斑马鱼p53蛋白与其自身mRNA相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
p53基因是迄今发现的与人类肿瘤相关性最高的肿瘤抑制基因,50%以上人类肿瘤疾病的发生与p53基因突变或功能失调有关。由p53基因编码的p53蛋白作为一种重要的转录调控因子参与细胞周期控制、细胞增殖与分化、细胞凋亡、发育等重要生命活动。正常情况下,细胞内p53通过泛素依赖的降解途径而维持在较低水平。在各种应激条件如DNA损伤、缺氧及营养缺乏等情况下,p53稳定性增强、富集并被激活、作为基因特异性调控因子调控与细胞周期控制、凋亡诱导、DNA损伤修复等相关的一系列靶基因的表达。p53蛋白本身的表达、稳定性及活性控制在细胞内受到多水平精细调控,包括转录水平、翻译水平及翻译后水平调控等。其中翻译水平调控是细胞面对应激状态的一种重要调节方式。前期的研究已表明,人和鼠的p53蛋白可以与其自身mRNA的5'UTR或3'UTR特异性结合增强或抑制其自身mRNA的翻译,存在翻译水平自调控现象。近年来更有研究发现,除自调控外,多种蛋白质因子可调控p53 mRNA的翻译,如HuR和RPL26蛋白可与p53 mRNA结合,增强其在应激刺激下的翻译水平,快速增加p53蛋白的表达量,从而保护细胞或有机体免受损伤。而在正常状态下,核仁素等蛋白通过与p53 mRNA结合可抑制p53 mRNA的翻译,从而维持p53蛋白的低水平表达。作为模式生物和抗肿瘤药物筛选模型的斑马鱼,其p53信号通路与人类p53信号通路调控机制极其一致,因此斑马鱼作为p53信号通路的高通量筛选模型,在其体内是否也存在p53蛋白与其自身mRNA的相互作用,这种相互作用对斑马鱼发育是否有影响及在应激条件下有何重要作用意义尚未见相关报道。
     本论文在此研究背景下,首先利用原核表达系统克隆表达了斑马鱼p53蛋白,通过体外紫外交联及免疫共沉淀(IP):RT-PCR技术证实重组表达的p53蛋白在体外能与其自身mRNA特异性结合。为进一步验证斑马鱼p53蛋白在体内是否存在自调控作用,我们构建了p53 mRNA的荧光素酶报告载体和斑马鱼p53蛋白真核表达载体,通过共转染p53 mRNA的荧光素酶报告载体和斑马鱼p53蛋白真核表达载体,在细胞水平,通过荧光素酶报告系统检测荧光素酶活性,证明在细胞内p53蛋白能与其身mRNA结合,并且在喜树碱(CPT)、UV等DNA损伤应激条件下,表现为荧光素活性增强,表明这种结合在应激条件下是增强翻译的。将上述质粒显微注射斑马鱼胚胎进行斑马鱼在体实验亦进一步证实二者在体内的相互作用,这种相互作用在应激处理时可增强p53的翻译表达,提示这种相互作用可能在应激状况下对斑马鱼正常发育起保护作用。
     我们的研究结果表明斑马鱼p53蛋白与其自身mRNA之间存在相互作用,并且这种相互作用对斑马鱼发育有重要影响。并且进一步阐明了斑马鱼的相应生物学过程与人的相似性,该研究将为从p53调控途径中寻找癌症治疗的新靶标提供理论基础和重要线索,同时为斑马鱼筛选平台的构建和进一步推广应用奠定基础。
The tumor suppressor p53 gene, which is an important factor involved in the occurrence and development of cancer, plays a key role in regulating the cell cycle, cell growth, and development. More than half of human malignancies are due to a mutation or functional disorder of the p53 gene. Under normal conditions, the expression of p53 protein is maintained at low levels through the ubiquitin degradation pathway. In response to various cellular stresses, such as DNA damage, hypoxia, or nutrient deprivation, the tumor suppressor gene produces p53 protein as a sequence-specific transcription factor to regulate expression of a series of target genes involved in governing cell cycle arrest, apoptosis, and DNA repair. The expression of p53 protein is regulated at different levels, including transcriptional regulation, translational regulation, and post-translational regulation.
