典型有机分子水溶液的荧光光谱与氢键作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用荧光光谱技术、时间相关单光子计数技术和荧光偏振技术,对三聚氰胺、乙酸、异丙醇三种典型有机分子水溶液的微观结构及氢键作用机制进行了研究,并结合量子化学计算、分析其荧光动力学过程,得到了缔合分子的空间结构特征。
     首先研究了三聚氰胺水溶液的稳态和瞬态荧光光谱特征。结果表明,三聚氰胺水溶液有两种荧光发射结构,进而解释了三聚氰胺水溶液的荧光发射机理和浓度猝灭机制;以及参与发射的组分相对浓度与荧光寿命之间的内在联系;并得到了主荧光峰和相对荧光强度的变化规律。
     其次研究了乙酸—水溶液的稳态、瞬态荧光光谱和荧光组分信息,得到了溶液中存在的三种分子缔合结构随体积比变化的定性关系;测试了溶液的总吸收度和荧光光子的发射效率;测定了乙酸分子与水分子通过氢键桥连成分子缔合结构的结合常数和结构特征。
     然后利用荧光光谱技术研究了异丙醇分子和水分子结合的团簇结构。采用导数分析和高斯分解其荧光光谱,发现在溶液中两种分子以不同方式结合形成7种发射荧光的团簇分子,并给出了相应于各团簇组分的相对谱线参数;获得了荧光相对组分含量、参与发射浓度和相对发射强度的变化信息;揭示了异丙醇—水溶液中分子取向的各向异性特征,以及溶液中的激基缔合物具有平行平面式空间结构。
     最后针对以上三种典型分子与水分子结合的结构特征和能级跃迁问题,利用密度函数理论,反演了(Melamine)m-(Water)n (m=1~2, n=1~3)、(Acetic acid)m-(Water)n (m=1~2,n=1-3)和Isopropanol-(Water)n (n=1~6)的不同类型氢键作用低能结构。通过对氢键键长、平均键角、二面角、HOMO和LUMO之间的能级差进行分析研究,给出了不同物理模型的空间结构信息,进而阐明了基态能级的电子能量转移机制。
     本文的研究结果有助于推进三种典型有机分子水环境中氢键影响机制的相关研究,可为进一步理解此类有机分子水溶液的物理、化学等性质,以及相关的理论计算和应用研究,特别是乳制品中快速、灵敏地检测三聚氰胺相对含量提供参考。
Based on the techniques of fluorescence spectroscopy, time-correlated single photon counting(TCSPC) and fluorescence polarization, the microstructure and the mechanism of the hydrogen bond of three typical organic molecules (melamine, acetic acid and isopropanol) in aqueous solution are studied. Through the quantum chemistry calculation and fluorescence dynamics process analysis, the spatial structure characteristics of association molecules are obtained.
     First, the steady fluorescence spectroscopy and time-resolved characteristics of melamine molecule in aqueous solution are studied experimentally. The results show that there are two fluorescence structures in melamine-water solution. The mechanism of fluorescence emission and concentration quenching, the internal relation of relative components concentration and fluorescence lifetime are elucidated. The variations of principal fluorescence peak and relative fluorescence intensity are obtained.
     Then, the steady and transient fluorescence spectrum and component information of acetic acid-water solution are studied. Three variations of molecular association are obtained in acetic acid-water solution with various volume ratios. The total absorbance and fluorescence emission efficiency of acetic acid-water solution are tested. The association constant and structural characteristics of acetic acid molecules and water molecules through hydrogen bond bridge are determined.
     Next, the cluster structure characteristics of isopropanol molecule and water molecule association are studied on basis of fluorescence spectroscopy technology. By using derivative analysis and Gaussian decomposition methods for the fluorescence spectra, it indicates that there are7types of luminescent cluster molecules by the action of hydrogen bonds, formed by isopropanol and water molecules in different ways, exist in the solution. The relative spectroscopic line parameters of each cluster are obtained. The variation of relative component content, emission participation concentration and relative fluorescence intensity of each cluster are illustrated. The molecular orientation with characteristic of anisotropy and the excimers with parallel planar structures in isopropanol aqueous solution are revealed.
