础,本文分析了月球主要矿物(如斜长石、橄榄石、辉石等)的可见光-近红外光谱特征,特别是吸收峰的特征参数和形成原因。矿物光谱的影响因素包括矿物混合、太空风化效应、矿物颗粒效应等。其中,太空风化效应的去除是进行光谱分析和矿物信息提取的重要内容。
     其次,撞击坑能够暴露月壳深部物质,是研究新鲜月壤物质的重要窗口。Aristarchus地区具有复杂多样的地质背景,一直是月球地质研究的一个重点区域。最新可用的高分辨率和高光谱数据为Aristarchus的综合研究提供了新的可能。本文采用光谱分析方法、波段比值法、彩色合成法、主成分分析和非监督分类等方法,对Aristarchus地区的矿物和地质特征进行分析,并对分类后的地质单元进行描述。
     Aristarchus撞击坑中央峰具有很高的反射率,其光谱曲线没有明显的铁镁质矿物的吸收特征,表明它很可能来源于斜长岩的上月壳物质。撞击坑东南侧存在橄榄石富集区,与撞击熔融物相关。橄榄石可能来源于周围的风暴洋玄武岩经撞击作用重新熔融、分布、冷却结晶的产物。通过改进高斯模型(MGM)将橄榄石光谱分解为多个吸收波段的参数,并分析这些参数与矿物构成之间的关系,表明除具有橄榄石外,还可能含有高钙辉石或铬尖晶石等矿物。
     最后,本文分析了南极-艾肯(SPA)盆地Th元素的富集特征和形成机理。相比于雨海-风暴洋的Th主要来源于对其下覆KREEP物质的开掘,对SPA盆地的Th来源有各种不同的认识。本文通过对SPA盆地的地形、盆地构造、撞击坑分布、火山作用和地球化学特征的分析,以及对Th富集机理的探讨,认为SPA盆地内Th更可能来源于撞击作用对富Th下月壳物质的开掘;Th的弧形富集特征与盆地构造有很大相关性,并可能受到Apollo盆地形成的影响。
Visible and near-infrared spectral properties of lunar material are an important means tounderstand the composition and structure of lunar rocks and minerals. According to mineralabsorption features in the visible and near-infrared spectroscopy, we can derive the lunarsurface material, identify key elements and minerals, such as FeO, TiO_2, plagioclase,pyroxene. And the data is used in the explanation of the causes and evolution of the lunargeologic units, which has achieved many significant results.
     First of all, this paper describes the content of the formation and evolution of minerals inthe magma ocean hypothesis. And then it summarizes major lunar material-the lunar soil,glass material and breccia, which has undergone hundreds of millions of years of evolution.The spectral characteristics of lunar minerals are the basis of the application of lunar remotesensing, the paper analyzes visible and near-infrared spectral features of the principal lunarminerals (such as plagioclase, olivine, pyroxene, etc.), especially the characteristicparameters and causes of the absorption peak. Factors of mineral spectra include mineralmixed, effects of space weathering, effects of mineral particles and so on. Among them, theremoval of the effects of space weathering is an important part of the spectral analysis andmineral extraction.
     Furthermore, the impact crater is an important window for fresh lunar regolith material,which can expose the deep substance of the lunar crust. Aristarchus region has a complex anddiverse geological background, and has become one of the key areas of the lunar geologicalstudies. The latest available high-resolution and hyperspectral data provides new possibilitiesfor comprehensive study of Aristarchus. In this paper, the spectral analysis methods, theband ratio methods, color synthetic methods, principal component analysis and unsupervisedclassification methods are used for the analysis of the Aristarchus region's minerals andgeological characteristics and the description of the classification of geological units.
     There is high reflectivity in the Aristarchus crater central peak, and its spectra lackobvious absorption characteristics of the mafic minerals. These all indicate that it probablyderived from the anorthositic material of the lunar crust. Olivine-rich regions exist in thesoutheast of Aristarchus crater, which have a close relation with impact melts. Olivine maybe the product of re-melting, distribution, cooling and crystallization of basalt which comefrom Oceanus Procellarum around because of impact effects. The spectra of olivine aredecomposed into more than one absorption band parameters by the modified Gaussian model(MGM). The relationship between these parameters and mineral composition suggests that there may be high calcium pyroxene or chrome except olivine.