     Translational regulation of p53 is an important mechanism involved in the response to various stresses. Studies have shown that p53 protein can bind with the 5'UTR or 3'UTR region localized at its cognate mRNA and repress its translation. The UTRs of both human and murine p53 are predicted to form stable stem-loop structures that are capable of inhibiting translation. Moreover, some protein factors may interact with the 5'UTR or 3'UTR domain of p53 mRNA, resulting in enhancement or decreasing in p53 translation. HuR and RPL26 protein have been shown to bind with the 3'UTR of p53 mRNA and regulate it by enhancing translation or increasing its stability. This type of regulation can protect cells or organisms against damage or abnormality.
     p53 protein is an important regulation factor that can bind to p53 mRNA to regulate its translation in human and murine. To determine if a similar interaction exists in zebrafish and if the interaction affects zebrafish development, we cloned and expressed p53 protein from zebrafish in Escherichia coli. The binding activity of p53 protein and its mRNA was determined by UVcross-linking and immunoprecipitation: RT-PCR analysis. And then the p53mRNA was cloned into the psiCHECK-2 vector, between the XhoI and Not I sites, immediatedly 3'downstream from the Renilla luciferase gene. The constructed luciferase reportor and eukaryotic expression vector for p53 were cotransfected into cells or were microinjected into zebrafish embryos. The luciferase activities were measured with Dual luciferase reporter system assay. Our results demonstrated that p53 protein could enhance luciferase translation by binding to its mRNA. Further experiments were carried out, immunoprecipitation: RT-PCR, microinjection of zebrafish showed that 53 protein could specifically bind to its own mRNA in zebrafish embryos. This interation play important role in zebrafish development.
     Our result demonstrated that p53 protein could specifically bind to its own mRNA in zebrafish embryos. p53 protein could enhance mRNA translation in cells and in zerafish embryos under stresses. This interatction may be an important protective mechanism for zebrafish development facing stresses. Our result also provided evidences that zebrafish may be developed as useful model for studying the anti-tumor agents targeting p53 signal pathway.
引文
顾颖,李延,陈蔚丰,尹大强,赵庆顺.斑马鱼p53基因结构比对分析及其在生态毒理学中的应用.生态毒理学报,2006,01(1)45-51
    黄洁,刘向宇,朱卫国.p53修饰及其相互作用的研究进展.科学通报,2009,54(18):2746-2758.
    梁利群,孙孝文,等.外源基因导入鲤(Crprinuscarpio)受精卵最佳时期的研究.国水产科学,1996,3(1):11-15
    刘珍,田颖.P53调控机制的研究进展.CONTINUING MEDICAL EDUCATION,2007,21(34):77-78.
    牛荣丽,阎松,杜长青等.抗肿瘤新药研究的新型模式生物斑马鱼.中国药杂志,2006,15(7):465-500.
    王跃祥,钟涛,宋后燕.斑马鱼发育遗传学研究进展.国外医学遗传学分册,2004,2(4):220-224.
    王祯莲,曹亚.P53翻译后修饰研究进展.国际病理科学与临床杂志,2005,25(5):390-393
    萧东,丁健.肿瘤新生血管生成抑制剂的研究进展.中国新药杂志,2001,10(4):248-251.
    熊超亮,黄缘.p53基因生物学特性及其在胃肠道肿瘤中的研究进展.世界华消化杂志,2008,16(32):3648-3653
    杨少丽,郑兰红,林秀坤等.小分子干扰RNA对斑马鱼VEGF基因的沉默作用.高技术通讯,2007,17(9):23-38.
