泛素羧基端水解酶UCH家族水解反应动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在蛋白质的泛素-蛋白酶体降解途径中,蛋白质的泛素化与去泛素化是一个极其复杂而关键的过程。泛素羧基端水解酶可特异性地切除泛素羧基端融合的氨基酸或肽链,无论从结构和功能上讲,都可以说是大量去泛素化酶中极具有代表性的一个家族。为了研究UCH家族在去泛素化反应中是否具有底物特异性的问题,我们将泛素第45位的苯丙氨酸突变为色氨酸(Ub~(F45W)),并在此基础上于原核表达系统中构建一系列在泛素羧基端融合的第一个残基存在差异的肽段(Ub~(F45W)-Xaa-His6 tag)作为酶切反应的底物。在反应中止后用Ni柱亲和层析的方法除去反应体系中带有His6标记的蛋白质,然后通过荧光测定反应产物Ub~(F45W)的浓度,进而定量计算出不同泛素羧基端水解酶的酶解活力。实验结果显示, UCH-L1,UCH37对于X位不同的泛素融合蛋白是具有底物选择性并且彼此间存在差异,而UCH-L3则不具有底物选择性。
Ubiquitin C-terminal hydrolases (UCHs) belong to a representative family of deubiquitinating enzymes (DUBs), which specifically cleave ubiquitin (Ub) chains or extensions. Here we describe a convenient method by the subustrates of Phe45Trp Ub-fusion proteins (Ub~(F45W)-Xaa) for characterizing substrate specificities of various UCHs. After removal of the His6-tagged proteins by Ni-NTA affinity, the enzymatic activities of the UCHs are quantitatively determined by fluorescence assay of the Ub~(F45W) product. The results suggest that three UCHs, UCH-L1, UCH-L3 and UCH37 have discrimination in their substrate specificities for the Ub extension proteins. This method may also be applicable to testing the substrate specificities of other DUBs.
引文
[1] Amerik A. Y., Hochstrasser M., Mechanism and function of deubiquitinating enzymes, Biochim Biophys Acta, 2004, 1695(1-3): 189-207
    [2] Zhang, Z. J., Burgunder J. M., An X. K., Wu Y., Chen W. J., Zhang J. H., Wang Y. C., Xu Y. M., Gou Y. R., Yuan G. G., Mao X. Y., Peng R., Lack of evidence for association of a UCH-L1 S18Y polymorphism with Parkinson's disease in a Han-Chinese population, Neurosci Lett, 2008,442(3): 200-202
    [3] Yasuda T., Nihira T., Ren Y. R., Cao X. Q., Wada K., Setsuie R., Kabuta T., Wada K., Hattori N., Mizuno Y., Mochizuki H., Effects of UCH-L1 on alpha-synuclein over-expression mouse model of Parkinson's disease, J Neurochem, 2009, 108(4): 932-944
    [4] Wang J., Zhao C. Y., Si Y. M., Liu Z. L., Chen B., Yu L., ACT and UCH-L1 polymorphisms in Parkinson's disease and age of onset, Mov Disord, 2002, 17(4): 767-771
    [5] Son O. L., Kim H. T., Ji M. H., Yoo K. W., R hee M., Kim C. H., Cloning and expression analysis of a Parkinson's disease gene, uch-L1, and its promoter in zebrafish, Biochem Biophys Res Commun, 2003, 312(3): 601-607
    [6] Setsuie R., Wada K., The functions of UCH-L1 and its relation to neurodegenerative diseases, Neurochem Int, 2007, 51(2-4): 105-111
    [7] Meray R. K., Lansbury P. T. Jr., Reversible monoubiquitination regulates the Parkinson disease-associated ubiquitin hydrolase UCH-L1, J Biol Chem, 2007, 282: 10567-10575
    [8] Liu Y., Fallon L., Lashuel H. A., Liu Z., Lansbury P. T. Jr., The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility, Cell, 2002, 111(2): 209-218
    [9] Kurihara L. J., Kikuchi T., Wada K., Tilghman S. M., Loss of Uch-L1 and Uch-L3 leads to neurodegeneration, posterior paralysis and dysphagia, Hum Mol Genet, 2001, 10: 1963-1970
    [10] Hasegawa K., Funayama M., Matsuura N., Furusawa H., Sakai F., Kowa H., Obata F., Analysis of alpha-synuclein, parkin, tau, and UCH-L1 in a Japanese family with autosomal dominant parkinsonism, Eur Neurol, 2001, 46(1): 20-24
    [11] Galter D., Westerlund M., Belin A. C., Olson L., DJ-1 and UCH-L1 gene activity patterns in the brains of controls, Parkinson and schizophrenia patients and in rodents, Physiol Behav, 2007, 92: 46-53