     Finally, this paper analyzes thorium enrichment characteristics and formationmechanism in the South Pole-Aitken basin (SPA). It is generally believed that thorium inImbrium-Procellarum is derived from the KREEP layer underlying crust by Imbrium impact,but there are various explanations for the origin of thorium in SPA. Through the analysis ofthe geomorphology of SPA, basin structure, the distribution of craters, volcanism,geochemical characteristics, and the discussion of thorium enrichment mechanisms, thispaper argues that it is more likely that in SPA basin elevated thorium abundances stem fromthorium-rich lower crustal materials exposed by the SPA impact event and there is anintimate relation between curve pattern of thorium enrichment and basin structure with aprobable impact of Apollo basin formation.
引文
Adams J B, Goullaud L H. Plagioclase feldspars-Visible and near infrared diffuse reflectance spectra asapplied to remote sensing. In: Lunar and Planetary Science Conference Proceedings.1978.2901-2909
    Allen C C, Morris R V, Lauer Jr H V, et al. Microscopic Iron Metal on Glass and Minerals—A Tool forStudying Regolith Maturity. Icarus,1993,104(2):291-300
    Anand M, Taylor L A, Nazarov M A, et al. Space weathering on airless planetary bodies: Clues from thelunar mineral hapkeite. Proceedings of the National Academy of Sciences of the United States ofAmerica,2004,101(18):6847-6851
    Blewett D T, Lucey P G, Hawke B R, et al. Clementine images of the lunar sample-return stations:Refinement of FeO and TiO2mapping techniques. J Geophys Res,1997,102(E7):16319-16325
    Boardman J W, Pieters C M, Green R O, et al. Measuring moonlight: An overview of the spatial properties,lunar coverage, selenolocation, and related Level1B products of the Moon Mineralogy Mapper. JGeophys Res,2011,116E00G14
    Campbell B A, Carter L M, Hawke B R, et al. Volcanic and impact deposits of the Moon's AristarchusPlateau: A new view from Earth-based radar images. Geology,2008,36(2):135-138
    Charette M P, McCord T B, Pieters C, et al. Application of Remote Spectral Reflectance Measurements toLunar Geology Classification and Determination of Titanium Content of Lunar Soils. J Geophys Res,1974,79(11):1605-1613
    Charette M P, Adams J B. Spectral Reflectance of Lunar Highland Rocks. In: Lunar and Planetary InstituteScience Conference Abstracts.1977.172
    Chevrel S D, Pinet P C, Daydou Y, et al. The Aristarchus Plateau on the Moon: Mineralogical andstructural study from integrated Clementine UV–Vis–NIR spectral data. Icarus,2009,199(1):9-24
    Cintala M J, Grieve R A F. Scaling impact melting and crater dimensions: Implications for the lunarcratering record. Meteorit Planet Sci,1998,33(4):889-912
    Clénet H, Pinet P, Daydou Y, et al. A new systematic approach using the Modified Gaussian Model:Insight for the characterization of chemical composition of olivines, pyroxenes and olivine–pyroxenemixtures. Icarus,2011,213(1):404-422
    Clark R N, Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy. Manual of RemoteSensing. Vol.3,1999: John Wiley and Sons.
