小麦生理型雄性不育花药活性氧代谢和基因表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学杂交剂诱导的小麦生理型雄性不育及其杂种利用体系是目前小麦杂种优势利用最成功的典范之一。采用化杀途径利用小麦杂种优势具有诸多优点,尤其可以把育种起点建立在小麦常规育种的最新成果之上。SQ-1是一种新型小麦杀雄剂,具有杀雄彻底、喷药窗口宽、对农艺性状无明显副效应等优点,是目前国内外最优良小麦化杀剂之一。然而,其诱导小麦雄性不育的机理尚不清楚,尤其在基因表达水平和蛋白质表达水平上是否存在差异,差异如何均需深入探索。因此,本文在研究小麦不同组织部位对化杀剂SQ-1吸收转运效果基础上,观察了败育花粉粒细胞形态变化,采用动态取样测定了花药发育过程中的活性氧和抗氧化酶变化;其次利用cDNA-AFLP技术分析了败育关键时期的特异基因的表达差异,筛选出一些可能的不育相关基因,并对其进行电子延伸,设计PCR引物克隆其cDNA序列;最后利用RT-PCR技术验证和分析了育性相关基因的表达模式,探讨了育性相关基因的表达与雄性不育的关系,获得的主要结果如下:
     1在小麦发育到Feeke’s8.5~Feeke’s9.0时期,对旗叶,倒二叶和倒三叶进行单叶片或多叶片涂抹一定面积(剂量)的化学杂交剂,均能引起主茎穗高度雄性不育和分蘖穗部分雄性不育,其中发育完全的旗叶吸收运输能力最强,倒三叶最弱,同一叶片正面比背面吸收转运效果好;用化学杂交剂直接涂抹单核后期的小穗,也能诱导较高程度的雄性不育,但涂抹二核期的穗子仅诱导一定程度的不育率,并且发现化学杂交剂可横向影响对侧小穗花粉粒的育性,而不能从穗顶部运输到基部小穗影响其花粉粒育性。对主茎叶片涂抹足量化杀剂不但可以诱导主茎穗高度雄性不育,而且可以诱导分蘖穗产生较高程度的雄性不育;常规喷施条件下,花粉粒败育的主要时期为单核期到二核初期,以单核后期败育花粉粒比例最高,败育花粉粒呈畸形,不积累或积累极少量淀粉粒。
     2活性氧代谢研究表明,在幼穗期,o ?2.生成速率、H2O2和MDA含量、超氧化物歧化酶(SOD)和抗坏血酸过氧化物酶(APX)活性均高于相应对照,而过氧化物酶(POD)和过氧化氢酶(CAT)活性则低于或显著低于对照;在单核早期到二核初期,o ?2.生成速率、H2O2和MDA含量极显著高于对照,而SOD、POD、CAT和APX酶活性却极显著低于对照;在败育后的花药中,o ?2.生成速率和H2O2含量与对照之间差异幅度缩小,但MDA含量依然加大,同期的几种抗氧化酶活性依然极显著低于对照。
     相同剂量喷施处理下,不同品种花药内活性氧和抗氧化酶变化存在差异。杀雄剂SQ-1能诱导小麦花药中o ?2.和H2O2大量积累以及SOD、POD、CAT和APX活性的极显著降低,引起花粉关键败育期花药活性氧代谢严重失衡和严重膜脂过氧化,是导致大量花粉细胞败育的主要生理原因。
     3对西农1376生理型不育和可育花药关键败育期基因表达分析,共获得了144个非冗余的差异基因,这些基因编码的蛋白主要涉及氧化胁迫或自身防御反应(5.6%),信号转导和转录调节(15.3%),核酸代谢(2.8%),细胞内物质运输(5.6%),能量代谢(12.5%),蛋白质代谢(13.2%),细胞组成和发育(2.8%),27.1%的差异基因与已知基因或蛋白具有较弱的同源性;11.1%的差异基因没有同源基因或蛋白,仅存在同源EST序列,最后有6个TDFs没有任何同源序列,可能与目前数据库数据不足有关,或者该基因是尚未报道新的基因。
     化学杂交剂SQ-1诱导小麦雄性不育败育过程中,涉及了多个生理生化代谢途径,其中转录表达调节、蛋白质代谢和能量代谢途径中差异表达基因最多。不同转录因子调节的功能蛋白、参与的生化途径和不同途径中基因或蛋白之间的关系有待深入研究。
     4对小麦Urm1,Ubiquitin-S27a,U-box域蛋白,丙酮酸脱氢酶E1 alpha亚基,Arf GTPase激活蛋白家族蛋白,细胞色素P450家族蛋白,顺乌头酸脱氢酶进行了电子克隆,获得了这些基因的cDNA序列,并对其序列特性进行了分析。利用RT-PCR技术成功克隆了小麦Urm1和Ubiquitin-S27a的cDNA基因,验证了电子克隆的正确性。
     5对抗氧化胁迫和防御相关的细胞质型的APX和嘧啶核酸二硫化物氧化还原酶基因、与泛素/26S蛋白酶体降解途径有关的Urm1、Ubiquitin- S27a、F-box域蛋白以及与能量代谢相关的GAPDH、顺乌头酸酶、NFU域蛋白4共9个基因进行了半定量表达分析,结果表明,花药败育过程中,嘧啶核酸二硫化物氧化还原酶以及抗坏血酸过氧化物酶基因下调表达,导致细胞内处于较高的氧化态,细胞内发生严重膜脂过氧化作用。
     泛素蛋白酶体途径相关的Urm1、Ubiquitin-S27a、F-box域蛋白(与水稻UFO基因高度同源)在两个品种不育花药中不同时期均上调表达,且两个F-box域蛋白均表现出瞬时表达特点;TDF362代表的F-box域蛋白在不育花药单核后期和二核初期表达受到抑制,推测该F-box蛋白的靶标蛋白是正常花药发育的负调控因子。对F-box域蛋白调控的靶标蛋白有待深入研究。
     以上分析认为,控制正常花粉发育过程中的某些或某类关键蛋白的降解是由泛素蛋白酶体途径精确控制的,化学杂交剂SQ-1通过促进或抑制这些功能蛋白的调节蛋白基因表达来影响花药发育的正常行为。
     6 GAPDH和提供铁硫族蛋白分子骨架的NFU域蛋白4,与同期对照相比,在不育花药单核期到三核期均下调表达,其中在大量花粉粒败育的单核期,GAPDH下调表达尤为显著,使糖酵解过程受到抑制,降低了能量的供应;另外,顺乌头酸酶作为三羧酸循环的关键酶之一,也表现为下调表达,从而使三羧酸循环受阻或能量代谢途径改变,导致能量供应不足引起雄性不育。
Physiological male sterility (PMS) induced by chemical hybrid agents (CHA) and its utilization are more successful system in wheat heterosis today. Utilization of CHA hybrids has many merits, the latest released varieties can be directly used for producing hybrid specially; SQ-1 is a new type of wheat CHAs, also the best wheat CHAs at home and abroad. However, understanding of its sterile mechanism is still poor, specially on the levels of gene and protein expression. In the paper, the sterile effects and absorbency of different leaves and spikes to CHA SQ-1 were studied, the cytological observation of pollen and ROS (reactive oxygen species) metabolism of anthers at different developmental stages were performed, then the differential gene expression was also compared using cDNA-AFLP technique, the genes related to male sterility induced by SQ-1 were identified and cloned, the relationship between genes expression and sterility was studied, the main results were as follows:
     1 At Feeke’s 8.5~9.0 stage, daubing sufficient CHA SQ-1 on flag leaf, penultimate leaf, the third reciprocal leaf separately and two or three leaves simultaneous (application concentration: 1.5kg/300kg water ) can cause complete male sterility of wheat spikes; for the ability of absorbency and transfer, flag leaf is the best, the third reciprocal leaf is bad, the adaxial surface is better than that of abaxial surface of same leaf; daubing directly the spikelet with 5.01ug or 8.3ug SQ-1 at late mononuclear pollen stage will cause higher male sterility of daubed spikelet, but at late binuclear pollen stage only caused partial male sterility of daubed spikelet. Further, SQ-1 might be transported at regular direction in wheat spikes from male sterility of treatments D7~D10 and CK3. Daubing sufficient SQ-1 on the caulis leaf caused complete male sterility of caulis spike and partial male sterility of tillering spikes. The pollens abortion can be happen at any developmental stages from mononuclear to trinucleated cell, but the majority of pollens aborted stayed at late mononuclear to initial stage of binuclear cell, and the ration of aborted pollen at late mononuclear pollens was the most. Aborted pollen showed abnormal shape, without starch grains. Abortion-occurring stage was associated with spraying or daubing dose and developmental stage of pollen.