    [12] Elbaz A., Levecque C., Clavel J., S18Y polymorphism in the UCH-L1 gene and Parkinson's disease: evidence for an age-dependent relationship, Mov Disord, 2003, 18(2): 130-137
    [13] Carmine B. A., Westerlund M., Bergman O., Nissbrandt H., Lind C., Sydow O., Galter D., S18Y in ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) associated with decreased risk of Parkinson's disease in Sweden. Parkinsonism Relat Disord, 2007,13(5): 295-298
    [14] Choi J., Levey A. I., Weintraub S. T., Rees H. D., Gearing M., Chin L. S., Li L., Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson's and Alzheimer's diseases, J Biol Chem, 2004, 279(13): 13256-64
    [15] Zhang J., Hattori N., Leroy E., Morris H. R., Kubo S. I., Kobayashi T., Wood N. W., Polymeropoulous M. H., Mizuno Y., Association between a polymorphism of ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) gene and sporadic Parkinson's disease[Parkinsonism Relat Disord 6(4)(2000)195-197], 2002, 9(2): 127
    [16] Kwon J.,Kikuchi T., Setsuie R., Ishii Y., Kyuwa S., Yoshikawa Y., Characterization of the testis in congenitally ubiquitin carboxy-terminal hydrolase-1 (Uch-L1) defective (gad) mice, Exp Anim, 2003, 52(1): 1-9
    [17] Liu Y., Lashuel H. A., Choi S., Xing X. C., Case A., Ni J., Yeh L. A., Cuny G. D., Stein R. L., Lansbury Jr P. T., Discovery of inhibitors that elucidate the role of UCH-L1 activity in the H1299 lung cancer cell line, Chem Biol, 2003, 10(9): 837-846
    [18] Shi Q., Tao E., An Ile93Met substitution in the UCH-L1 gene is not a disease-causing mutation for idiopathic Parkinson's disease, Chin Med J (Engl), 2003, 116: 312-313
    [19] Ardley H. C., Scott G. B., Rose S. A., Tan N. G., Robinson P. A., UCH-L1 aggresome formation in response to proteasome impairment indicates a role in inclusion formation in Parkinson's disease, J Neurochem, 2004, 90: 379-391
    [20] Bonin M., Poths S., Osaka H., Wang Y. L., Wada K., Riess O., Microarray expression analysis of gad mice implicates involvement of Parkinson's disease associated UCH-L1 in multiple metabolic pathways, Brain Res Mol Brain Res, 2004, 126(1): 88-97
    [21] Li Z., Melandri F., Berdo I., Jansen M., Hunter L., Wright S., Valbrun D., Figueiredo-Pereira M. E., Delta12-Prostaglandin J2 inhibits the ubiquitin hydrolase UCH-L1 and elicits ubiquitin-protein aggregation without proteasome inhibition, Biochem Biophys Res Commun, 2004, 319(4): 1171-1180
    [22] Das C., Hoang Q. Q., Kreinbring C. A., Luchansky S. J., Meray R. K., Ray S. S., Lansbury P. T., Ringe D., Petsko G. A., Structural basis for conformational plasticity of the Parkinson's disease-associated ubiquitin hydrolase UCH-L1, Proc Natl Acad Sci U S A, 2006, 103(12): 4675-4680
    [23] Gong B., Cao Z. X., Zheng P., Vitolo O. V., Liu S. M., Staniszewski A., Moolman D., Zhang H., Shelanski M., Arancio O., Ubiquitin hydrolase Uch-L1 rescues beta-amyloid-induced decreases in synaptic function and contextual memory, Cell, 2006, 126(4): 775-788
    [24] Orojan I., Szigeti C., Varszegi S., Dobo E., Gulya K., Dithranol abolishes UCH-L1 immunoreactivity in the nerve fibers of the rat orofacial skin, Brain Res, 2006, 1121: 216-220
    [25] Setsuie R., Wang Y. L., Mochizuki H., Osaka H., Hayakawa H., Ichihara N., Li H., Furuta A., Sano Y., Sun Y. J., Kwon J., Kabuta T., Yoshimi K., Aoki S., Mizuno Y., Noda M., Wada K., Dopaminergic neuronal loss in transgenic mice expressing the Parkinson's disease-associated UCH-L1 I93M mutant, Neurochem Int, 2007, 50(1): 119-129