     Finally, aiming at the structural characteristics and energy level transition of the three typical organic molecules and water molecule association, the molecular dynamics simulation is carried out by using density functional theory (DFT). The low energy structure acted by different hydrogen bonds of (Melamine)m-(Water)n (m=1-2, n=1-3),(Acetic acid)m-(Water)n (m=1~2, n=1~3) and Isopropanol-(Water)n (n=1~6) are inversed. By studying hydrogen bond length, average bond angle, dihedral angle, energy difference of HOMO and LUMO, the spatial structure information of different physical models are obtained. The electronic energy transfer mechanism of ground-state energy levels is clarified.
     The research contributes to the study of the hydrogen bond influence mechanism and physicochemical properties of three typical orgnic molecules in aqueous solution. The results can provide reference for the theoretical calculations and application of organic molecules in aqueous solution, especially for the rapid and sensitive detection of melamine relative content in dairy products.
引文
[1]程极济.光生物物理学.北京:高等教育出版社,1987
    [2]Eisenberg D, Kauzmann W. The structure and properties of water. Oxford:Clarendon Press,1969
    [3]刘次全.量子生物学及其应用.北京:高等教育出版社,1990
    [4]Michael S. Filigenzi, Birgit Puschner, Linda S. Aston et al. Diagnostic determination of melamine and related compounds in kidney tissue by liquid chromatography/tandem mass spectrometry. J. Agric. Food Chem,2008,56:7593-7599
    [5]He Lili, Liu Yang, Lin Mengshi et al. A new approach to measure melamine, cyanuric acid, and melamine cyanurate using surface enhanced Raman spectroscopy coupled with gold nanosubstrates. Sens.& Instrumen. Food Qual,2008,2:66-71
    [6]G. Bielejewska, C. E. Marjo, L. J. Prins, et al. Thermodynamic Stabilities of Linear and Crinkled Tapes and Cyclic Rosettes in Melamine-Cyanurate Assemblies:A Model Description, J. Am. Chem. So.c,2001,123:7518-7533
    [7]B.Puschner, R.H. Poppenga, L. J.Lowenstine, et al. Assessmen of melamine and cyanuric acid toxicity in cats. Vet. Diagn. InVest,2007,19:616-624
    [8]李庆国,汪和睦,李安之.分子生物物理学.北京:高教出版社,1992
    [9]Luzar A, Chandler D. Hydrogen-bond kinetics in liquid water. Nature,1996,379:55-57
    [10]Nilsson, H.Ogasawara, M.Cavalleri, et al. The hydrogen bond in ice probed by soft x-ray spectroscopy and density functional theory. J.Chem.Phys.,2005,122:154505
    [11]R.Ludwig. Hexamers:From covalently bound organic structures to hydrogen bonded water clusters. Chem.Phys.Chem.,2000,1 (1):53-56
    [12]M. Bernasconi, P. L. Silvestrelli and M. Parrinello. Ab Initio Infrared Absorption Study of the Hydrogen-Bond Symmetrization in Ice. Phys. Rev. Lett., 1998,81(6):1235-1238
    [13]Melnick R L, Boorman G A, Haseman J K, et al. Urolithiasis and bladder carcinogenicity of melamine in rodents. Toxicol Appl Pharmacol,1984,72(2):292-303
    [14]Okumura M, Hasegawa R, Shirai T, et al. Relationship between calculus formation and carcinogenesisin the urinary bladder of rats administered the non-genotoxicagents thymine or melamine. Carcinogenesis,1992,13(6):1043-1045