     2 The study on ROS metabolism of PMS showed:①During the young spike stage, o ?2. production rate and contents of H2O2 and malondialdehyde (MDA) were higher than those of corresponding controls, the activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) were also higher than those of corresponding controls, but the activities of peroxidase (POD)and catalase (CAT) were lower or significantly lower than those of their corresponding controls, so the susceptibility of different antioxidase to CHA stress before pollen abortion was different②From early mononuclear pollen stage to initial stage of binuclear pollen, on the one hand, o ?2. production rate and contents of H2O2 and MDA were significantly higher than those of their corresponding controls, but then the activities of SOD, POD, CAT and APX (except for early mononuclear pollen) were significantly lower than those of the corresponding controls, hence the metabolism balance of ROS in treated anthers was seriously destroyed, violent membrane lipid peroxidation was caused, subsequently the microspore developing was inhibited. At trinucleated pollen stage, the gaps of the o ?2. production rate and content of H2O2 were reduced, but that of MDA was still increased, at the same time the activities of four antioxidases between treatments and controls remained significant different. Therefore, ROS of aborted anthers still caused damage to themselves. During the key abortion stage, the increment of ROS in 1376-CHA anther were higher, but the decrement of activities of antioxidase was lower than those of 2611-CHA, which may be the reasons why the male sterility rate of xinong 1376-CHA was higher than that of xinong 2611-CHA. Excessive accumulation of o ?2.,H2O2 and MDA and significant reduction of SOD, POD and CAT antioxidase activities happened ahead of pollen abortion and went on during pollen abortion stage in the anthers of wheat PMS, the imbalance of ROS metabolism was the main physiological reason of pollen abortion in PMS.
     3 cDNA-AFLP analysis was conducted in PMS and normal anthers at key abortion stage. Total 144 non-redundant transcript-derived fragments (TDFs) were cloned and identified, the majority of these cloned genes were complete presence or absence (qualitative variants), and the others were differentially expressed (quantitative variants). The biological role of these TDFs mainly involved in defense system against oxidation stress(5.6%), signal transduction and transcriptional regulation(15.3%), nucleic acid metabolism(2.8%), energy and protein metabolism(12.5% and 13.2%), intracellular transporters (5.6%), cell wall and cytoskeleton components(2.8%) , whereas 35.2% of them either had lower similarity with known function gene (or protein) or their function were unknown.
     The results showed that CHA SQ-1 triggered dynamic changes at transcriptional regulation levels when uninucleate pollen developed to bi-nuclear pollen. The course of pollen abortion involved in intricate physiological and biochemical metabolism. The majority of genes were involved transcriptional regulation, energy and protein metabolism. But the relationship between transcriptional factors and other genes remained to be studied.
     4 Seven interested TDFs were extended by electronic cloning, six of them were obtained cDNA sequences with entire ORF, their encoded amino acid had typical conserved domains, they were Urm1(ubiquitin related modifier 1), ubiquitin-S27a, U-box domain protein, pyruvate dehydrogenase E1 alpha subunit, Arf GTPase activating protein, Cytochrome P450 family protein and aconitase, respectively. The cDNA and amino acid sequences of these genes were compared with some homology genes. The partial cDNA sequences of Urm1 and ubiqutin-S27a were amplified and cloned.
     5 Two genes related to oxidation stress, four key genes related to ubiquitin-26S proteasome pathway (UPP) and three genes related to energy metabolism were selected to conduct RT-PCR analysis for revealing the relationship between them and male sterility induced by CHA SQ-1, the results indicated that cytoplasmic APX and Pyridine nucleotide-disulphide oxidoreductase were down-regulated in PMS anthers at key abortion period, and caused the imbalance of ROS production and scavenging, some key enzymes were oxidized and resulted in pollen abortion. The result was accordant with ROS determination. Urm1, ubiquitin-S27a and F-box domain protein (TDF360) showed up-regulated expression at key abortion stage, but the other F-box domain protein (TDF362) showed significantly down-regulated in PMS anther, the two F-box domain proteins were obviously expressed during instantaneous period. So the degradation of some key enzyme or protein related to anther development was accurately controlled by ubiquitin-26S proteasome pathway, CHA SQ-1 leaded to PMS in wheat through affecting expression of regulating proteins of the key enzymes.