    Clark R N, Pieters C M, Green R O, et al. Thermal removal from near-infrared imaging spectroscopy dataof the Moon. J Geophys Res,2011,116E00G16
    Cloutis E A, Gaffey M J, Jackowski T L, et al. Calibrations of Phase Abundance, Composition, andParticle Size Distribution for Olivine-Orthopyroxene Mixtures From Reflectance Spectra. J GeophysRes,1986,91(B11):11641-11653
    Cloutis E A, Gaffey M J. Pyroxene Spectroscopy Revisited: Spectral-Compositional Correlations andRelationship to Geothermometry. J Geophys Res,1991,96(E5):22809-22826
    Cloutis E A, Sunshine J M, Morris R V. Spectral reflectance-compositional properties of spinels andchromites: Implications for planetary remote sensing and geothermometry. Meteorit Planet Sci,2004,39(4):545-565
    Cloutis E A, Craig M A, Kruzelecky R V, et al. Spectral reflectance properties of minerals exposed tosimulated Mars surface conditions. Icarus,2008,195(1):140-168
    Elphic R C, Lawrence D J, Feldman W C, et al. Lunar Fe and Ti Abundances: Comparison of LunarProspector and Clementine Data. Science,1998,281(5382):1493-1496
    Fischer E M, Pieters C M. Remote Determination of Exposure Degree and Iron Concentration of LunarSoils Using VIS-NIR Spectroscopic Methods. Icarus,1994,111(2):475-488
    Fischer E M, Pieters C M. Composition and exposure age of the Apollo16Cayley and Descartes regionsfrom Clementine data: Normalizing the optical effects of space weathering. J Geophys Res,1996,101(E1):2225-2234
    Gaddis L R, Staid M I, Tyburczy J A, et al. Compositional analyses of lunar pyroclastic deposits. Icarus,2003,161(2):262-280
    Garrick-Bethell I, Zuber M T. An indigenous origin for the South Pole Aitken basin thorium anomaly.Geophys Res Lett,2005,32(13): L13203
    Garrick-Bethell I, Zuber M T. Elliptical structure of the lunar South Pole-Aitken basin. Icarus,2009,204(2):399-408
    Gillis J J, Jolliff B L, Elphic R C. A revised algorithm for calculating TiO2from Clementine UVVIS data:A synthesis of rock, soil, and remotely sensed TiO2concentrations. J Geophys Res,2003,108(E2):5009
    Green R O, Pieters C, Mouroulis P, et al. The Moon Mineralogy Mapper (M3) imaging spectrometer forlunar science: Instrument description, calibration, on-orbit measurements, science data calibration andon-orbit validation. J Geophys Res,2011,116E00G19
    Gross J, Treiman A H. Unique spinel-rich lithology in lunar meteorite ALHA81005: Origin and possibleconnection to M3observations of the farside highlands. J Geophys Res,2011,116(E10): E10009
    Hagerty J J, Lawrence D J, Hawke B R, et al. Thorium abundances on the Aristarchus plateau: Insightsinto the composition of the Aristarchus pyroclastic glass deposits. J Geophys Res,2009,114(E4):E04002
    Hagerty J J, Lawrence D J, Hawke B R. Thorium abundances of basalt ponds in South Pole-Aitken basin:Insights into the composition and evolution of the far side lunar mantle. J Geophys Res,2011,116(E6): E06001
    Hamed J A, Pentecost A. On the source region of the lunar mare basalt. J Geophys Res,2001,106(E7):14691-14700
    Hapke B W, Nelson R M, Smythe W D. The Opposition Effect of the Moon-the Contribution of CoherentBackscatter. Science,1993,260(5107):509-511
    Hartmann W K, Davis D R. Satellite-sized planetesimals and lunar origin. Icarus,1975,24(4):504-515
    Haskin L A. The Imbrium impact event and the thorium distribution at the lunar highlands surface. JGeophys Res,1998,103(E1):1679-1689
    Haskin L A, Gillis J, Korotev R, et al. The materials of the lunar Procellarum KREEP Terrane: A synthesisof data from geomorphological mapping, remote sensing, and sample analyses. J Geophys Res,2000a,105(E8):20403-20415
    Haskin L A, Gillis J J, Korotev R L, et al. The materials of the lunar Procellarum KREEP Terrane: Asynthesis of data from geomorphological mapping, remote sensing, and sample analyses. J GeophysRes,2000b,105(E8):20403-20415
    Haskin L A, Moss B E, McKinnon W B. On estimating contributions of basin ejecta to regolith deposits atlunar sites. Meteorit Planet Sci,2003,38(1):13-33
    Haskin L A, McKinnon W B, Benner L A M, et al. Thorium anomalies in the NW quadrant of the SouthPole-Aitken basin. In:35th Lunar and Planetary Science Conference. League City,2004.