    [15]Baynes R E, Smith G, Mason S E, et al. Pharmacokinetics of melamine in pigs following intravenous administration. Food Chem Toxicol,2008,46(3):1196-1200
    [16]Cianciolo R E, Bischoff K, Ebel J G, et al. Clinicopathologic, histologic, and toxicologic findings in 70 cats inadvertently exposed to pet food contaminated with melamine and cyanuric acid. Am Vet Med Assoc.,2008,233 (5):729-737
    [17]Yhee J Y, Brown C, Yu C H, et al. Retrospective study of melamine/cyanuric acid-induced renal failure in dogs in Korea between 2003 and 2004. Vet Pathol,2009,46:348-354
    [18]Birgit P, Robert H, Poppenga, et al. Assessment of melamine and cyanuric acid toxicity in cats. J Veterin Diagno Invest,2007,19(6):616-624
    [19]Dobson RL, Motlagh S, Quijano M, et al. Identification and Characterization of Toxicity of Contaminants in Pet Food Leading to an Outbreak of Renal Toxicity in Cats and Dogs. Toxicol Sci.,2008,106:251-662
    [20]Guoxiang Xie, Xiaojiao Zheng, Xin Qi, et al. Metabonomic evaluation of melamine-induced acute renal toxicity in rats. Journal of Proteome Research, 2010,9:125-133
    [21]R. Reimschuessel, E. R. Evans, C.B. Stine, et al. Renal crystal formation after combined or sequential oral administration of melamine and cyanuric acid. Food and Chemical Toxicology,2010,48,10:2898-2906
    [22]Puschner B, Poppenga R H, Lowenstine L J, et al. Assessment of melamine and cyanuric acid toxicity in cats. Vet Diagn Invest,2007,19:616-624
    [23]Cornell details effect of pet food contaminant, melamine. http://www.sciencedaily.com/releases/2007/04/070409185542.htm
    [24]C. A. Brown, K.S. Jeong, R.H. Poppenga, et al. Outbreaks of renal failure associated with melamine and cyanuric acid in dogs and cats in 2004 and 2007. J. Vet. Diagn. Invest,2007,19:525-531
    [25]M. S. Filigenzi, B.Puschner, L. S. Aston, et al. Diagnostic determination of melamine and related compounds in kidney tissue by liquid chromatography/tandem mass spectrometry, J. Agric. Food Chem.,2008,56:7593-7599
    [26]Zhu Ming Wang, Dong Hua Chen, Xin Gao, et al. Subpicogram determination of melamine in milk products using a luminol-myoglobin chemiluminescence system. J. Agric. Food Chem.,2009,57:3464-3469
    [27]Beatriz Jurado-Sanchez, Evaristo Ballesteros, and Mercedes Gallego. Gas chromatographic determination of N-nitrosamines, aromatic amines, and melamine in milk and dairy products using an automatic solid-phase extraction system. J. Agric. Food Chem.,2011,59:7519-7526
    [28]Ho-Wai Tang, Kwan-Ming Ng, Stephen Sin-Yin Chui, et al. Analysis of melamine cyanurate in urine using matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem.,2009,81:3676-3682
    [29]FDA. GC-MS screen for the presence of melamine, ammeline, ammelide and cyanuric acid. Version 2.1. www.fda.gov/cvm/GCMS Melamine.htm
    [30]Andersen W C, Turnipseed S B, Karbiwnyk C M, et al. Laboratory information bulletin# 4396:US FDA/CFSAN-Determination of melamine residues in cat/fish tissue by triple quadrupole LC-MS-MS with HILIC chromatography, FDA,2007
    [31]农业行业标准.NY/T 1372-2007.饲料中三聚氰胺的测定.北京:中国农业出版社.2007