    [26] Kabuta T., Furuta A., Aoki S., Furuta K., Wada K., Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy, J Biol Chem, 2008, 283: 23731-23738
    [27] Kabuta T., Setsuie R., Mitsui T., Kinugawa A., Sakurai M., Aoki S., Uchida K., Wada K., Aberrant molecular properties shared by familial Parkinson's disease-associated mutant UCH-L1 and carbonyl-modified UCH-L1, Hum Mol Genet, 2008, 17(14): 1482-1496
    [28] Kabuta T., Wada K., Insights into links between familial and sporadic Parkinson's disease: physical relationship between UCH-L1 variants and chaperone-mediated autophagy, Autophagy, 2008,4: 827-829
    [29] Kyratzi E., Pavlaki M., Stefanis L., The S18Y polymorphic variant of UCH-L1 confers an antioxidant function to neuronal cells, Hum Mol Genet, 2008, 17: 2160-2171
    [30] Liu J., Jiang Y. G., Huang C. Y., Fang H. Y., Fang H. T., Pang W., Depletion of intracellular zinc down-regulates expression of Uch-L1 mRNA and protein, and CREB mRNA in cultured hippocampal neurons, Nutr Neurosci, 2008, 11(3): 96-102
    [31] Liu Y., Wu H., Wang S., Liu Y ., Zhao Z., Zhang X., Li R., Guo M., Zhang Z., Detection of UCH-L1 expression by pre-embedding immunoelectron microscopy with colloidal gold labeling in diseased glomeruli, Ultrastruct Pathol, 2008, 32(1): 5-9
    [32] Liu Y., Wu J., Wu H., Wang T., Gan H., Zhang X., Liu Y., Li R., Zhao Z., Chen Q., Guo M., Zhang Z., UCH-L1 expression of podocytes in diseased glomeruli and in vitro, J Pathol, 2008, PMID: 19214988
    [33] Sun J. H., Shang X., Tian Y., Zhao W., He Y., Chen K., Cheng H., Zhou R.,Ubiquitin C-terminal hydrolase-L1 (Uch-L1) correlates with gonadal transformation in the rice field eel, Febs J, 2008, 275(2): 242-249
    [34] Sun J. H., Ying M., Li H., Shang X., He Y., Chen K., Cheng H. H., Zhou R. J., Role of UCH-L1/ubiquitin in acute testicular ischemia-reperfusion injury, Biochem Biophys Res Commun, 2008, 366(2): 539-544
    [35] Tan Y. Y., Zhou H. Y., Wang Z. Q., Chen S. D., Endoplasmic reticulum stress contributes to the cell death induced by UCH-L1 inhibitor, Mol Cell Biochem, 2008, 318: 109-115
    [36] Walters B. J., Campbell S. L., Chen P. C., Taylor A. P., Schroeder D. G., Dobrunz L. E., Artavanis-Tsakonas K., Ploegh H. L., Wilson J. A., Cox G. A., Wilson S.M., Differential effects of Usp14 and Uch-L1 on the ubiquitin proteasome system and synaptic activity, Mol Cell Neurosci, 2008, 39(4): 539-548
    [37] Meyer-Schwesinger C., Meyer T. N., Münster S., Klug P., Saleem M., Helmchen U., Stahl R.A., A new role for the neuronal ubiquitin C-terminal hydrolase-L1 (UCH-L1) in podocyte process formation and podocyte injury in human glomerulopathies, J Pathol, 2009, 217(3): 452-464
    [38] Rolén U., Freda E., Xie J., Pfirmann T., Frisan T., Masucci M. G., The Ubiquitin C-terminal Hydrolase UCH-L1 regulates B-cell proliferation and integrin activation, J Cell Mol Med, 2008, PMID: 18798868
    [39] Kim H. J., Kim Y. M., Lim S., Nam Y. K., Jeong J., Kim H. J., Lee K. J., Ubiquitin C-terminal hydrolase-L1 is a key regulator of tumor cell invasion and metastasis, Oncogene, 2009, 28(1): 117-127
    [40] Butterworth M. B., Edinger R. S., Ovaa H., Burg D., Johnson J. P., Frizzell R. A., The deubiquitinating enzyme UCH-L3 regulates the apical membrane recycling of the epithelial sodium channel, J Biol Chem, 2007, 282(52): 37885-93