    Hawke B R, Spudis P D, Papike J J. Geochemical anomalies on the eastern limb and farside of the moon.In: Conference on the Lunar Highlands Crust. Houston: New York and Oxford, Pergamon Press,1980.467-481
    Hawke B R, Peterson C A, Blewett D T, et al. Distribution and modes of occurrence of lunar anorthosite. JGeophys Res,2003,108(E6):5050
    Hawke B R, Blewett D T, Lucey P G, et al. The origin of lunar crater rays. Icarus,2004,170(1):1-16
    Heiken G, Vaniman D, French B, Lunar sourcebook: a user's guide to the moon1991a: CambridgeUniversity Press.
    Heiken G H, Vaniman D T, French B M, et al, Lunar sourcebook-A user's guide to the moon. Researchsupported by NASA,. Cambridge, England, Cambridge University Press,1991., ed. G HHeiken1991b.
    Hess P C, Parmentier E M. A model for the thermal and chemical evolution of the moon's interior:implications for the onset of mare volcanism. Earth Planet Sci Lett,1995,134(3-4):501-514
    Hiesinger H, Head J W, Wolf U, et al. Ages and stratigraphy of mare basalts in Oceanus Procellarum,Mare Nubium, Mare Cognitum, and Mare Insularum. J Geophys Res,2003,108(E7):5065
    Hiroi T, Pieters C M. Modified Gaussian Deconvolution of Reflectance Spectra of Lunar Soils. In: Lunarand Planetary Institute Science Conference Abstracts.1998.1253
    Isaacson P J, Pieters C M. Northern Imbrium noritic anomaly. J Geophys Res,2009,114(E9): E09007
    Isaacson P J, Pieters C M, Besse S, et al. Remote compositional analysis of lunar olivine-rich lithologieswith Moon Mineralogy Mapper (M3) spectra. J Geophys Res,2011,116E00G11
    Jolliff B L. Clementine UVVIS multispectral data and the Apollo17landing site: What can we tell andhow well? J Geophys Res,1999,104(E6):14123-14148
    Jolliff B L, Gillis J J, Haskin L A, et al. Major lunar crustal terranes: Surface expressions and crust-mantleorigins. J Geophys Res,2000a,105(E2):4197-4216
    Jolliff B L, Gillis J J, Haskin L A, et al. Major lunar crustal terranes: Surface expressions and crust-mantleorigins. J Geophys Res,2000b,105(E2):4197-4216
    Keshava N, Mustard J F. Spectral unmixing. Ieee Signal Processing Magazine,2002,19(1):44-57
    Klima R L, Pieters C M, Boardman J W, et al. New insights into lunar petrology: Distribution andcomposition of prominent low-Ca pyroxene exposures as observed by the Moon Mineralogy Mapper(M3). J Geophys Res,2011,116E00G06
    Korotev R L. Concentrations of radioactive elements in lunar materials. Journal of GeophysicalResearch-Planets,1998,103(E1):1691-1701
    Kramer G Y, Besse S, Dhingra D, et al. M3spectral analysis of lunar swirls and the link between opticalmaturation and surface hydroxyl formation at magnetic anomalies. J Geophys Res,2011,116E00G18
    Langevin Y. The regolith of Mercury: present knowledge and implications for the Mercury Orbiter mission.Planetary and Space Science,1997,45(1):31-37
    Larson S M, Johnson J R, Singer R B. Evaluation of the sensitivity of reflectance ratios to mafic mineralsin the lunar regolith. Geophys Res Lett,1991,18(11):2149-2152
    Lawrence D J, Feldman W C, Barraclough B L, et al. Global elemental maps of the moon: The LunarProspector gamma-ray spectrometer. Science,1998,281(5382):1484-1489
    Lawrence D J, Feldman W C, Barraclough B L, et al. High resolution measurements of absolute thoriumabundances on the lunar surface. Geophys Res Lett,1999,26(17):2681-2684