    [32]国家标准.GB/T 22388-2008.原料乳与乳制品中三聚氰胺检测方法.北京:中国标准出版社.2008
    [33]Dietrich Braun and Hans-Josef Ritzert. Zur analytik von harnstoff-melamin-formaldehyd-harzen analysis of urea-melamine-formaldehyde resins. Fresenius' Journal of Analytical Chemistry,1987,328:74-75
    [34]饶钦雄,童敬,郭平等.高效毛细管电泳测定鸡蛋中三聚氰胺.分析化学,2009,37(9):1341-1344
    [35]Thuy Diep Thanh Voa, Markus Himmelsbacha, Manuela Haunschmida. Improved analysis of melamine formaldehyde resins by capillary zone electrophoresis-mass spectrometry using ion trap and quadrupole time of flight mass spectrometers. Journal of Chromatography A,2008,1213(1):83-87
    [36]Jinyan Wang,Lianmei Jiang,Qingcui Chu,et al.Resideu analysis of melamine in miik products by micellar electrokinetic capillary chromatography with amperometric detectiom. Food Chemistry,2010,121(1):215-219
    [37]Xia J, Zhou N, Liu Y, et al. Simultaneous determination omelamine and related compounds by capillary zone electrophoresis. Food Control,2010,21 (6):912-918
    [38]Dirk W. Lachenmeier, Eberhard Humpfer, Fang Fang, et al. NMR-spectroscopy for nontargeted screening and simultaneous quantification of health-relevant compounds in foods:the example of melamine. J. Agric. Food Chem.,2009,57:7194-7199
    [39]胡阶明.Spectra-Quard实现三聚氰胺含量在线检测.食品安全导刊,2008,2:56-57
    [40]Lisa J. Mauer, Alona A. Chernyshova, Ashley Hiatt, et al. Melamine detection in infant formula powder using Near-and mid-infrared spectroscopy. J. Agric. Food Chem., 2009,57:3974-3980
    [41]http://www.who.int/foodsafety/fs-management/Melamine-methods.pdf
    [42]Garber E A. Detection of melamine using commercial enzyme-linked immunosorbent assay technology. J Food Prot.,2008,71(3):590-594
    [43]宫小明,董静,孙军等HPLC法测定植物性原料中三聚氰胺.食品科学,2008,29(4):321-323
    [44]Gopalakrishnan Venkatasami, John R. Sowa Jr. A rapid, acetonitrile-free, HPLC method for determination of melamine in infant formula. Analytica Chimica Acta., 2010,665(2):227-230
    [45]赵永彪,李自春,刘婷等.高效液相色谱法测定宠物食品中的三聚氰胺.分析实验室,2008,27:190-192
    [46]Michael S. Filigenzi, Birgit Puschner, Linda S. Aston, et al. Diagnostic determination of melamine and related compounds in kidney tissue by liquid chromatography/tandem mass spectrometry. J. Agric. Food Chem., 2008,56:7593-7599
    [47]Aan Mary Rodariguez Mondal, Aurelien Desmarchelier, Erik Konings, et al. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) method extension to quantify simultaneously melamine and cyanuric acid in egg powder and soy protein in addition to milk products. J Pharm Biomed Anal.2008,48(3):918-26
    [48]赖碧清,郑晓航,韩银涛.高效液相色谱—四极杆质谱联用测定饲料中三聚氰胺含量.饲料工业,2008,29(4):47-48
    [49]Li Zhao, Jian Zhao, Wei-Guo Huangfu, et al. Simultaneous Determination of Melamine and Clenbuterol in Animal Feeds by GC-MS. Chromatographia, 2010,72:365-368
    [50]Pin Lv, Zhengzhou Wang, Yuan Hu, et al. Study on effect of polydimethylsiloxane in intumescent flame retardant polypropylene. J. Polym. Res.,2009,16(2):81-89
    [51]Moddie D. Taylor. The Vapor Phase Dissociation of Some Carboxylic Acids:I. Acetic Acid. J. Am. Chem. Soc.,1951,73(1):315-317