    张莹,王建.蛋白质翻译后修饰及定位对p53活性的调节作用.生命科学,2007,19(5):502-505.
    赵蕾,赵彦林,赵士富.p53蛋白泛素化修饰的研究进展.生命科学研究,2004,8(4):44-47
    A.K. Patra, R. Mukhopadhyay, R. Mukhija, A. Krishnan, L.C. Garg, A.K. Panda, Optimization of inclusion body solubilization and renaturation of recombinant human growth hormone from Escherichia coli, Protein Expr Purif.18 (2000) 182-192.
    A.S. Glass, R. Dahm, The zebrafish as a model organism for eye development, Ophthalmic Res.36 (2004) 4-24.
    A.W. Machines, A. Amsterdam, C.A. Whittaker, N. Hopkins, J.A. Lees, Loss of p53 synthesis in zebrafish tumors with ribosomal protein gene mutations, Proc Natl Acad Sci U S A.105 (2008) 10408-10413.
    Achison M, Hupp TR.Hypoxia attenuates the p53 response to cellular damage.Oncogene,2003,22(22):3431-3440.
    Amatruda JF. Zebrafish as a cancer model system. Cancer Cell,2002,1(3):229-231.
    Appella E, Anderson CW. Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem,2001,268(10):2764-72.
    Arnold J. Levine and Moshe Oren,The first 30 years of p53:growing ever more complex, Nature Reviews Cancer,2009,9,749-758
    Baker S J,Fearon ER, Nigro JM, et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas.Science,1989,244 (4901):217-221
    Barlow C, Dennery PA, Shigenaga MK, Smith MA, Morrow JD, Roberts LJ 2nd, Wynshaw-Boris A, Levine RL.Loss of the ataxia-telangiectasia gene product causes oxidative damage in target organs. Proc Natl Acad Sci U S A,1999,96(17):9915-9.
    Benoit V, Hellin AC, Huygen S, Gielen J, Bours V, Merville MP.Additive effect between NF-kappaB subunits and p53 protein for transcriptional activation of human p53 promoter. Oncogene.2000,19(41):4787-94.
    Bensaad K, Tsuruta A, Selak MA, Vidal MN,Nakano K, Bartrons R, Gottlieb E, Vousden KH.TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell,2006,126(1):107-120
    Bode AM, Dong Z.Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer,2004,4(10):793-805.
    Brooks CL, Gu W. Ubiquitination, phosphorylation and acetylation:the molecular basis for P53 regulation. Curr Opin Cell B iol,2003,15 (2):164-171.
    Buschmann T, Adler V, Matusevich E, Fuchs SY, Ronai Z. p53 phosphorylation and association with murine double minute 2, c-Jun NH2-terminal kinase, p14ARF, and p300/CBP during the cell cycle and after exposure to ultraviolet irradiation. Cancer Res,2000,60(4):896-900.
    C. Chakraborty, C.H. Hsu, Z.H. Wen, C.S. Lin, G Agoramoorthy,, Zebrafish:a complete animal model for in vivo drug discovery and development, Curr Drug Metab.10(2009)116-124.
    C. Du, R. Niu, E. Chu, P. Zhang, X. Lin, Sequence analysis and functional study of thymidylate synthase from zebrafish, Danio rerio, J Biochem.139 (2006) 913-920.
    C.B. Kimmel, W.W. Ballard, S.R. Kimme, B Ullmann, T.F. Schilling, Stages of embryonic development of the zebrafish, Dev. Dyn.203 (1995) 253-310.
    Capowski EE, Tracy JW. Ribosomal RNA processing and the role of SmMAK16 in ribosome biogenesis in Schistosoma mansoni. Molecular Biochemical Parasitology.2003,132(2):67-74.
    Chu E, Vonna V, Koeller DM, et al. Identification of an RNA binding site for human thymidylate synthase. Proc Natl Acad Sci USA.1993,90(2):517-521.