    Lawrence D J, Feldman W C, Barraclough B L, et al. Thorium abundances on the lunar surface. J GeophysRes,2000,105(E8):20307-20331
    Lawrence D J, Elphic R C, Feldman W C, et al. Small-area thorium features on the lunar surface. JGeophys Res,2003,108(E9):5102
    Le Mouélic S, Langevin Y, Erard S. A new data reduction approach for the Clementine NIR data set:Application to Aristillus, Aristarchus and Kepler. J Geophys Res,1999a,104(E2):3833-3843
    Le Mouélic S, Langevin Y, Erard S. The distribution of olivine in the Crater Aristarchus inferred fromClementine NIR data. Geophys Res Lett,1999b,26(9):1195-1198
    Le Mouélic S, Langevin Y, Erard S, et al. Discrimination between maturity and composition of lunar soilsfrom integrated Clementine UV-visible/near-infrared data: Application to the Aristarchus Plateau. JGeophys Res,2000a,105(E4):9445-9455
    Le Mouélic S, Langevin Y, Erard S, et al. Discrimination between maturity and composition of lunar soilsfrom integrated Clementine UV-visible/near-infrared data: Application to the Aristarchus Plateau. JGeophys Res,2000b,105(E4):9445-9455
    Lucey P G, Hawke B R, Pieters C M, et al. A Compositional Study of the Aristarchus Region of the MoonUsing Near-Infrared Reflectance Spectroscopy. J Geophys Res,1986,91(B4): D344-D354
    Lucey P G, Taylor G J, Malaret E. Abundance and Distribution of Iron on the Moon. Science,1995,268(5214):1150-1153
    Lucey P G, Blewett D T, Hawke B R. Mapping the FeO and TiO2content of the lunar surface withmultispectral imagery. J Geophys Res,1998a,103(E2):3679-3699
    Lucey P G, Blewett D T, Hawke B R. Mapping the FeO and TiO2content of the lunar surfacemultispectral imagery. J Geophys Res,1998b,103(E2):3679-3699
    Lucey P G, Taylor G J, Hawke B R, et al. FeO and TiO2concentrations in the South Pole Aitken basin:Implications for mantle composition and basin formation. J Geophys Res,1998c,103(E2):3701-3708
    Lucey P G, Blewett D T, Jolliff B L. Lunar iron and titanium abundance algorithms based on finalprocessing of Clementine ultraviolet-visible images. J Geophys Res,2000a,105(E8):20297-20305
    Lucey P G, Blewett D T, Taylor G J, et al. Imaging of lunar surface maturity. J Geophys Res,2000b,105(E8):20377-20386
    Lucey P G. Mineral maps of the Moon. Geophys Res Lett,2004,31(8):
    Matsunaga T, Ohtake M, Haruyama J, et al. Discoveries on the lithology of lunar crater central peaks bySELENE Spectral Profiler. Geophys Res Lett,2008,35(23): L23201
    McCallum I S. A new view of the moon in light of data from Clementine and Prospector missions. EarthMoon Planets,1999,85-86(0):253-269
    McEwen A, Eliason E, Lucey P, et al. Summary of Radiometric Calibration and PhotometricNormalization Steps for the Clementine UVVIS Images. In: Lunar and Planetary Institute ScienceConference Abstracts.1998.1466
    McEwen A S, Robinson M S, Eliason E M, et al. Clementine Observations of the Aristarchus Region ofthe Moon. Science,1994,266(5192):1858-1862
    Murchie S, Kirkland L, Erard S, et al. Near-Infrared Spectral Variations of Martian Surface Materials fromISM Imaging Spectrometer Data. Icarus,2000,147(2):444-471
    Mustard J F, Pieters C M, Isaacson P J, et al. Compositional diversity and geologic insights of theAristarchus crater from Moon Mineralogy Mapper data. J Geophys Res,2011,116E00G12