    [52]D. J. Frurip, L. A. Curtiss, M. Blander. Vapor phase association in acetic and trifluoroacetic acids:Thermal conductivity measurements and molecular orbital calculations. J. Am. Chem. Soc.1980,102(8):2610-2616
    [53]J. L. Derissen. A reinvestigation of the molecular structure of acetic acid monomer and dimer by gas electron diffraction. J. Mol. Struct.1971,7:67-80
    [54]Jana Chocholousova, Jaroslav Vacek, and Pavel Hobza. Acetic acid dimer in the gas phase, nonpolar solvent, microhydrated environment, and dilute and concentrated acetic acid:Ab Initio quantum chemical and molecular dynamics simulations. J. Phys. Chem. A,2003,107:3086-3092
    [55]Sarah M. Lofgren, Paul R. Mahling, and James B. Togeas. Acetic Acid Vapor:1. Statistical/quantum mechanical models of the ideal vapor. J. Phys. Chem. A, 2005,109:5430-5437
    [56]P.-G. Jonsson. Hydrogen bond studies:XLIV. Neutron diffraction study of acetic acid. Acta Cryst.,1971,B27:893-898
    [57]H. Bertagnolli. The structure of liquid acetic acid-an interpretation of neutron diffraction results by geometrical models. Chem. Phys. Lett.,1982,93:287-292
    [58]James M. Briggs, Toan B. Nguyen, William L. Jorgensen. Monte Carlo simulations of liquid acetic acid and methyl acetate with the OPLS potential functions. J. Phys. Chem.,1991,95(8):3315-3322
    [59]K. Kosugi, T. Nakabayashi, N. Nishi. Low-frequency Raman spectra of crystalline and liquid acetic acid and its mixtures with water:Is the liquid dominated by hydrogen-bonded cyclic dimers. Chem. Phys. Lett.1998,291:253-261
    [60]Katchalsky, H. Eisenberg, S. Lifson. Hydrogen bonding and ionization of carboxylic acids in aqueous solutions. J. Am. Chem. Soc.,1951,73(12):5889-5890
    [61]Keizo Suzuki, Yoshihiro Taniguchi, Takashi Watanabe. Effect of pressure on the dimerization of carboxylic acids in aqueous solution. J. Phys. Chem., 1973,77(15):1918-1922
    [62]Francine Genin, Fabienne Quiles, Andre Burneau. Infrared and Raman spectroscopic study of carboxylic acids in heavy water. Phys. Chem. Chem. Phys.2001,3:932-942
    [63]J. Semmler, D. E. Irish. Vibrational spectral studies of solutions at elevated temperatures and pressures:IX. Acetic acid. J. Solution Chem.1988,17:805-824
    [64]Takakazu Nakabayashi, Nobuyuki Nishi. States of molecular associates in binary mixtures of acetic acid with protic and aprotic polar solvents:a Raman spectroscopic study. J. Phys. Chem. A.2002,106:3491-3500
    [65]Takumi Hori, Hideaki Takahashi, Shin-ichi Furukawa et al. Computational study on the relative acidity of acetic acid by the QM/MM method combined with the theory of energy representation. J. Phys. Chem. B,2007,111,581-588
    [66]Ryota Hattori, Keita Yamada, Hiroki Shibata et al. Measurement of the isotope ratio of acetic acid in vinegar by HS-SPME-GC-TC/C-IRMS. J. Agric. Food Chem., 2010,58,7115-7118
    [67]Allouche. Acetic acid water interaction in solid interfaces. J. Phys. Chem. B, 2006,110,8640-8648
    [68]Francesco D Amico, Filippo Bencivenga, Alessandro Gessini, et al. Temperature dependence of hydrogen-bond dynamics in acetic acid water solutions. J. Phys. Chem. B,2010,114:10628-10633