    Chun AC, Jin DY. Transcriptional regulation of mitotic checkpoint gene MAD1 by p53. J Biol Chem 2003; 278(39):37439-37450.
    Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell,2006,126(1):121-134
    D. Reisman, K. Boggs.Transcriptional regulation of the p53 tumor suppressor gene:a potential target for cancer therapeutics.Recent Pat DNA Gene Seq,2007 1 (3)176-185.
    D. Traver, P. Herbomel, E.E. Patton, R.D. Murphey, J.A. Yoder, G.W. Litman, A. Catic, C.T. Amemiya, L.I. Zon, N.S. Trede, The zebrafish as a model organism to study development of the immune system, Adv Immunol.81 (2003) 253-330.
    D.E. Fisher, The p53 tumor suppressor: critical regulator of life & death in cancer, Apoptosis.6 (2001) 7-15.
    E. Chu, D. Voeller, D.M. Koeller, J.C. Drake, C.H. Takimoto, G.F. Maley, F. Maley, C.J. Allegra, Identification of an RNA binding site for human thymidylate synthase,Proc Natl Acad Sci U S A.90 (1993) 517-521.
    Finlay CA, Hinds PW, Tan TH, Eliyahu D, Oren M, Levine AJ.Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life. Mol Cell Biol.1988,8(2):531-9.
    Fishman MC. Zebrafish:the Canonical Vertebrate. Science,2001,294(5545): 1290-1291.
    Fouquet B, Weinstein BM, Serluca FC, et al. Vessel patterning in the embryo of the zebrafish: guidance by notochord. Der Biol.1997,183(1):37-48.
    Francoise RM, Tina G, Yaacov BD, et al. Heterogeneous nuclear rionucleoprotein A1 and regulation of the xenobiotic-inducible gene cyp2a5. Molecular Pharmacology.2002,61(4):795-799.
    G. Hu, J. Shen, L. Cheng, D. Xiang, Z. Zhang, M. He, H. Lu, S. Zhu, M. Wu, Y. Yu, X. Wang, W. Han, Purification of a bioactive recombinant human Reg Ⅳ expressed in Escherichia coli, Protein Expr Purif.69(2010) 186-190.
    Gartel AL, Tyner AL. The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther 2002; 1(2):639-649
    Gering M, Patient R. Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos. Dev Cell.2005,8:389-400
    Gonzalez-Herrera IG, Prado-Lourenco L, Teshima-Kondo S, Kondo K, Cabon F, Arnal JF, Bayard F, Prats AC.IRES-dependent regulation of FGF-2 mRNA translation in pathophysiological conditions in the mouse. Biochem Soc Trans, 2006,34(Pt 1):17-21.
    Grossman SR, DeatoME, Brignone C, et al. Polyubiquitination of p53 by a ubiquitin ligase activity of p300.Science,2003,300(5617):342-344.
    Habech H, Odenthal J, Walderich B, et al. Analysis of a zebrafish VEGF receptor mutant reveals specific disruption of angiogenesis. Curr Biol.2002,12(16): 1405-1412.
    Hellen CU, Sarnow P. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev,2001,15(13):1593-612.
    Hinds P, Finlay C, Levine AJ.Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J Virol,1989,63(2):739-46.
    Innocente SA, Abrahamson JL, Cogswell JP, Lee JM. p53 regulates a G2 checkpoint through cyclin B1.Proc Natl Acad Sci U S A,1999; 96(5):2147-2152
    Isogai S, Lawson ND, Torrealday S, Horiguchi M, Weinstein BM. Angiogenic network formation in the developing vertebrate trunk. Development.2003,130: 5281-5290
    J. Embury, D.Klein, A. Pileggi, M. Ribeiro, S. Jayaraman, R.D. Molano, C. Fraker, N. Kenyon, C. Ricordi, L. Inverardi, R.L. Pastori, Proteins linked to a protein transduction domain efficiently transduce pancreatic, Diabetes.50 (2001) 1706-1713.