     6 GAPDH, a key enzyme of glycolysis pathway, aconitase, a key enzyme of tricarboxylic acid cycle (TCA cycle), they all showed down-regulated expression in PMS anther at different developmental stage, especially at key stage of pollen abortion, so ATP production was impeded; NFU domain protein4 mainly provides molecule scaffolds of Fe-S cluster biogenesis located in mitochondria such as aconitase and succinate dehydrogenase, and involved in electron transfer, its down-regulated expression in sterile anther maybe caused male sterility by repressing the efficiency of electron transfer and affecting energy supply. Further study about the gene is underway.
引文
曹双河,刘冬成,刘立科,等.小麦光温敏核雄性不育相关基因的G-box家族引物差式分析[J].遗传学报,2003, (01):56-61
    曹双河,郭小丽,刘冬成,等.小麦光温敏核雄性不育基因的初步定位[J].遗传学报, 2004, (03):293-298
    常青山,周荣华,余增亮,等.用差李六林,张绍铃.植物生长物质对雄性育性的调控作用[J].中国农学通报,2006, (05): 211-215
    陈军方,任正隆,孔秀英,等.小麦中雄性不育同源序列的分离、鉴定及表达分析[J].遗传学报,2005, (6):566-570
    陈蕊红,张改生,刘卫,等.小麦花药蛋白质组双向电泳技术体系的优化[J].核农学报,2008, (4):404-409
    陈蕊红,叶景秀,张改生,等.小麦质核互作型雄性不育系及其保持系花药差异蛋白质组学分析[J]. 生物化学与生物物理进展, 2009, 36(4):431-440
    陈晓峰,侯喜林,刘金兵,等.甜椒细胞质雄性不育新种质花蕾败育与活性氧代谢关系研究[J].南京农业大学学报, 2007, 30(4): 26-29
    陈坤明,宫海军,王锁民.植物抗坏血酸的生物合成,转运及其生物学功能[J].西北植物学报, 2004, 24(2): 329-336
    陈贤丰,梁承邺. Hpgmr不育花药能量代谢,H2O2的积累与雄性不育的关系[J].植物生理学通讯,1991, 17(1): 44-48
    陈贤丰,梁承邺.湖北光周期敏感核不育水稻花药能量和活性氧的代谢[J]. Journal of Integrative Plant Biology, 1992, 34(6): 416-425
    陈竹君,张明方,汪炳良,等.榨菜胞质雄性不育及其农艺性状的研究[J].园艺学报, 1995, (01): 40-46
    邓继新,刘文芳,肖翊华. Hpgmr花粉发育期花药atp含量及核酸与蛋白质的合成研究[J].武汉大学学报(理学版), 1990, (03): 85-88
    段俊,梁承邺,张明永.玉米细胞质雄性不育与膜脂过氧化的关系[J].植物生理学通讯,1996, 32(5): 331-334
    范宝磊,岳霞丽,郑青,等.化学杀雄剂对油菜叶片和花蕾中几种酶活性的影响[J].湖北农业科学, 2008, 47(4): 406-408
    方正武,姚亚琴,张改生,等. GENESIS诱导小麦雄性不育性与花药组织呼吸关系的初步研究[J].西北植物学报, 2004, 24(6): 982-985
    冯剑亚,俞炳果,曹大铭.乙烯利和氯化钴对光敏核不育水稻育性及幼穗中多胺和乙烯含量的影响[J]. 南京农业大学学报, 1992, (02): 127-129
    苟升学,王长春,贠清峰,等.化学杂交剂sq-1对小麦育性及农艺性状的影响[J].麦类作物学报,2007,27(5): 798-802
    高庆荣,于金凤,刘保申.化学杂交剂genesis对小麦的杀雄效果[J].山东农业大学学报(自然科学版), 2001, (1):17-22
    曹双河,刘冬成,刘立科,等.小麦光温敏核雄性不育相关基因的G-box家族引物差式分析[J].遗传学报,2003, (01):56-61
    曹双河,郭小丽,刘冬成,等.小麦光温敏核雄性不育基因的初步定位[J].遗传学报, 2004, (03):293-298
    常青山,周荣华,余增亮,等.用差李六林,张绍铃.植物生长物质对雄性育性的调控作用[J].中国农学通报,2006, (05): 211-215
    陈军方,任正隆,孔秀英,等.小麦中雄性不育同源序列的分离、鉴定及表达分析[J].遗传学报,2005, (6):566-570
    陈蕊红,张改生,刘卫,等.小麦花药蛋白质组双向电泳技术体系的优化[J].核农学报,2008, (4):404-409
    陈蕊红,叶景秀,张改生,等.小麦质核互作型雄性不育系及其保持系花药差异蛋白质组学分析[J]. 生物化学与生物物理进展, 2009, 36(4):431-440
    陈晓峰,侯喜林,刘金兵,等.甜椒细胞质雄性不育新种质花蕾败育与活性氧代谢关系研究[J].南京农业大学学报, 2007, 30(4): 26-29
    陈坤明,宫海军,王锁民.植物抗坏血酸的生物合成,转运及其生物学功能[J].西北植物学报, 2004, 24(2): 329-336
    陈贤丰,梁承邺. Hpgmr不育花药能量代谢,H2O2的积累与雄性不育的关系[J].植物生理学通讯,1991, 17(1): 44-48
    陈贤丰,梁承邺.湖北光周期敏感核不育水稻花药能量和活性氧的代谢[J]. Journal of Integrative Plant Biology, 1992, 34(6): 416-425
    陈竹君,张明方,汪炳良,等.榨菜胞质雄性不育及其农艺性状的研究[J].园艺学报, 1995, (01): 40-46
    邓继新,刘文芳,肖翊华. Hpgmr花粉发育期花药atp含量及核酸与蛋白质的合成研究[J].武汉大学学报(理学版), 1990, (03): 85-88
    段俊,梁承邺,张明永.玉米细胞质雄性不育与膜脂过氧化的关系[J].植物生理学通讯,1996, 32(5): 331-334
    范宝磊,岳霞丽,郑青,等.化学杀雄剂对油菜叶片和花蕾中几种酶活性的影响[J].湖北农业科学, 2008, 47(4): 406-408
    方正武,姚亚琴,张改生,等. GENESIS诱导小麦雄性不育性与花药组织呼吸关系的初步研究[J].西北植物学报, 2004, 24(6): 982-985
    冯剑亚,俞炳果,曹大铭.乙烯利和氯化钴对光敏核不育水稻育性及幼穗中多胺和乙烯含量的影响[J]. 南京农业大学学报, 1992, (02): 127-129
    苟升学,王长春,贠清峰,等.化学杂交剂sq-1对小麦育性及农艺性状的影响[J].麦类作物学报,2007,27(5): 798-802
    高庆荣,于金凤,刘保申.化学杂交剂genesis对小麦的杀雄效果[J].山东农业大学学报(自然科学版), 2001, (1):17-22
    李英贤,张爱民,黄铁城.小麦细胞质雄性不育与花药组织内源激素的关系[J].农业生物技术学报, 1996, (04): 3-9
    李英贤,张爱民,梁振兴.小麦雄性不育的发生与花药组织内激素平衡的关系[J].农业生物技术学报,1998, (01): 71-75
    李艳红,肖兴国,赵广荣,等.将新的人工雄性不育基因导入小麦栽培品种的研究初报[J].农业生物技术学报, 1999, 7(3): 255-258
    利容千.几种农作物雄性不育的细胞学研究[J].武汉大学学报(理学版), 1978, (01).: 83-96
    利容千,朱英国,孟祥红,等.水稻红莲-粤泰不育系花粉与药隔组织Ca~(2+)的分布[J].作物学报, 2001, 27(02): 230-235
    梁艳荣,胡小红,陈源闽,等.胡萝卜雄性不育系生理生化特性研究[J].华北农学报, 2006, (03): 19-22
    李家洋.中国科学家在水稻籼粳杂种不育研究取得突破性进展[J].分子植物育种, 2009, (01):1-4
    骆炳山,李德鸿,屈映兰,等.乙烯与光敏核不育水稻育性转换关系[J].中国水稻科学,1993, (01): 1-6
    刘春光.普通小麦细胞质雄性不育系的研究前景[J].大自然探索, 1994, (04).: 57-63
    刘春光,吴郁文,张翠兰,等.小麦D2型细胞质雄性不育系雄配子发育的细胞形态学特征和同工酶的研究[J].遗传学报, 1995, 22(3): 199-205
    刘春光,金德敏,侯宁,等. D2型细胞质普通小麦mtDNA的RAPD分析[J].农业生物技术学报,2000, (04):368-384
    刘健.化学杂交剂对小麦穗部内源激素的影响[J].种子, 2000, (05).:22-24
    刘静,张鲁刚,王风敏,等.萝卜花蕾败育过程中的组织细胞学特征观察[J].西北农业学报,2008, 17(005): 272-276
    刘齐元,刘飞虎,何宽信,等.烟草雄性不育的分子机理研究进展[J].江西农业大学学报,2003, 25(4): 514-518
    刘录样,黄铁城.作物化学杂交育种的理论与实践[J],中国农学通报,1989,(2):17-23
    刘恒蔚,牛英,周瑞阳.成花光敏感的雌雄性不育苎麻活性氧代谢研究[J].生命科学研究, 2005, 9(2): 145-149
    刘宏伟,张改生,王军卫,等. Genesis诱导小麦雄性不育与幼穗中乙烯含量的关系[J].西北农林科技大学学报(自然科学版),2003, (03): 39-42
    刘宏伟. 2002.化学杂交剂-GENESIS诱导小麦雄性不育机理研究[D].西北农林科技大学
    刘宏伟,张改生,刘秉华.化学杂交剂genesis诱导小麦雄性不育的细胞形态学观察[J].西北植物学报, 2004, (12): 2282-2285
    刘宏伟,张改生,王军卫,等.化学杂交剂sq-1诱导小麦雄性不育及与不同小麦品种互作效应的研究[J].西北农林科技大学学报(自然科学版),2003, 31(4): 15-18
    刘宏伟,张改生,王军卫,等. Genesis诱导小麦雄性不育与幼穗中乙烯含量的关系[J].西北农林科技大学学报(自然科学版),2003, 31(3): 39-42
    刘卫,陈蕊红,张改生,等.小麦遗传型与生理型雄性不育花药蛋白质双向电泳分析[J].遗传, 2008, (08):1063-1068
    刘晓勤,张成岗.人源细胞内物质转运调节分子ARFGAP1对细胞分泌功能的影响[J].中国生物化学与分子生物学报,2001, 17(2): 237-243.