    [69]Jung Mee Park, Alessandro Laio, Marcella Iannuzzi, et al. Dissociation mechanism of acetic acid in water. J. AM. CHEM. SOC.,2006,128,11318-11319
    [70]Yi-wen Huang, Timothy J. Dransfield, Jeremy D. Miller, et al. Experimental study of the kinetics of the reaction of acetic acid with hydroxyl radicals from 255 to 355 K. J. Phys. Chem. A,2009,113:423-430
    [71]Liang Pu, Yueming Sun, and Zhibing Zhang. Hydrogen bonding in hydrates with one acetic acid molecule. J. Phys. Chem. A,2010,114:10842-10849
    [72]Liang Pu, Yueming Sun, and Zhibing Zhang. Hydrogen bonding of hydrates of double acetic acid molecules. J. Phys. Chem. A,2009,113:6841-6848
    [73]Hiroyuki Fukami, Hideki Tachimoto, Mikiya Kishi, et al. Acetic acid bacterial lipids improve cognitive function in dementia model rats. J. Agric. Food Chem., 2010,58,4084-4089
    [74]Alex R.Zelenchuk, Esther Oliva, Howard Kaufman, et al. Fluorescence and reflectance spectra of freshly excised cervical tissue. SPIE,2002,4613:51-58
    [75]Tomoo Kondo, Mikiya Kishi,Takashi Fushimi et al. Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation. J. Agric. Food Chem.,2009,57,5982-5986
    [76]Zasetskya A Y, Lileeva A S, Lyashchenko A K. Molecular dynamic simulations of terahertz spectra for water-methanol mixtures. Molecular Physics,2010,108(5): 649-656
    [77]Atamas N A, Atamas A A. The investigations of water-ethanol mixture by Monte Carlo method. World Academy of Science,2009,55:1-4
    [78]S Mejia, Orrego J F, Espinal J F, et al. Exploration of the (ethanol)4-water heteropentamers potential energy surface by simulated annealing and Ab Initio molecular dynamics. International Journal of Quantum Chemistry, 2011,111:3080-3096
    [79]D. R. Allan, S. J. Clark, Marco J. P. Brugmans,et al. Structure of crystalline methanol at high pressure. Phys. Rev B.1998,58(18):11809-11812
    [80]T. Okuchi, G. D. Cody, H. K. Mao, et al. Hydrogen bonding and dynamics of methanol by high-pressure diamond-anvil cell NMR. J. Chem. Phys.,2005,122:244509-244513
    [81]Arencibia, M. Taravillo, F. J. Perez, J. Nunez and V. G. Baonza. Effect of Pressure on Hydrogen Bonding in Liquid Methanol. Phys. Rev. Lett.,2002,89(19):195504
    [82]S. Bai and C. R. Youker. Pressure and temperature effects on the hydrogen-bond structures of liquid supercritical fluid methanol. J.Phys.Chem.A.1998,102:8641-8647
    [83]W. L. Jorgensen and M. Ibrahim. Optimized intermolecular potential functions for liquid alcohols. J.Am. Chem. Soc.,1982,104(373):1276-1284
    [84]P. A. Giguere and M.P.Gosselin. An electrostatic model for hydrogen bonds in alcohols. Journal of Solution Chemistry.1988,17(11):1007-1014
    [85]S. Sarkar and R.N.Joarder et al. Molecular clusters in liquid ethanol at room temperature. J. Chem. Phys.,1994,100(7):5118-5122
    [86]Ke Lin, Xiaoguo Zhou, Yi Luo et al. The microscopic structure of liquid methanol from Raman spectroscopy. J. Phys. Chem. B.2010,114:3567-3573
    [87]Jorge David, Doris Guerra, and Albeiro Restrepo. Structural characterization of the (Methanol)4 potential energy surface. J. Phys. Chem. A,2009,113,10167-10173