    J. Zhang, X. Chen, Posttranscriptional regulation of p53 and its targets by RNA-binding proteins, Curr Mol Med,2008,8(8)845-849.
    J.L. Lohr, H.J Yost, Vertebrate model systems in the study of early heart development: Xenopus and zebrafish, Am J Med Genet.97 (2000) 248-257.
    K. Mazan-Mamczarz, S. Galban, I. Lopez de Silanes, J.L. Martindale, U. Atasoy, J.D. Keene, M. Gorospe.RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation, Proc Natl Acad Sci U S A,2003,100 (14) 8354-8359.
    Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW.Participation of p53 protein in the cellular response to DNA damage. Cancer Res,1991,51(23 Pt 1):6304-11.
    Kimura T, Gotoh M, Nakamura Y, Arakawa H.hCDC4b, a regulator of cyclin E, as a direct transcriptional target of p53.Cancer Sci,2003,94(5):431-436.
    Kress, M., May, E., Cassingena, R.& May, P. Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum. J. Virol,1979,31,472-483.
    L. Fu, M.D. Minden, S. Benchimol, Translational regulation of human p53 gene expression, EMBO J.15 (1996) 4392-4401.
    Lahav G, Rosenfeld N, Sigal A, et al. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet,2004,36(2):147-50.
    Lamb P, Crawford L. Characterization of the human p53 gene. Mol Cell Biol,1986, 6(5):1379-1383.
    Lane, D. P.& Crawford, L. V. T antigen is bound to a host protein in SV40-transformed cells. Nature,1979,278,261-263.
    Langenau DM, Feng H, et al., Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA.2005,102(17):6068-6073.
    Langheinrich U, Hennen E, Stott G, et al. Zebrafish as a model organism for the identification and characterization of drugs and genes affecting p53 signaling. Curr Biol.2002,12(23):2023-2028.
    Langheinrich U. Zebrafish: a new model on the pharmaceutical catwalk. Biol Essays, 2003,25(9):904-912.
    Li L, Liao J. TSG101/MDM2 regulatory loop modulates MDM2 degradation and MDM2/p53 feedback control. Proc Natl Acad Sci USA.2001,98(4):1619-1624.
    Liao W, Bisgrove BW, Sayer H, et al. The zebrafish gene cloche acts upstream of a flk-1 homologue to regulate endothelial cell differentiation. Development, 1997,124(2):381-389.
    Linzer, D. I.& Levine, A. J. Characterization of a 54K dalton cellular SV40 tumor antigen present inSV40-transformed cells and uninfected embryonal carcinoma cells. Cell,1979,17,43-52.
    M. Koeppel, S.J. van Heeringen, L. Smeenk, A.C. Navis, E.M. Janssen-Megens, M. Lohrum. The novel p53 target gene IRF2BP2 participates in cell survival during the p53 stress response, Nucleic Acids Res,2009,37 (2) 322-335.
    M. Koeppel, S.J. van Heeringen, L. Smeenk, A.C. Navis, E.M. Janssen-Megens, M. Lohrum, The novel p53 target gene IRF2BP2 participates in cell survival during the p53 stress response, Nucleic Acids Res.37 (2009) 322-335.
    M. Takagi, M.J. Absalon, K..G. McLure, M.B. Kastan. Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin.Cell,2005,123 (1) 49-63.
    M.C. Morris, J.Depollier, J. Mery F. Heitz, G Divita, A peptide carrier for the delivery of biologically active proteins into mammalian cells, Nat Biotechnol.19 (2001)1173-1176.
    M.F. Lavin, N. Gueven, The complexity of p53 stabilization and activation, Cell Death Differ,2006,13(6)941-950.
    M.J. Halaby, D.Q. Yang.p53 translational control:a new facet of p53 regulation and its implication for tumorigenesis and cancer therapeutics, Gene,200007,395 (1) 1-7.