    刘志华,杨谦.球毛壳菌甘油醛-3-磷酸脱氢酶基因克隆及特性分析[J].微生物学报,2005, 45(6): 885-889
    刘志勇,沈春章,傅廷栋,等.化杀灵诱导油菜雄性不育与乙烯释放量的关系[J].华中农业大学学报(自然科学版), 2006, (02).: 120-122
    刘正鲁,朱月林,胡春梅,等.氯化钠胁迫对嫁接茄子生长、抗氧化酶活性和活性氧代谢的影响[J].应用生态学报,2007, (03): 537-541
    刘春光,吴郁文,张翠兰,等.小麦D2型细胞质雄性不育系雄配子发育的细胞形态学特征和同工酶的研究[J].遗传学报, 1995, 22(3): 199-205
    林植芳,梁承邺,孙谷畴,等.雄性不育水稻小孢子败育与花药的有机自由基水平[J]. Journal of Integrative Plant Biology, 1993, 35(3): 215
    罗玉英,李怀军.转基因雄性不育烟草花药绒毡层及花粉发育的特点[J].遗传, 1998, 20(4): 51-51
    聂明建,王国槐,陈光尧.几个甘蓝型油菜雄性不育系花药败育过程中核糖核酸酶的变化[J].作物学报, 2006, 32(007): 1101-1103
    马翎健,何蓓如,宋喜悦,等.小麦光敏雄性不育基因的遗传分析及RAPD标记[J].作物学报, 2004, (09):912-915
    孟祥红,王建波,利容千.光敏细胞质不育小麦花药发育过程中aba免疫电镜定位[J].武汉大学学报(理学版), 2001, (06): 775-781
    孟祥红,王建波,利容千.光敏胞质不育小麦花药发育过程中atp酶的定位研究[J].作物学报, 2000, (6): 851-860
    孟祥红,王建波,利容千.光周期对光敏胞质不育小麦花药发育过程中Ca~(2+)分布的影响[J].植物学报, 2000, (1): 15-22
    孟祥红,王建波,利容千.光周期对光敏胞质不育小麦花药发育过程中Ca~(2+)-ATPase分布的影响[J]. 植物学报, 2000, (5): 446-454
    米海莉,张曦燕,樊云芳,等.枸杞雄性不育与植株发育进程中活性氧代谢的关系[J].江西农业大学学报, 2008, 30(5): 1042-1044
    穆蕊,张祖新,张方东,等.玉米CMS—S小孢子败育过程中的细胞程序性死亡[J].作物学报, 2006, 32(005): 666-670
    曲志才,粟翼玟.普通小麦t型和v型雄性不育系同工酶的比较研究[J].遗传,1994, (06): 20-23
    桑伟,韩新年,田笑明,等.小麦杂种优势的利用途径及研究进展[J].种子世界, 2005, (02):30-34
    司智海,刘植义.普通小麦t型细胞质雄性不育系及其保持系线粒体多肽的电泳比较研究[J].遗传学报, 1991, (01):44-50, 101-102
    沈文飚,黄丽琴,徐朗莱.植物抗坏血酸过氧化物酶[J].生命的化学, 1997, (05): 26-28
    沈银柱,刘植义,黄占景,等.不同化学杂交剂(Cha)对小麦花药同工酶影响的研究[J].遗传, 1999, (05):41-46
    宋宪亮,孙学振,王洪刚,等.棉花洞a型核雄性不育系花药败育过程中的生化变化[J].西北植物学报, 2004, (02): 243-247
    宋喜悦,胡银岗,马翎健,等. Ys型小麦温敏不育系a3314育性转换中脯氨酸和丙二醛含量的变化[J]. 中国农业大学学报, 2008, (04): 1-4
    宋喜悦,何蓓如,李宏斌,等. Ys型小麦温敏不育基因的RAPD标记[J].华北农学报, 2008, (03):34-37
    史红梅,胡德文,何之常,等.不同细胞质雄性不育小麦中谷胱甘肽过氧化物酶活性比较[J].武汉大学学报(理学版), 2001, 47(6): 771-774
    苏俊英,吕德彬,程西永,等.化学杂交剂Genesis及Sc2053对小麦穗部过氧化物酶活性的影响[J]. 河南农业大学学报,2000, 34(4): 309-311,328
    孙立全,霍治军,常彩涛,等.辣椒雄性不育系小孢子发育及脯氨酸等含量的研究[J].华北农学报, 2003, (04): 39-41
    谭昌华,余国东,杨沛丰,等.重庆温光型核不育小麦的不育性研究初报[J].西南农业学报, 1992, (04): 1-6
    谭昌华,余国东,李伯群,等. C49s温光敏核不育小麦杂种f_1代的育性恢复[J].西南农业学报, 1999, (03): 26-29
    汤日圣,梅传生,张金渝,等. To3诱导水稻雄性不育与内源激素的关系[J].江苏农业学报, 1996, (02): 9-13
    唐祈林,荣廷昭,胡长远.不同核背景的玉米cms系内源激素关系研究[J].四川农业大学学报,2002, (03): 209-211
    汤继华,赫忠友,陈伟程,等.玉米温敏核雄性不育育性转换与内源激素的关系[J].作物学报,2003, (03): 336-338
    滕晓月,王秀珍,阎隆飞,等.作物细胞质雄性不育与肌动蛋白[J].中国农业大学学报, 1986, (1): 15-18
    田长恩,梁承邺,黄毓文,等.水稻细胞质雄性不育系幼穗发育过程中多胺与乙烯的关系初探[J].植物生理学报, 1999, (01): 1-6
    王鹏科,黄寿松,徐洁.小麦核型—蓝标型雄性不育杂种优势利用研究[J].中国农业大学学报, 1993, (S3):102-106
    王涛,张作仕,曾秀英,等.温光敏雄性不育小麦c49s的研究利用[J].西南农业学报, 1998, (S2): 188-194
    王振华,刘宏伟,张改生,等. 3种新型化学杂交剂诱导小麦雄性不育效果比较[J].西北农林科技大学学报(自然科学版), 2003, (3). 43-46
    王军卫,张改生,刘宏伟. Sq-1诱导小麦雄性不育基因型再研究[J].麦类作物学报, 2005, 25(1): 37-39.
    王长泉,赵吉强,陈敏,等.过氧化氢参与了黑暗诱导的盐地碱蓬叶片甜菜红素积累[J].植物生态学报,2007, (04): 748-752
    王永军,张改生,王军卫,等.小麦遗传型与生理型雄性不育花药同工酶的比较研究[J].麦类作物学报,2005, 25 (04): 44-49
    王永军,张改生,孙苏阳,等.遗传型与生理型雄性不育小麦花药和旗叶蛋白质的比较研究[J].麦类作物学报,2007, (06):965-968,1022
    王爱国,罗广华,邵从本.大豆种子超氧化物歧化酶的研究[J].植物生理学报, 1983, 9(1): 77-83
    王爱国,邵从本,罗广华,等.活性氧对大豆下胚轴线粒体结构与功能的损伤[J].植物生理与分子生物学学报,1990, (1):13-18
    王昕,种康.植物小G蛋白功能的研究进展[J].植物学通报, 2005, 22(2):1-10
    武计萍,胡金锁,李国强,等.化学杂交剂sq-1诱导小麦雄性不育及与不同小麦品种互作效应的研究[J].小麦研究,2006, 27(3): 12-15
    危文亮,王汉中,刘贵华.植物细胞质雄性不育性与育性恢复的分子生物学研究进展[J].遗传, 2005, 27(4):651-658
    赵昌平,张立平,李云伏,等.小麦光温敏雄性不育相关基因的ddrt-Pcr分析及功能预测[J].中国生物化学与分子生物学报, 2007, (01):56-62
    赵会杰,刘华山,林学梧,等.小麦胞质不育系花药中脂氧合酶及抗坏血酸过氧化物酶活性的变化(简报)[J].植物生理学通讯,1996, (05): 344-346
    赵前程,耿宵,陈雪平,等.花椰菜雄性不育系小孢子发育过程及其POD活性[J].华北农学报,2002, 17(2): 108-111
    赵玉锦,童哲,陈华君,等.内源植物激素与光敏核不育水稻农垦58s育性的关系[J].植物学报, 1996, (12): 936-941
    夏涛,刘纪麟.生长素和玉米素与玉米细胞质雄性不育性关系的研究[J].作物学报, 1994, (01): 26-32
    夏涛,刘纪麟.玉米细胞质雄性不育性与组织抗氰呼吸关系的研究[J].中国农业科学,1988, (05): 39-43
    夏快飞,梁承邺.植物信号转导与水稻雄性不育机制研究进展(综述)[J].亚热带植物科学, 2004, (03): 64-6许育彬,康海岐.小麦光温敏型两系法研究进展[J].陕西农业科学, 2001, (09).28-29,48
    薛玺,王同昌.小麦细胞质雄性不育与不同核基因组及其染色体的关系[J].遗传学报, 1995, 22(006): 445-454
    谢潮添,杨延红,邱义兰,等.白菜核雄性不育系可育和不育花药中Ca~(2+)的分布[J].植物生理与分子生物学学报, 2005, 31(06): 615-624
    谢学民,奚海福,黄建中,等.化学杀雄剂对水稻花药氨基酸含量与育性的影响[J].浙江农业学报, 1994, (01): 52-54
    解海岩,蒋培东,王晓玲,等.棉花细胞质雄性不育花药败育过程中内源激素的变化[J].作物学报, 2006, (07): 1094-1096
    熊勇华,许杨.基因表达的系列分析方法研究进展[J].生物工程学报,2002, 18(003): 377-380
    许海霞,吕德彬,程西永,等. Genesis诱导小麦雄性不育的形态学和细胞学观察[J].河南农业大学学报, 2003, (03): 205-208
    徐乃瑜,刘江东.光周期敏感细胞质雄性不育小麦的初步研究[J].武汉大学学报:自然科学版, 1995, 41(002): 218-222
    徐如强,黄铁城.“BAU—2”诱导普通小麦雄性不育的研究:Ⅰ.化学杀雄效果[J].北京农业大学学报, 1993, 19(A00): 1-8.