    [88]Matt K. Petersen and Gregory A. Voth. Amphiphilic Character of the Hydrated Proton in Methanol Water Solutions. J. Phys. Chem. B,2006,110(14):7085-7089
    [89]Abhishek Mandal, Muthuramalingam Prakash, Rawa Mahesh Kumar, et al. Ab Initio and DFT studies on methanol water clusters. J. Phys. Chem. A,2010,114,2250-2258
    [90]Marco Pagliai, Francesco Muniz-Miranda, Gianni Cardini, et al. Hydrogen bond dynamics of methyl acetate in methanol. J. Phys. Chem. Lett,2010,1:2951-2955
    [91]C. Dale Keefe, Elizabeth A. L. Gillis, and Lisa MacDonald. Improper Hydrogen-bonding CH Y interactions in binary methanol systems as studied by FTIR and Raman spectroscopy. J. Phys. Chem. A,2009,113:2544-2550
    [92]S.Benkhof, A.Kudlik, T.Blochowicz and E.Rossler. Two glass transitions in ethanol:a comparative dielectric relaxation study of the supercooled liquid and the plastic crystal. J. Phys.:Condens. Matter,1998,10:8155-8171
    [93]N.V.Surovtsev. Fast relaxation in the structural glass and glassy crystal of ethanol and cyano cyclohexane:a quasielastic light scattering study. J. Chem. Phys., 2003,119(23):12399-12408
    [94]M.Masella and J.P.Flament. A many-body model for alcohols:applications to the cyclic methanol/water hetero trimers, and to the (methanol)n, (ethanol)n and (t-butanol)n cyclic clusters (n=2-6). Molecular Physics.1998,95(1):97-106
    [95]K. M. Murdoch, T. D. Ferris, J. C. Wright, et al. Infrared spectroscopy of ethanol clusters in ethanol-hexane binary solutions. J. Chem. Phys.,2002,116(13):5717-5724
    [96]Mejia S M, Espinal J F, Restrepo A,et al. Molecular interaction of (ethanol)2-water heterotrimers. J. Phys. Chem. A,2007,111:8250-8256
    [97]Mejia S M, Espinal J F, Mondragon F. Cooperative effects on the structure and stability of (ethanol)3-water, (methanol)3-water heterotetramers and (ethanol)4, (methanol)4 tetramers. Journal of Molecular Structure:Theochem,2009,901:186-193
    [98]Mandal A, Prakash M, Kumar R M, et al. Ab initio and DFT studies on methanol-water clusters. J. Phys. Chem. A,2010,114:2250-2258
    [99]Alavi S, Takeya S, Ohmura R, et al. Hydrogen-bonding alcohol-water interactions in binary ethanol,1-propanol, and 2-propanol+methane structure Ⅱ clathrate hydrates. J. Chem. Phys.,2010,133:074505
    [100]Zhang C, Yang X. Molecular dynamics simulation of ethanol/water mixtures for structure and diffusion properties. Fluid Phase Equilibria,2005,231:1-10
    [101]Atamas A A, Atamas N A, Bulavin L A. Structure correlations of water molecules in a concentrated aqueous solution of ethanol. J. Mol. Liq.,2005,120:15-17
    [102]Yilmaz H. Excess properties of alcohol-water systems at 298.15K. Turk J Phys., 2002,26:243-246
    [103]Wakisaka A, Matsuura K. Microheterogeneity of ethanol-water binary mixtures observed at the cluster level. J. Mol. Liq.,2006,129:25-32
    [104]Hu N, Wu D, Cross K J, et al. Structural basis of the 1H-Nuclear magnetic resonance spectra of ethanol-water solutions based on multivariate curve resolution analysis of mid-infrared spectra. Applied Spectroscopy,2010,64(3):337-342