    Maya R, Balass M, Kim ST,et al. ATM-dependent phosphorylation of Mdm2 on serine 395:role in p53 activation by DNA damage. Genes Dev,2001, 15(9):1067-77.
    Melero, J. A., Stitt, D. T., Mangel, W. F.& Carroll, R. B. Identification of new polypeptide species (48-55K) immunoprecipitable by antiserum to purified large T antigen and present in SV40-infected and-transformed cells. Virology,1979,93, 466-480.
    Miller SJ, Suthiphongchai T, Zambetti GP, Ewen ME. p53 binds selectively to the 5' untranslated region of cdk4, an RNA element necessary and sufficient for transforming growth factor beta-and p53-mediated translational inhibition of cdk4. Mol Cell Biol,2000,20(22):8420-31.
    N. Allende-Vega, M.K. Saville, Targeting the ubiquitin-proteasome system to activate wild-type p53 for cancer therapy, Semin Cancer Biol. (2009).
    Nguyen M, Shing Y, Folkman J. Quantitation of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane. Microvas Res.1994,47(1):31-40.
    Oda K, Arakawa H, Tanaka T, Mat suda K, Tanikawa C, Mori T, Nishimori H, Tamai K, TokinoT, Nakamura Y, Taya Y. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell, 2000,102(6):849-862.
    Oren M, Damalas A, Gottlieb T, et al. Regulation of p53:intricate loops and delicate balances. Ann N Y Acad Sci,2002,973:374-83.
    Parng C, Seng WL, Senino C, et al. Zebrafsh: a preclinical model for drug screening. patterning defect in the zebrafish. Nat Med.1995,1(11):1143-1147.
    Pichler FB, Laurenson S, Williams LC, et al. Chemical discovery and global gene expression analysis in zebrafish. Nat Biotechnol,2003,21(8):879-883
    Ready T. Fishman takes zebrafish to Novartis. Nat Med,2002,8(6):539.
    Rocha S, Martin AM, Meek DW, Perkins ND. p53 represses cyclin D1 transcription through down regulation of Bcl-3 and inducing increased association of the p52 NF-kappaB subunit with histone deacetylase 1. Mol Cell Biol,2003;23(13):4713-4727
    S. Alsafadi, S. Tourpin, F. Andre, G. Vassal, J.C. Ahomadegbe, P53 Family:At the Crossroads in Cancer Therapy, Curr Med Chem.,2009,16 (32) 4328-44.
    S.M. Singh, A.K. Panda, Solubilization and refolding of bacterial inclusion body proteins, J Biosci Bioeng.99 (2005) 303-310.
    Sakaguchi K, Sakamoto H, Lewis MS, Anderson CW, Erickson JW, Appella E, Xie D. Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53. Biochemistry,1997,36(33):10117-24.
    Savitsky K, Sfez S, Tagle DA, et al. The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Hum Mol Genet,1995,4(11):2025-32.
    Serbedzija GN, Flynne E, Willett CE. Zebrafish angiogenesis:A new model for drug screening. Angiogenesis.1999,3(4):353-359.
    Shang Y, Hu X, DiRenzo J, Lazar MA, et al. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell,2000,103(6):843-852.
    Sharma D, Fondell JD. Ordered recruitment of histone acetyltransferases and the TRAP/mediator complex to thyroid hormone-responsive promoters in vivo. Proc Natl Acad Sci USA,2002,99:7934-7939.
    Smith, A. E., Smith, R.& Paucha, E. Characterization of different tumor antigens present in cells transformed by simian virus 40. Cell,1979,18,335-346.
    Soussi T, Caron de Fromentel C, Mechali M, May P, Kress M. Cloning and characterization of a cDNA from Xenopus laevis coding for a protein homologous to human and murine p53. Oncogene,1987,1(1):71-8.
    Spencer VA, Sun JM, Li L, et al. chromatin immunoprecipitation: a tool for studying histone acetylation and transcription factor binding. Methods.2003, 67-75.