    Nakamura R, Matsunaga T, Ogawa Y, et al. Ultramafic impact melt sheet beneath the South Pole-Aitkenbasin on the Moon. Geophys Res Lett,2009,36(22): L22202
    Neal C R, Taylor L A. Petrogenesis of mare basalts: A record of lunar volcanism. Geochim CosmochimActa,1992,56(6):2177-2211
    Nettles J W, Staid M, Besse S, et al. Optical maturity variation in lunar spectra as measured by MoonMineralogy Mapper data. J Geophys Res,2011,116E00G17
    Nimura T, Hiroi T, Pieters C M. An Integrated Model Utilizing the Modified Gaussian Model, aMineral-Mixing Model, and a Space-Weathering Model. In:39th Lunar and Planetary ScienceConference. League City, Texas: LPI Contribution2008.2392
    Nozette S, Rustan P, Pleasance L P, et al. The clementine mission to the moon-scientific overview.Science,1994,266(5192):1835-1839
    Ohtake M, Matsunaga T, Haruyama J, et al. The global distribution of pure anorthosite on the Moon.Nature,2009,461(7261):236-240
    Parente M, Bishop J L, Stansbery E. Deconvolution of Reflectance Spectra Using Nonlinear Least SquaresCurve Fitting: Application to Martian Meteorites. In:37th Annual Lunar and Planetary ScienceConference.2006.1535
    Pelkey S M, Mustard J F, Murchie S, et al. CRISM multispectral summary products: Parameterizingmineral diversity on Mars from reflectance. J Geophys Res,2007,112(E8): E08S14
    Pieters C M. Composition of the lunar highland crust from near-infrared spectroscopy. Rev Geophys,1986,24(3):557-578
    Pieters C M, Head J W, Sunshine J M, et al. Crustal diversity of the moon: Compositional analyses ofGalileo solid state imaging data. J Geophys Res,1993,98(E9):17127-17148
    Pieters C M, Staid M I, Fischer E M, et al. A Sharper View of Impact Craters from Clementine Data.Science,1994,266(5192):1844-1848
    Pieters C M, Tompkins S, Head J W, et al. Mineralogy of the mafic anomaly in the South Pole Aitkenbasin: Implications for excavation of the lunar mantle. Geophys Res Lett,1997,24(15):1903-1906
    Pieters C M, Tompkins S. The Distribution of Lunar Olivine/Troctolite Outcrops: Mineralogical Evidencefor Mantle Overturn? In: Lunar and Planetary Institute Science Conference Abstracts.1999a.1286
    Pieters C M, Tompkins S. Tsiolkovsky crater: A window into crustal processes on the lunar farside. JGeophys Res,1999b,104(E9):21935-21949
    Pieters C M, Head J W, Gaddis L, et al. Rock types of South Pole-Aitken basin and extent of basalticvolcanism. J Geophys Res,2001,106(E11):28001-28022
    Pieters C M, Boardman J, Buratti B, et al. The Moon Mineralogy Mapper (M-3) on Chandrayaan-1.Current Science,2009,96(4):500-505
    Pieters C M, Besse S, Boardman J, et al. Mg-spinel lithology: A new rock type on the lunar farside. JGeophys Res,2011,116E00G08
    Robinson M, Brylow S, Tschimmel M, et al. Lunar Reconnaissance Orbiter Camera (LROC) InstrumentOverview. Space Science Reviews,2010,150(1):81-124
    Roush T L, Singer R B. Gaussian Analysis of Temperature Effects on the Reflectance Spectra of MaficMinerals in the1-μm Region. J Geophys Res,1986,91(B10):10301-10308
    Sasaki S, Ishihara Y, Araki H, et al. Structure of the lunar South Pole-Aitken basin from Kaguya (SELENE)gravity/topography. In:41st Lunar and Planetary Science Conference. the Woodlands: Lunar andPlanetary Institute,2010.1691