    [41] Yao T., Song L., Xu W., DeMartino G. N., Florens L., Swanson S. K., Washburn M. P., Conaway R. C., Conaway J. W., Cohen R. E., Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1, Nat Cell Biol, 2006, 8(9): 994-1002
    [42] Qiu X. B., Ouyang S. Y., Li C. J., Miao S., Wang L., Goldberg A.L., hRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37, Embo J, 2006, 25(24): 742-53
    [43] Hamazaki J., Iemura S., Natsume T., Yashiroda H., Tanaka K., Murata S., A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes, Embo J, 2006, 25(19): 4524-36
    [44] Yao T., Song L., Jin J. J., Cai Y., Takahashi H., Swanson S. K., Washburn M. P., Florens L., Conaway R. C., Cohen R. E., Conaway J. W., Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex, Mol Cell, 2008, 31(6): 909-917
    [45] Luchansky S. J., Lansbury P. T., Jr., Stein R. L., Substrate recognition andcatalysis by UCH-L1, Biochemistry, 2006, 45: 14717-25
    [46] Larsen C. N., Krantz B. A., Wilkinson K. D., Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases, Biochemistry, 1998, 37: 3358-68
    [47] Lee J. I., Woo S. K., Kim K. I., Park K. C., Baek S. H., Yoo Y. J., Chung C. H., A Method for Assaying Deubiquitinating Enzymes, Biol Proced Online, 1998, 1: 92-99
    [48] Hassiepen U., Eidhoff U., Meder G., Bulber J. F., Hein A., Bodendorf U., Lorthiois E., Martoglio B., A sensitive fluorescence intensity assay for deubiquitinating proteases using ubiquitin-rhodamine110-glycine as substrate, Anal Biochem, 2007, 371(2): 201-207
    [1] Buchanan B. B., Gruissem W., Johones R. L., Biochemistry and Molecular Biology of Plants, Science Press, Beijing, American Society of Plant Physiology, 2002, p. 603-604, 815-824, 962-978
    [2]倪嘉缵,稀土生物无机化学(第二版),科学出版社, 2002, 8-343
    [3]董倍,吴兆明,汤锡珂,氯化镧对缺钙黄瓜根系生理的影响,中国稀土学报, 1993, 11(1): 65-68
    [4] Shtangeeva. I., Ayrault S., Effects of Eu and Ca on yield and mineral nutrition of wheat (Triticum aestivum) seedlings, Environmental and Experimental Botany, 2007, 59: 49-58
    [5] Zhang A. Q., Wang L. X, Wu X. Y., Effect of rare earth elements on photosynthesis, growth and hydrogen evolution of Spirulina platensis, J of Rare Earths, 1988, 6(4): 55-58
    [6] Chu Z. X., Zhao J., Su X. Z., Effect of CeCl3 on chlorophyll formation and chloroplast of structure of cucumber leaves to Fe and temperature, Chin. J Botany, 1991, 3(2): 122-129
    [7] Chu Z. X., Mou M. H., Influences of Ce on the formation of chlorophyll-protein complexes in chloroplasts of cucumber leaves, Acta Botonica Sinica, 1994, 36(10): 785-789
    [8] Chu Z.X., Mou M.H., Zhang H.M., Influences of CeCl3 on photosynthetic oxygen-evolving, formation of chlorophyll-protein complexes of Spirulina platensis, J of Rare Earths, 1994, 12(4): 344-347
    [9] Zeng F. L., An Y., Ren L., Effect of lanthanum and calcium on photoelectron transport activity and the related protein complexes in chloroplast of cucumber leaves, Biol. Trace Element Res, 2000, 77: 83-91
    [10] Chen W. J., Gu Y. H., Zhao G. W., Effects of rare earth ions on activity of RuBPase in tobacco, Plant Science, 2000, 152: 145-151
    [11]陈为钧,顾月华,王圣兵,赵贵文,镧对烟草RuBPcase活性影响研究,中国稀土学报, 2000, 18(3): 258-261
    [12]陈为钧,顾月华,赵贵文,镧对叶绿体光化学反应的影响,作物学报, 2001, 27(4): 506-511
    [13] Wang Q. Q., Lai Y., Yang L. M., Huang B. L., Preliminary study of existing species of lanthanum in the spinach leaves after being cultivated with a culture solution contaning lanthanum, Anal. Sci., 2001, 17: 789-791