    徐朗莱,叶茂炳.过氧化物酶活力连续记录测定法[J].南京农业大学学报, 1989, 12(3): 82-83
    杨涛. 2004.化学杂交剂诱导的小麦雄性不育育性相关基因片段的分离与克隆[M].中国农业大学,作物遗传育种
    杨淑琴,刘彦宁.植物生长物质与水稻雄性不育的关系[J].宁夏农学院学报, 2002, (04): 59-62
    杨万年,何之常.钙调素依赖性nad激酶及其在植物体内的功能[J].武汉植物学研究, 1999, (S1): 99-104
    杨海燕,宗学凤,余国东,等.激素调控对小麦温光敏核不育系育性转换的影响[J].西南农业大学学报,2006, (03): 369-372
    姚景珍,张建诚,王秋叶. CHA杂种小麦国内外研究进展与现状[J].现代农业科技(上半月刊), 2006, (05): 56-58
    姚雅琴,李蓓,张英利,等.细胞骨架与小麦雄性不育关系研究初报[J].西北农林科技大学学报(自然科学版),2005, (12):39-42
    姚雅琴,张改生.小麦花药发育过程超微结构和酶细胞化学研究[J].电子显微学报, 2001, (3): 167-177
    姚雅琴,张改生,刘宏伟,等.小麦雄性不育系和保持系花药atp酶细胞色素氧化酶细胞化学定位[J]. 作物学报, 2001, (01): 43-49
    叶嘉良,张耀洲.泛肽,核糖体蛋白及泛肽-核糖体蛋白S27a与肿瘤的关系[J].生物工程学报,2007, 23(6): 982-988
    叶景秀;张改生;王书平,等.杀雄剂SQ-1诱导小麦雄性不育花粉粒差异蛋白质组学研究[J].中国生物化学与分子生物学报, 2009,25(10):949-957
    袁建玉,侯喜林,李萍芳.不结球白菜胞质雄性不育新种质花蕾和叶片中活性氧代谢的变化[J].南京农业大学学报, 2006, 29(1): 18-22
    袁琳,克热木,伊力,等. NaCl胁迫对阿月浑子实生苗活性氧代谢与细胞膜稳定性的影响[J].植物生态学报,2005, (06): 119-125
    闫先喜,梁作勤. Sc2053诱导小麦雄性不育形态学和细胞学观察[J].华北农学报, 1996, 11(001): 19-24
    曾维英,杨守萍,喻德跃,等.大豆质核互作雄性不育系NJCMS2A及其保持系的花药蛋白质组比较研究[J].作物学报,2007, 33(010): 1637-1643
    张文利,沈文飚,叶茂炳,等.小麦叶片顺乌头酸酶对NO和H2 O2的敏感性[J].植物生理与分子生物学学报, 2002, 28(2 ): 991-994
    张爱民,李英贤,黄铁城.化学杂交剂诱导的雄性不育花药组织内源激素的变化[J].农业生物技术学报, 1997, (01):66-73
    张爱民.化学杀雄剂导致小麦雄性不育分子机制的初步研究[J].遗传, 2001, (01):54-55
    张爱民,王道,陈万义,等.新型化学杂交剂bau9403的应用技术研究[J].麦类作物学报, 2001, (02):20-24
    张爱民,李英贤,黄铁城.小麦雄性不育与内源激素关系的初步研究[J].农业生物技术学报, 1996, (01): 56-61
    张政值,马正强,刘大钧.通过小麦Ms2近等基因系的抑制缩减杂交分析揭示小穗和花药中差异表达基因(英文)[J].物生理与分子生物学学报,2005, 31(2): 175-182
    张明永,梁承邺,段俊,等. CMS水稻不同器官的膜脂过氧化水平[J].作物学报, 1997, 23(5): 603-607
    张明永,田长恩,梁承邺,等.细胞质雄性不育水稻幼穗和花药的呼吸酶活性研究[J].热带亚热带植物学报,1997, (04): 52-55
    张明永,段俊,梁承邺.细胞质雄性不育水稻的呼吸作用和自由基代谢的关系初探[J].热带亚热带植物学报, 1999, 7(4): 318-322
    张明永,梁承邺,黄毓文,等.水稻细胞质雄性不育系与保持系的呼吸途径比较[J].植物生理学报,1998, (01): 55-58
    张启发.中国科学家阐明Boro II型水稻细胞质雄性不育和育性恢复的分子机理[J].分子植物育种, 2006, 4(4): 451-452
    张子学,侯喜林.辣椒细胞质雄性不育与活性氧代谢的关系[J].西北植物学报, 2005, 25(4): 799- 802.
    张少华,杨赞林,甘斌杰.小麦光敏不育系皖901s研究初报[J].安徽农业科学, 1995, (02):97-99
    张改生,赵惠燕,吴兆苏,等.偏、粘、易型非1b/1r小麦雄性不育系育成[J].中国农业科学, 1995, (02): 90
    张改生,赵惠燕,吴昭苏,等.偏、粘和易型非1b/1r小麦雄性不育系研究初报[J].西北农业学报, 1994, (04): 7-12
    张改生,马守财,王小丽,等.几类异质1bl/1rs小麦雄性不育系诱导孤雌生殖性的研究[J].西北植物学报, 1999, (06): 1-9
    赵会杰,刘华山,林学梧,等.小麦胞质不育系花粉败育与活性氧代谢关系的研究[J].作物学报, 1996, 22(03): 365-367
    周美兰,程尧楚,邹应斌,等.光温敏核不育小麦es-14花粉败育的细胞学研究[J].作物研究, 1996, (04):21-24
    周仲华,朱四元,陈金湘.棉花温敏雄性不育与膜脂过氧化的关系研究[J].江西农业大学学报, 2007, 29(4): 518-521
    朱广廉,曹宗巽.太谷核不育小麦不育株和可育株花药内游离氨基酸成分的比较分析[J].植物生理学报, 1984, 10(2): 185-189
    朱华,李坤,赵瑞强,等.三七植物GAPDH基因克隆及序列分析[J].西北植物学报,2006, 26(7): 1316-1319
    Aarts M G M, Hodge R, Kalantidis K, et al. The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes[J]. Plant Journal, 1997, 12(3): 615
    Adugna A, Nanda G S, Singh K, et al. A comparison of cytoplasmic and chemically-induced male sterility systems for hybrid seed production in wheat (Triticum aestivum L.)[J]. Euphytica, 2004, 135(3): 297-304
    Ahokas H. Cytoplasmic male sterility in barley II. Physiology and anther cytology of msml[J]. Hereditas, 1978, 89(1): 7-21
    Ali T R, Li M S,Langford P R. Monitoring gene expression using DNA arrays[J]. Methods in Molecular Medicine, 2002, 71: 119-134
    Alisdair R Fernie, Carrari F,Sweetlove L J. Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport[J]. Current Opinion in Plant Biology, 2004, 7(3): 254-261
    Andersen S U, Algreen-Petersen R G, Hoedl M, et al. The conserved cysteine-rich domain of a tesmin/TSO1-like protein binds zinc in vitro and TSO1 is required for both male and female fertility in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2007, 58(13): 3657
    Ariizumi T, Amagai M, Shibata D, et al. Comparative study of promoter activity of three anther-specific genes encoding lipid transfer protein, xyloglucan endotransglucosylase / hydrolase and polygalacturonase in transgenic Arabidopsis thaliana[J]. Plant Cell Reports, 2002, 21(1): 90-96
    Arnér E S J,Holmgren A . The thioredoxin system in cancer. Seminars in cancer biology, 2006, 16(6):420-426
    Asada K,Takahashi M. Production and scavenging of active oxygen in photosynthesis[J]. Photoinhibition. Elsevier, Amsterdam, 1987: 227–287
    Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons[J]. Annual Review of Plant Biology, 1999, 50(1): 601-639
    A S, E K J, E K S, et al. The unusual floral organs gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem [J]. The plant journal 1999, 20(4): 433-445
    Bachem C W B, van der Hoeven R S, de Bruijn S M, et al. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development[J]. The Plant Journal, 1996, 9(5): 745-753
    Bachem C W B, Oomen R,Visser R G F. Transcript imaging with cDNA-AFLP: a step-by-step protocol[J]. Plant Molecular Biology Reporter, 1998, 16(2): 157-157
    Balk J,Lobréaux S. Biogenesis of iron–sulfur proteins in plants[J]. Trends in plant science, 2005, 10(7): 324-331
    Becker K, Gromer S, Schirmer R H, et al. Thioredoxin reductase as a pathophysiological factor and drug target[J]. European Journal of Biochemistry, 2000, 267(20): 6118-6125
    Belkhadir Y, Subramaniam R,Dangl J L. Plant disease resistance protein signaling: NBS–LRR proteins and their partners[J]. Current opinion in plant biology, 2004, 7(4): 391-399
    Bertone P, Stolc V, Royce T E, et al.. Global identification of human transcribed sequences with genome tiling arrays. Science, American Association for the Advancement of Science,2004,306: 2242-2246
    Bowler C, Montagu M V,Inze D. Superoxide dismutase and stress tolerance[J]. Annual Review of Plant Biology, 1992, 43(1): 83-116
    Bonifati V, Rizzu P, Squitieri F, et al. DJ-1 (PARK7), a novel gene for autosomal recessive, early onset parkinsonism[J]. Neurological Sciences, 2003, 24(3): 159-160
    Braun H P,Schmitz U K. The bifunctional cytochromec reductase/processing peptidase complex from plant mitochondria[J]. Journal of bioenergetics and biomembranes, 1995, 27(4): 423-436
    Breyne P,Zabeau M. Genome-wide expression analysis of plant cell cycle modulated genes[J]. Current opinion in plant biology, 2001, 4(2): 136-142.