    Shearer C K, Papike J J, Galbreath K C, et al. Exploring the lunar mantle with secondary ion massspectrometry: A comparison of lunar picritic glass beads from the Apollo14and Apollo17sites.Earth Planet Sci Lett,1991,102(2):134-147
    Shearer C K, Papike J J. Basaltic magmatism on the Moon: A perspective from volcanic picritic glassbeads. Geochim Cosmochim Acta,1993,57(19):4785-4812
    Shearer C K, Hess P C, Wieczorek M A, et al, Thermal and magmatic evolution of the moon, in NewViews of the Moon, Chantilly: Mineralogical Soc America,2006.365-518
    Shevchenko V, Chikmachev V, Pugacheva S. Structure of the South Pole-Aitken lunar basin. Solar SystRes,2007,41(6):447-462
    Singer R B. Near-Infrared Spectral Reflectance of Mineral Mixtures: Systematic Combinations ofPyroxenes, Olivine, and Iron Oxides. J Geophys Res,1981,86(B9):7967-7982
    Smith D E, Zuber M T, Neumann G A, et al. Initial observations from the Lunar Orbiter Laser Altimeter(LOLA). Geophys Res Lett,2010,37(18): L18204
    Snyder G A, Taylor L A, Neal C R. A chemical model for generating the sources of mare basalts:Combined equilibrium and fractional crystallization of the lunar magmasphere. Geochim CosmochimActa,1992,56(10):3809-3823
    Snyder G A, Taylor L A, Halliday A N. Chronology and petrogenesis of the lunar highlands alkali suite:Cumulates from KREEP basalt crystallization. Geochim Cosmochim Acta,1995,59(6):1185-1203
    Spudis P D, Reisse R A, Gillis J J. Ancient multiring basins on the moon revealed by Clementine laseraltimetry. Science,1994,266(5192):1848-1851
    Sunshine J M, Pieters C M, Pratt S F. Deconvolution of mineral absorption bands: An improved approach.Journal of Geophysical Research-Solid Earth and Planets,1990,95(B5):6955-6966
    Sunshine J M, Pieters C M. Estimating Modal Abundances From the Spectra of Natural and LaboratoryPyroxene Mixtures Using the Modified Gaussian Model. J Geophys Res,1993,98(E5):9075-9087
    Sunshine J M, Pieters C M. Determining the composition of olivine from reflectance spectroscopy. JGeophys Res,1998,103(E6):13675-13688
    Taylor G J. Time to Solidify an Ocean of Magma. Planetary Science Research Discoveries,2009,12:52-63
    Tompkins S, Pieters C M. Mineralogy of the lunar crust: Results from Clementine. Meteorit Planet Sci,1999,34(1):25-41
    Ueda Y, Hiroi T, Pieters C M, et al. Expanding the Modified Gaussian Model to Include the SpaceWeathering Effects: Estimation of the Weathering Degrees of Pulse-Laser Treated Olivine Samples.In: Lunar and Planetary Institute Science Conference Abstracts.2002.1950
    Warren P, Wasson J. The origin of KREEP. Rev Geophys,1979,17(1):73–88
    Warren P H. The magma ocean concept and lunar evolution. Annu Rev Earth Planet Sci,1985a,13201-240
    Warren P H. The magma ocean concept and lunar evolution. Annu Rev Earth Planet Sci,1985b,13(1):201-240
    Warren P H. Lunar anorthosites and the magma-ocean plagioclase-flotation hypothesis-importance ofFeO enrichment in the parent magma. Am Miner,1990,75(1-2):46-58
    Weitz C M, Head J W, III, Pieters C M. Lunar regional dark mantle deposits: Geologic, multispectral, andmodeling studies. J Geophys Res,1998,103(E10):22725-22759