    Spitsbergen JM, Tsai HW, Reddt A, et al. Neoplasia in zebrafish (Danio rerio) treated with 7,12-dimethylbenz[a] anthracene by two exposure routes at different developmental stages. Toxicol Pathol.2000,28 (5):705-715.
    Stern HM, Zon Li. Cancer genetics and drug discovery in the zebrafish. Nat Rev Cancer.2003,3(7):533-539.
    Stuart ET, Haffner R, Oren M, Gruss P.Loss of p53 function through PAX-mediated transcriptional repression. EMBO J,1995,14(22):5638-45.
    T.M. Jorn Mosnerl, Negative feedback regulation of wild-type p53 biosynthesis, EMBO J.14 (1995) 4442-9.
    Thisse C, Neel H, Thisse B, et al. The Mdm2 gene of zebrafish (Danio rerio): preferential expression development of neural and muscular tissues, and absence of tumor formation after overexpression of its cDNA during early embryogenesis. Differentiation.2000,66 (2-3):61-70.
    Thisse C, Zon Li. Organogenesis heart and blood formation from the zebrafish point of view. Science,2002,295(5554):457-462.
    Toledo F,Wahl GM. Regulating the p53 pathway:in vitro hypotheses, in vivo veritas.Nat Rev Cancer,2006,6 (12):909-923.
    Walter RB, Kaziznis S. Xiphophorus interspecies hybrids as genetic models of induced neoplasia. ILAR J.2001,42(4):299-321.
    Wang YH, Tsay YG, Tan BC, Lo WY, Lee SC.Identification and characterization of a novel p300-mediated p53 acetylation site, lysine 305. J Biol Chem,2003,278(28):25568-76.
    Wang Z, Niu R, Lin X, et al. Acetyl-oligochitosacchride is a potent angogentic inhibitor. Biochem Biophys Res Commu.2007,357:26-31.
    Weinstein B. Vascular cell biology in vivo: a new piscine paradigm. Trends Cell Biol. 2002,12 (9):439-445.
    Weinstein BM, Stemple DL, Driever W, et al. a localized heritable vascular patterning defect in the zebrafish. Nat Med,1995,1(11):1143-7.
    Westerfield M. The Zebrafish Book. Eugene OR, University of Oregon Press,1995
    X. Lin, L.A. Parsels, D.M. Voeller, C.J. Allegra, GF. Maley, F. Maley, E. Chu, Characterization of a cis-acting regulatory element in the protein coding region of thymidylate synthase mRNA, Nucleic Acids Res.28 (2000) 1381-1389.
    Xiao G, Chicas A, Olivier M, Taya Y, Tyagi S, Kramer FR, Bargonetti J.A DNA damage signal is required for p53 to activate gadd45. Cancer Res,2000, 60(6):1711-9.
    Xirodimas DP, Chisholm J, Desterro JM, et a.l P14ARF promotes accumulation of SUMO-1 conjugated (H)Mdm2.FEBS Lett,2002,528(1-3):207-211.
    Xu Y. Regulation of p53 responses by post-translational modifications. Cell Death Differ,2003,10 (4):4002403.
    Yamagiwa Y, Marienfeld C, Meng F, Holcik M, Patel T.Translational regulation of x-linked inhibitor of apoptosis protein by interleukin-6:a novel mechanism of tumor cell survival. Cancer Res,2004,64(4):1293-8.
    Yang DQ, Halaby MJ, Zhang Y.The identification of an internal ribosomal entry site in the 5'-untranslated region of p53 mRNA provides a novel mechanism for the regulation of its translation following DNA damage. Oncogene,2006,25(33):4613-9.
    Yang XJ. Multisite protein modification and intramolecular signaling. Oncogene, 2005,24(10):1653-62.
    Zheng L, Ling P, Wang Z, et al. A novel polypeptide from shark cartilage with potent anti-angiogenic activity. Cancer Biol Ther.2007,6(5):775-780.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700