    Breyne P, Dreesen R, Cannoot B, et al. Quantitative cDNA-AFLP analysis for genome-wide expression studies[J]. Molecular Genetics and Genomics, 2003, 269(2): 173-179
    Cai G, Moscatelli A,Cresti M. Cytoskeletal organization and pollen tube growth[J]. Trends in plant science, 1997, 2(3): 86-91.
    Cakmak I. Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium-and potassium-deficient leaves, but not in phosphorus-deficient leaves[J]. Journal of Experimental Botany, 1994, 45(9): 1259-1266
    Capitani G, Hohenester E, Feng L, et al. Structure of 1-aminocyclopropane-1-carboxylate synthase, a key enzyme in the biosynthesis of the plant hormone ethylene[J]. Journal of Molecular Biology, 1999,294(3): 745-756
    Chakraborty K,Devakumar C. Synthesis and screening of anilides having olefinic and alkyl Moiety in the side chain as chemical hybridizing agents for wheat (Triticum aestivum L.)[J]. J. Agric. Food Chem, 2005, 53(15): 5959-5968
    Chakraborty K,Devakumar C. Ethyloxanilates as specific male gametocides for wheat (Triticum aestivum L.)[J]. Plant Breeding, 2006, 125(5): 441-447
    Chakraborty K,Devakumar C. N-acylanilines, herbicide-CHA chimera, and amino acid analogues as novel chemical hybridizing agents for wheat (Triticum aestivum L.)[J]. Journal of Agricultural and Food Chemistry, 2005, 53(20): 7899-7907
    Chardin P, Paris S, Antonny B, et al. A human exchange factor for ARF contains Sec7-and pleckstrin-homology domains[J]. Nature. 1996,384(6608):481-484
    Chenchik A, Zhu Y Y, Diatchenko L, et al. Generation and use of high-quality cDNA from small amounts of total RNA by SMART PCR[J]. Gene cloning and analysis by RT-PCR, 1998: 305–319.
    Chaubal R, Zanella C, Trimnell M R, et al. (2000). Two male-sterile mutants of Zea Mays (Poaceae) with an extra cell division in the anther wall 1. American Journal of Botany, Botanical Soc America. 87: 1193-1201
    Chaudhuri J D. Genes arrayed out for you: the amazing world of microarrays[J]. Med Sci Monit, 2005, 11(2): 62
    Ciaffi M, Paolacci A R, D'Aloisio E, et al. Identification and characterization of gene sequences expressed in wheat spikelets at the heading stage[J]. Gene, 2005, 346: 221-23
    Colhoun C W,Steer M W. The cytological effects of the gametocides Ethrel and RH-531 on microsporogenesis in barley (Hordeum vulgare L.)[J]. Plant Cell & Environment, 1983, 6(1): 21-29
    Collantes H G, Gianoli E,Niemeyer H M. Defoliation affects chemical defenses in all plant parts of rye seedlings[J]. Journal of chemical ecology, 1999, 25(3): 491-499
    Dos Santos P C, Smith A D, Frazzon J, et al. Iron-sulfur cluster assembly: NifU-directed activation of the nitrogenase Fe protein[J]. Journal of Biological Chemistry, 2004, 279(19): 19705
    Cross T G, Scheel-Toellner D, Henriquez N V, et al. Serine/threonine protein kinases and apoptosis[J]. Experimental Cell Research, 2000, 256(1): 34-41
    Cukierman E, Huber I, Rotman M, et al. The ARF1 GTPase-activating protein: zinc finger motif and Golgi complex localization[J]. Science, 1995, 270(5244): 1999
    Dat J, Vandenabeele S, Vranova E, et al. Dual action of the active oxygen species during plant stress responses[J]. Cellular and Molecular Life Sciences (CMLS), 2000, 57(5): 779-795
    Durfee T, Roe J L, Sessions R A, et al. The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in Arabidopsis (J)[J]. Pnas, 2003, 100 (14): 8571-8576
    Ewing B, Hillier L, Wendl M C, et al. Base-Calling of Automated Sequencer Traces Using Phred.I. Accuracy? Assessment. Genome Res. 1998, 8: 175-185
    Fei H,Sawhney V K. MS32-regulated timing of callose degradation during microsporogenesis inArabidopsis is associated with the accumulation of stacked rough ER in tapetal cells[J]. Sexual Plant Reproduction, 1999, 12(3): 188-193
    Foissner I, Grolig F,Obermeyer G. Reversible protein phosphorylation regulates the dynamic organization of the pollen tube cytoskeleton: effects of calyculin A and okadaic acid[J]. Protoplasma, 2002, 220(12): 1-15
    Furukawa K, Mizushima N, Noda T, et al. (2000). A protein conjugation system in yeast with homology to biosynthetic enzyme reaction of prokaryotes. Journal of Biological Chemistry, ASBMB. 275: 7462-7465
    Fukasawa H. On the free amino acids in anthers of male-sterile wheat and maize[J]. Magzine of genetics, 1954, 29(4): 135-137
    Ganger D R, Hamilton P D, Klos D J, et al. Differential expression of metallopanstimulin/S27 ribosomal protein in hepatic regeneration and neoplasia[J]. Cancer detection and prevention, 2001, 25(3): 231
    Gorska-Brylass A, Butowt R,Rodriguez-Garcia M I. Distribution of loosely-bound calcium in the vegetative and generative cells of the pollen grains in Chlorophytum elatum[J]. Biologia Plantarum, 1997, 40(2): 169-181
    Gorska-Brylass A, Butowt R,Rodriguez-Garcia M I. Distribution of loosely-bound calcium in the vegetative and generative cells of the pollen grain in Chlorophytum elatum[J]. Biologia Plantarum, 1998, 40: 169-181
    Guerra B,Issinger O G. Protein kinase CK2 and its role in cellular proliferation, development and pathology[J]. Electrophoresis, 1999, 20(2):391-408
    Guilford W J, Lewis H A, Vega R O, et al. Synthesis and pollen suppressant activity of phenylcinnoline-3-carboxylic acids[J]. J. Agric. Food Chem, 1992, 40(10): 2026-2032
    Halliwell B. Free radicals, oxygen toxicity and aging[J]. Age pigments, 1981: 1-62
    hakraborty K,Devakumar C. Evaluation of chemical compounds for induction of male sterility in wheat (Triticum aestivum L.)[J]. Euphytica, 2006, 147(3): 329-335
    Hammond-Kosack K E,Jones J D G (1996). Resistance gene-dependent plant defense responses. The Plant Cell Online, Am Soc Plant Biol. 8: 1773-1791
    Hanania U, Velcheva M, Sahar N, et al. Suppression and overexpression of ubiquitin extension protein S27a affects cell proliferation and in vitro regeneration in Nicotiana benthamiana[J]. Plant Science, 2009, 176(4): 566-574
    Hatakeyama S, Yada M, Matsumoto M, et al. U box proteins as a new family of ubiquitin-protein ligases[J]. Journal of Biological Chemistry, 2001, 276(35): 33111-33120
    Heath R L,Packer L. Photoperoxidation in isolated chloroplasts[J]. Arch Biochem Biophys, 1968, 125: 189-198
    Heim M A, Jakoby M, Werber M, et al. The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Molecular biology and evolution, SMBE. 2003,20: 735-747
    Helbock H J, Beckman K B, Shigenaga M K, et al. (1998). DNA oxidation matters: theHPLC-electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanine. Proceedings of the National Academy of Sciences, National Acad Sciences. 95: 288-293
    Heslop-Harrison J,Heslop-Harrison Y. Intracellular motility, the actin cytoskeleton and germinability in the pollen of wheat (Triticum aestivum L.)[J]. Sexual Plant Reproduction, 1992, 5(4): 247-255.