    Wieczorek M, Phillips R. The "Procellarum KREEP Terrane": Implications for mare volcanism and lunarevolution. J Geophys Res,2000a,105(E8):20417-20430
    Wieczorek M A, Phillips R J. Lunar multiring basins and the cratering process. Icarus,1999,139(2):246-259
    Wieczorek M A, Phillips R J. The "Procellarum KREEP Terrane": Implications for mare volcanism andlunar evolution. Journal of Geophysical Research-Planets,2000b,105(E8):20417-20430
    Wieczorek M A, Zuber M T. A Serenitatis origin for the Imbrian grooves and South Pole-Aitken thoriumanomaly. J Geophys Res,2001,106(E11):27853-27864
    Wilson L, Head J W, III. Ascent and Eruption of Basaltic Magma on the Earth and Moon. J Geophys Res,1981,86(B4):2971-3001
    Wold S, Esbensen K, Geladi P. Principal component analysis. Chemometrics and Intelligent LaboratorySystems,1987,2(1–3):37-52
    Wu Y, Zheng Y, Zou Y, et al. A preliminary experience in the use of Chang'E-1IIM data. Planetary andSpace Science,2010,58(14-15):1922-1931
    Yamamoto S, Nakamura R, Matsunaga T, et al. Possible mantle origin of olivine around lunar impactbasins detected by SELENE. Nature Geosci,2010,3(8):533-536
    Yingst R A, Head J W. Volumes of lunar lava ponds in South Pole Aitken and Orientale Basins:Implications for eruption conditions, transport mechanisms, and magma source regions. J GeophysRes,1997,102(E5):10909-10931
    Yingst R A, Head J W. Geology of mare deposits in South Pole-Aitken basin as seen by ClementineUV/VIS data. J Geophys Res,1999,104(E8):18957-18979
    Yokota Y, Matsunaga T, Ohtake M, et al. Lunar photometric properties at wavelengths0.5-1.6mu macquired by SELENE Spectral Profiler and their dependency on local albedo and latitudinal zones.Icarus,2011,215(2):639-660
    Zisk S H, Hodges C A, Moore H J, et al. The Aristarchus-Harbinger region of the moon: Surface geologyand history from recent remote-sensing observations. Earth, Moon, and Planets,1977,17(1):59-99
    Zuber M T, Smith D E, Lemoine F G, et al. The shape and internal structure of the moon from theClementine mission. Science,1994,266(5192):1839-1843
    甘甫平,于艳梅,闫柏琨.月表形貌格局和物源特征的耦合性初步研究.国土资源遥感,2009,(04):14-18
    李泳泉,刘建忠,欧阳自远,等.月球表面岩石类型的分布特征:基于Lunar Prospector (LP)伽马射线谱仪探测数据的反演.岩石学报,2007,(05):1169-1174
    李湘眷,杨建峰,薛彬.改进的插值法用于干涉成像光谱仪影像条带噪音去除.光子学报,2010,(01):164-168
    法文哲,金亚秋.月球表面月壤中~3He含量分布的定量估算.中国科学(D辑:地球科学),2008,(02):167-176
    胡森,林杨挺.嫦娥一号IIM数据定标的改进方法.中国科学:物理学力学天文学,2011,(07):879-888
    凌宗成,张江,刘建忠,等.“嫦娥一号”干涉成像光谱仪数据FeO反演初步结果.科学通报,2010,(35):3373-3377
    凌宗成,张江,刘建忠,等.嫦娥一号干涉成像光谱仪数据TiO_2反演初步结果.科学通报,2011,(16):1257-1263
    薛彬,杨建峰,赵葆常.月球表面主要矿物反射光谱特性研究.地球物理学进展,2004,(03):717-720
    刘福江,乔乐,刘征,等.基于嫦娥一号干涉成像光谱仪吸收特征的月表钛含量评估.中国科学:物理学力学天文学,2010,(11):1316-1325
    吴昀昭,唐泽圣.嫦娥一号IIM数据应用处理流程分析.国土资源遥感,2009,(04):25-30
    吴昀昭,郑永春,邹永廖,等.嫦娥一号IIM数据处理分析与应用之一:全月表矿物吸收中心分布图.中国科学:物理学力学天文学,2010,(11):1343-1362
    杨佳,葛良全,熊盛青,等.利用CE1-GRS数据分析月表钍元素分布特征.核电子学与探测技术,2010,(04):581-584
    欧阳自运,天体化学1988,北京:科学出版社.93-145.
    欧阳自远.月球地质学.地球科学进展,1994,(02):80-81
    欧阳自远,邹永廖,李春来,等.月球某些资源的开发利用前景.地球科学,2002,(05):498-503
    欧阳自远.月球探测的进展与中国的月球探测.地质科技情报,2004,(04):1-5
    欧阳自远,邹永廖.月球的地质特征和矿产资源及我国月球探测的科学目标.国土资源情报,2004,(01):36-39
    赵葆常,杨建峰,薛彬,等.嫦娥一号干涉成像光谱仪的定标.光子学报,2010,(05):769-775
    郑永春,欧阳自远,王世杰,等.月壤的物理和机械性质.矿物岩石,2004,(04):14-19
    闫柏琨,甘甫平,王润生,等.基于光谱分解的Clementine UV/VIS/NIR数据月表矿物填图.国土资源遥感,2009,(04):19-24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700