    [14] Hong F. S., Wei Z.G., Zhao G.W., Mechanism of lanthanum effect on the chlorophyll of spinach, Science in China, Ser. C, 2002, 45(2): 166-176
    [15] Hong F.S., Wang L., Meng X. X., Wei Z. G., Zhao G. W., The effect of cerium on the chlorophyll formation of spinach, Biol. Trace Element Res., 2002, 89: 263-277
    [16]潘登奎,王玉国,张金桐, LaCl3和PrCl3对菠菜叶绿体光合磷酸化作用的影响,中国稀土学报, 2003, 21(1): 77-81
    [17] Liu C., Hong F. S., Wang L., The Effect of Nd3+ on photosynthesis of spinach, J of Rare Earths, 2004, 22(2): 306-310
    [18] Hong F. S., Wang X. F., Liu C., Su G. X., Wu K., Tao Y., Wei Z. G., Effect of Ce3+ on spectral characteristic of D1/D2/Cytb559 complex from spinach, Science in China, Series B, 2003, 46(1): 42-50
    [19] Hong F. S., Wang L., Tao Y., Mechanism of LaCl3 on increasing photosystemⅡactivity of spinach, Chin J of Chem., 2005, 23: 617-621
    [20] Hong F. S., Liu C., Zheng L., Wang X. F., Wu K., Song W. P., Lv S. P., Tao Y., Zhao G. W., Formation of complexes of Rubisco-Rubisco activase from La3+, Ce3+ treatment spinach, Science in China Ser. B, 2005, 48(1): 67-74
    [21] Liu C., Hong F. S. , Wu K., Ma H. B., Zhang X. G., Hong C. J., Wu C., Gao F. Q., Yang F., Liu T., Xu J. H., Xie Y N., Li Z. R., Mechanism of NdCl3 on increasing carboxylation activity of ribulose-1,5-bisphosphate carboxylase/oxygenase of spinach, Biochem. Biophys. Res. Comm., 2006, 342(1): 36-43
    [22] Liu X.Q., Su M. Y., Liu C., Zhang Y., Si W. H., Hong F. S., Effects of 4f electron characteristic and alternation valence of rare earths on photosynthesis:regulating distribution of energy and activities of spinach chloroplast, J of Rare Earths, 2007, 25: 495-501
    [23] Liu X.Q., Su M. Y., Liu C., Zhang L., Si W. H., Hong F. S., Effects of CeCl3 on energy transfer and oxygen evolution within spinach photosystemⅡ, J of Rare Earths, 2007, 25(5): 624-631
    [24] Arnon D. I., Copper enzymes in isolated chloroplasts: polyphenol oxidase in Beta vulgaris, Plant Physiol., 1949, 24: 1-15
    [25] Allen J. F., Holmes N. G., Electron transport and redox titration. In: Hipkins M.F., Baker N.R. (eds), Photosynthesis, energy transduction: a practical approach, IRL Press, Oxford, pp 103-141 (1986)
    [26] Ames B.N., Assay of inorganic phosphate, Pi total phosphate and phosphatases. In: Colowick and Kaplan (ed), Methods in Enzymology, 1966, 8: 115
    [27] Allnutt F. C. T., Ewy R. G., Renganathan M., Pan R. S., Dilley R.A., Nigericin and hexylamine effects on localized proton gradients in thylakoid. Biochem Biophys Acta, 1991, 1059: 28-36
    [28] Aravind P., Prasad M. N. V., Zinc protects chloroplasts and associated photochemical functions in cadmium exposed Ceratophyllum demersum L., a freshwater macrophyte, Plant Science, 2004,166: 1321-1327
    [29] Tang X. S., Satoh K., The oxygen-evolving photosystemⅡcore complex, FEBS Lett, 1985, 179: 60-64
    [30] Neelima A., Pardhasaradhi P., Mohanty P., Inhibition of chloroplast photochemical reactions by treatment of wheat seedlings with low concentrations of cadmium: analysis of electron transport activities and changes in fluorescence yield, Plant cell Physiol., 1991, 32(7): 943-951
    [31] Li Y. S., Salts and chloroplast fluorescence, Biochim. Biophys. Acta, 1975, 376: 180-188
    [32]武维华主编,植物生理学,北京:科学出版社, 2003, 93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700