    Hochholdinger F, Guo L,Schnable P S. Cytoplasmic regulation of the accumulation of nuclear-encoded proteins in the mitochondrial proteome of maize[J]. Plant Journal, 2004, 37(2): 199
    Holmgren A. Thioredoxin and glutaredoxin: general aspects and involvement in redox regulation[J]. Advances in photosynthesis and respiration, 2001, 11: 321-330
    Holmgren A. Signal Transduction by Reactive Oxygen and Nitrogen Species. In:Forman, H.J., Torres, M., and Fukuto, J., eds. Pathways and Chemical Principles. Netherlands:Kluwer Academic Publishers, Amesterdam,. 2003,33-52
    Jin Y, Mancuso J J, Uzawa S, et al. The fission yeast homolog of the human transcription factor EAP30 blocks meiotic spindle pole body amplification[J]. Developmental Cell, 2005, 9(1): 63-73
    Jin Y, Tashpulatov A S, Katholnigg H, et al. Isolation and characterisation of two wheatβ-expansin genes expressed during male gametophyte development[J]. Protoplasma, 2006, 228(1): 13-19
    Jin W, Horner H T,Palmer R G. Genetics and cytology of a new genic male-sterile soybean [Glycine max (L.) Merr.][J]. Sexual Plant Reproduction, 1997, 10(1): 13-21
    Johnson D C, Dean D R, Smith A D, et al. Structure, function, and formation of biological iron-sulfur clusters[J]. Annual review of biochemistry, 2005, 74:247-81
    Jordaan, JP, 1996. Hybrid wheat: advances and challenges. In: M.P. Reynolds, S. Rajaram & A.McNab (Eds.), Increasing Yield Potential in Wheat: Breaking the Barriers, pp. 66–75. CIMMYT, Mexico, DF Kaul M L H. 1988. Male sterility in higher plants[J]. (Berlin: Springer)
    Kotchoni S O,Gachomo E W. The reactive oxygen species network pathways: an essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants[J]. Journal of Biosciences, 2006, 31(3): 389-404
    Kojima K. Changes of ABA, IAA and GAs levels in reproductive organs of citrus[J]. JARQ (Japan), 1997,31(4) :271-280
    Kumari M, Taylor G J,Deyholos M K. Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana[J]. Molecular Genetics and Genomics, 2008, 279(4): 339-357
    Lannoo N, Peumans W,Van Damme E. Do F-box proteins with a C-terminal domain homologous with the tobacco lectin play a role in protein degradation in plants?[J]. Biochemical Society Transactions, 2008, 36: 843-847
    Lauga B, Charbonnel-Campa L, Combes D Characterization of MZm3-3, a Zea mays tapetum-specific transcript[J]. Plant Sci, 2000, 157:65–75
    Ledent V,Vervoort M (2001). The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. Genome research, Cold Spring Harbor Laboratory Press. 11: 754-770
    Lee T S. Reverse Conservation Analysis Reveals the Specificity Determining Residues of Cytochrome P450 Family 2 (CYP 2)[J]. Evolutionary Bioinformatics Online, 2008, 4: 7
    Léon S, Touraine B, Ribot C, et al. Iron-sulphur cluster assembly in plants: distinct NFU proteins in mitochondria and plastids from Arabidopsis thaliana[J]. Biochemical Journal, 2003, 371(Pt 3): 823-830
    Lievens S, Goormachtig S,Holsters M. A critical evaluation of differential display as a tool to identify genes involved in legume nodulation: looking back and looking forward[J]. Nucleic Acids Research, 2001, 29(17): 3459
    Lill R,Mühlenhoff U. Iron–sulfur-protein biogenesis in eukaryotes[J]. Trends in biochemical sciences, 2005, 30(3): 133-141
    Li S, Wan C, Kong J, et al. Programmed cell death during microgenesis in a Honglian CMS line of rice is correlated with oxidative stress in mitochondria[J]. Functional Plant Biology, 2004, 31(4): 369-376
    Loussaert D. Trihalogenated methylsulfonamides as specific male gametocides[J]. Sexual Plant Reproduction, 2004, 16(6): 299-307
    Mariani C, De Beuckeleer M, Treuttner J, et al. Induction of male sterility in plants by a chimaeric ribonuclease gene[J]. Nature, 1990, 347(6295): 737-741
    McRae D H. Advances in chemical hybridization[J]. Plant breeding reviews (USA), 1985, 3: 169-191.
    McClintock B. The significance of responses of the genome to challenge[J]. Science, 1984, 226(4676): 792-801
    Mihr C, Baumg?rtner M, Dieterich J H, et al. Proteomic approach for investigation of cytoplasmic male sterility (CMS) in Brassica[J]. J. Plant Physiol, 2001, 158: 787-794
    Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in plant science, 2002, 7(9): 405-410
    Mizelle M B, Sethi R, Ashton M E, et al. Development of the pollen grain and tapetum of wheat (Triticum aestivum) in untreated plants and plants treated with chemical hybridizing agent RH00007[J]. Sex. Plant Reprod., 1989, 2: 231-253
    Mitsuhara I, Malik K A, Miura M, et al. Animal cell-death suppressors Bcl-x~ L and Ced-9 inhibit cell death in tobacco plants[J]. Current Biology, 1999, 9: 775-778
    M L Y, F Z L, X N B, et al. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes[J]. Pnas, 2008, 2008(105): 48
    M N W, X X D, L H, et al. Regulation of flower development in Arabidopsis by SCF complexes[J]. Plant Physiology, 2004, 134 (4): 1574-1585
    Mogensen H L,Ladyman J A R. A structural study on the mode of action of CHA TM chemical hybridizing agent in wheat[J]. Sexual Plant Reproduction, 1989, 2(3): 173-183
    Money T, Reader S, Qu L J, et al. AFLP-based mRNA fingerprinting[J]. Nucleic Acids Research, 1996, 24(13): 2616
    Moon J, Parry G,Estelle M. The ubiquitin-proteasome pathway and plant development[J]. The Plant Cell Online, 2004, 16(12): 3181-3195
    Mulder N J, Apweiler R, Attwood T K, et al. The InterPro Database, 2003 brings increased coverage and new features[J]. Nucleic Acids Research, 2003, 31(1): 315-318
    Murai K,Tsunewaki K. Photoperiod-sensitive cytoplasmic male sterility in wheat with Aegilops crassa cytoplasm[J]. Euphytica, 1993, 67(1): 41-48
    Nagaoka T, Ogihara Y. Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers[J]. Theoretical and Applied Genetics, 1997, 94(5): 597-602
    Nakano Y,Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant and Cell Physiology, 1981, 22(5): 867-880
    Olsen A N, Ernst H A, Leggio L L, et al. NAC transcription factors: structurally distinct, functionally diverse[J]. Trends in plant science, 2005, 10(2): 79-87
    Padidam M. Chemically regulated gene expression in plants[J]. Current opinion in plant biology, 2003, 6(2): 169-177
    Patterson B D, MacRae E A,Ferguson I B. Estimation of hydrogen peroxide in plant extracts using titanium (IV)[J]. Analytical biochemistry, 1984, 139(2): 487-492
    Peng L, B P A. Diferential Display of Eukaryotic Mess enger RNA by means of the Ploymerse Chain Reaction[J]. Science, 1992, 257: 967-971
    Peters J W, Stowell M H B, Soltis S M, et al. Redox-dependent structural changes in the nitrogenase P-cluster[J].Biochemistry-pennsylvanlathen Washington, 1997, 36: 1181-1187
    Picault N, Hodges M, Palmieri L, et al. The growing family of mitochondrial carriers in Arabidopsis[J]. Trends in plant science, 2004, 9(3): 138-146
    PS S,RP. W. The molecular basis of cytoplasmic male sterility and fertility restoration [J]. Trends in Plant Sciences, 1998, 3 (5) :175-180.[J].
    Qi Y H, Kawano N, Yamauchi Y, et al. Identification and cloning of a submergence-induced gene OsGGT (glycogenin glucosyltransferase) from rice (Oryza sativa L.) by suppression subtractive hybridization[J]. Planta, 2005, 221(3): 437-445
    Rajaram S. Prospects and promise of wheat breeding in the 21st century[J]. Euphytica, 2001, 119(1): 3-15
    Rathburn H B, Hedgcoth C. A chimeric open reading frame in the 5′flanking region of coxI mitochondrial DNA from cytoplasmic male-sterile wheat[J]. Plant Molecular Biology, 1991, 16(5): 909-912.
    Ruiz O N,Daniell H (2005). Engineering Cytoplasmic Male Sterility via the Chloroplast Genome by Expression ofβ-Ketothiolase 1. Plant Physiology, Am Soc Plant Biol. 138: 1232-1246
    Sasakuma T,Ohtsuka I. Cytoplasmic effects of Aegilops species having D genome in wheat. I. Cytoplasmic differentiation among five species regarding pistillody induction[J]. Seiken Ziho, 1979, 27(28): 59–65
    Selote D S,Khanna-Chopra R. Drought-induced spikelet sterility is associated with an inefficient antioxidant defence in rice panicles[J]. Physiologia Plantarum, 2004, 121: 462-471
    S G A, M R D,F S G. Attachment of the ubiquitin-related protein Urm1p to the antioxidant protein Ahp1[J]. Eukaryotic Cell,2003, 2(5): 930-936
    Shibata E, Ejima K, Nanri H, et al. Enhanced protein levels of protein thiol/disulphide oxidoreductases in placentae from pre-eclamptic subjects[J]. Placenta, 2001, 22(6): 566-572
    Shi J, Kahle A, Hershey J W B, et al. Decreased expression of eukaryotic initiation factor 3f deregulatestranslation and apoptosis in tumor cells[J]. Oncogene, 2006, 25(35): 4923-4936
    Singh R B,Kaul M L. H. Male sterility in barely-Auther form and development[J]. Plant Breed, 1991, 107: 326-332
    S L, A P P G, T B, et al. Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA[J]. Nature, 2009, 458(7235): 228-232
    Smalle J,Vierstra R D. The ubiquitin 26S proteasome proteolytic pathway (J)[J]. Annual Review of Plant Biology, 2004, 55: 555-590
    Smid O, Horakova E, Vilimova V, et al. Knock-downs of iron-sulfur cluster assembly proteins IscS and IscU down-regulate the active mitochondrion of procyclic Trypanosoma brucei[J]. Journal of Biological Chemistry, 2006, 281(39): 28679
    Smith M B, Palmer R G,Horner H T (2002). Microscopy of a cytoplasmic male-sterile soybean from an interspecific cross between Glycine max and G. soja (Leguminosae) 1. American Journal of Botany, Botanical Soc America. 89: 417-426
    Song J,Hedgcoth C. Influence of nuclear background on transcription of a chimeric gene (orf256) and coxI in fertile and cytoplasmic male sterile wheats[J]. Genome, 1994, 37(2): 203-209
    Spyrou G,Holmgren A. Deoxyribonucleoside triphosphate pools and growth of glutathione-depleted 3T6 mouse fibroblasts[J]. Biochemical and Biophysical Research Communications, 1996, 220(1): 42-46.
    Stevens R, Goble C, Baker P, et al. A classification of tasks in bioinformatics. Bioinformatics, Oxford Univ Press. 2001, 17: 180-188
    Streiff K, Blouet A,Guckert A. Hybrid wheat seed production potential using the chemical hybridizing agent SC2053[J]. Plant Growth Regulation, 1997, 21(2): 103-108
    Sugihara T, Wadhwa R, Kaul S C, et al. A novel testis-specific metallothionein-like protein, tesmin, is an early marker of male germ cell differentiation[J]. Genomics, 1999, 57(1): 130-136
    Sullivan J A, Shirasu K, Deng X W. The diverse roles of ubiquitin and the 26S proteasome in the life of plants[J]. Nature Reviews Genetics, 2003, 4(12): 948-958
    Sun Q A, Kirnarsky L, Sherman S, et al. Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems[J]. Proceedings of the National Academy of Sciences, 2001, 98(7): 3673
    Sutou S, Miwa K, Matsuura T, et al. Native tesmin is a 60-kilodalton protein that undergoes dynamic changes in its localization during spermatogenesis in mice. Biology of reproduction, Soc Study Reprod. 2003, 68: 1861-1869
    Suzuki K, Takeda H, Tsukaguchi T, et al. Ultrastructural study on degeneration of tapetum in anther of snap bean (Phaseolus vulgaris L.) under heat stress[J]. Sexual Plant Reproduction, 2001, 13(6): 293-299.
    Taylor A B, Smith B S, Kitada S, et al. Crystal structures of mitochondrial processing peptidase reveal the mode for specific cleavage of import signal sequences[J]. Structure, 2001, 9(7): 615-625
    Taylor P E, Glover J A, Lavithis M, et al. Genetic control of male fertility in Arabidopsis thaliana: structural analyses of postmeiotic developmental mutants[J]. Planta, 1998, 205(4): 492
    Toledo-Ortiz G, Huq E,Quail P H. The Arabidopsis basic/helix-loop-helix transcription factor family[J]. The Plant Cell, 2003, 15(8): 1749
    Tong W H,Rouault T A. Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron-sulfur cluster biogenesis and iron homeostasis[J]. Cell Metabolism, 2006, 3(3): 199-210
    Tsuchiya T, Toriyama K, Yoshikawa M, et al. Tapetum-specific expression of the gene for an endo-β-1, 3-glucanase causes male sterility in transgenic tobacco[J]. Plant and Cell Physiology, 1995, 36(3): 487-494.
    Tsukada Y, Fang J, Erdjument-Bromage H, et al. Histone demethylation by a family of JmjC domain-containing proteins[J]. Nature, 2005, 439(7078): 811-816
    Von Stein O D, Thies W G,Hofmann M. A high throughput screening for rarely transcribed differentially expressed genes[J]. Nucleic Acids Research, 1997, 25(13): 2598
    Wan C, Li S, Wen L, et al. Damage of oxidative stress on mitochondria during microspores development in Honglian CMS line of rice[J]. Plant Cell Reports, 2007, 26(3): 373-382
    Wheeler G L, Jones M A,Smirnoff N. The biosynthetic pathway of vitamin C in higher plants[J]. Nature(London), 1998, 393(6683): 365-369
    Willekens H, Chamnongpol S, Davey M, et al. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants[J]. The EMBO Journal, 1997, 16(16): 4806
    Wolstenholme DR F C. Mitochondrial genome organization. [J]. In The Molecular Biology of Plant Mitochondria [C], C.S. LevingsⅢand L.K. Vasil, eds(Dordrecht, The Netherlands: Kluwer Academic Publishers,1995, 1-60.
    Wong M, Blouet A,Guckert A. Effectiveness of SC2053 as a chemical hybridizing agent for winter wheat[J]. Plant Growth Regulation, 1995, 16(3): 243-248
    Worrall D, Hird D L, Hodge R, et al. Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco[J]. The Plant Cell Online, 1992, 4(7): 759-771
    Xiulin Y, Yeung E, Shixiong X, et al. Microtubule structure and male sterility in a gene-cytoplasmie male sterile line of rice, zhen shan 97A[J]. Acta Botanica Sinica, 2003, 45(2): 183-192
    Yabe T, Morimoto K, Kikuchi S, et al. The Arabidopsis chloroplastic NifU-like protein CnfU, which can act as an iron-sulfur cluster scaffold protein, is required for biogenesis of ferredoxin and photosystem I[J]. The Plant Cell Online, 2004, 16(4): 993-1007
    Yui R, Satoru I, Tetsuo M, et al. Antisense inhibition of mitochondrial pyruvate dehydrogenase E1[alpha] subunit in anther tapetum causes male sterility[J]. Plant Journal, 2003, 34(1): 57-66
    Zee S Y, Liu X D, Feng J H, et al. Comparative studies on the changes of microtubule distribution and reorganization during meiotic stages of development in normal (IR36) and a temperature/photoperiod sensitive male sterile line (Peiai 64S) of rice (Oryza sativa)[J]. Acta Bot Sin, 2001, 43: 221-226
    Zhang C, Guinel F C, Moffatt B A. A comparative ultrastructural study of pollen development in Arabidopsis thaliana ecotype Columbia and male-sterile mutant apt1-3[J]. Protoplasma, 2002, 219(1): 59-71
    Zhang J, Li Y, Shi G, et al. Characterization ofα-tubulin gene distinctively presented in a cytoplasmic male sterile and its maintainer line of non-heading Chinese cabbage[J]. Journal of the Science of Food and Agriculture, 2009, 89(2): 274-280

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700