    [105]许树成,张磊,解金春等.异丙醇0-H伸缩振动泛频光谱和分子构象.化学物理学报,2000,13(2):149-155
    [106]Fuyuhiko Inagaki, Issei Harada, Takehiko Shimanouchi. Far-infrared spectra and barriers to internal rotation of isopropyl alcohol and alkyl mercaptans. Journal of Molecular Spectroscopy,1973,46(3):381-396
    [107]Shigeo Kondo, Eizi Hirota. Microwave spectrum and internal rotation of isopropyl alcohol. Journal of Molecular Spectroscopy,1970,34(1):97-107
    [108]Luca Evangelisti, Federico Pesci, and Walther Caminati. Adducts of alcohols with ethers:the rotational spectrum of isopropanol-dimethyl ether. J. Phys. Chem. A, 2011,115:9510-9513
    [109]W. R. Carper and Melvin Zandler. Ab Initio bonding and structure of 1-nitro-2-propanol. J. Phys. Chem.1993,97:9091-9095
    [110]Zhou Weidong, Zhang Jingsong. Ultraviolet photodissociation dynamics of 1-propanol and 2-propanol by high-n rydberg-atom time-of-flight (HRTOF) technique. Chinese Journal of Chemical Physics,2002,15(3):233-236
    [111]杨静,廖力夫,刘传湘等.钼酸铵—异丙醇体系光化学催化分光光度法测定痕量铜.冶金分析,2007,27(10):56-58
    [112]Linhong Jing, Leonard P. Guler, George Pates, et al. The selectivity of charged phenyl radicals in hydrogen atom abstraction reactions with isopropanol. J. Phys. Chem. A,2008,112:9708-9715
    [113]Farouq Mjalli, Sameer Al-Asheh, Fawzi Banat, et al. Representation of adsorption data for the isopropanol-water system using neural network techniques. Chem.Eng.Technol, 2005,28(12):1529-1539
    [114]Laura M. Kooijman, Klaassien J. Ganzeveld, Robbert M. Manurung, et al. Experimental studies on the carboxymethylation of arrowroot starch in isopropanol-water media. Starch/Starke,2003,55:495-503
    [115]周保学,蔡伟民,何争光,蔡俊,邹立壮.异丙醇—水体系中分子间相互作用对萘迁移热力学性质的影响.化学学报,2004,62(10):998-1002
    [116]T. G. A. Youngs, D. Weber, L. F. Gladden, et al. Liquid structure and dynamics of aqueous isopropanol over y-alumina. J. Phys. Chem. C,2009,113,21342-21352
    [117]马林,刘东群,杨华等.正丙醇和异丙醇对水溶液中牛血清白蛋白的构象及其荧光光谱的影响.化学通报,2008,1:56-61
    [118]朱拓,陈国庆,虞锐鹏等.醇类溶液的紫外吸收和荧光光谱研究.光谱学与光谱分析,2006,26(2):291-294
    [119]Konstantina I. Poulli, George A. Mousdis, Constantinos A. Georgiou. Monitoring olive oil oxidation under thermal and UV stress through synchronous fluorescence spectroscopy and classical assays. Food Chemistry,2009,117(3):499-503
    [120]Mohammad Ali Ansari, Reza Massudi, Marjaneh Hejazi. Experimental and numerical study on simultaneous effects of scattering and absorption on fluorescence spectroscopy of a breast phantom. Optics & Laser Technology,2009,41:746-750
    [121]Bahram Hemmateenejad, Zahra Rezaei, Sasan Zaeri. Second-order calibration of excitation-emission matrix fluorescence spectra for determination of glutathione in human plasma. Talanta,2009,79:648-656
    [122]Jennifer E. Phipps, Nisa Hatami, Zorina S. Galis, et al. A fluorescence lifetime spectroscopy study of matrix metalloproteinases-2 and-9 in human atherosclerotic plaque. Journal of Biophotonics,2011,4(9) 650-658
    [123]Smyk B, Amarowicz R, Szabelski M et al. Steady-state and time-resolved fluorescence studies of stripped Borage oil. Analytica Chimica Acta,2009,646(7):85-89
    [124]许金钩,王尊本.荧光分析法(第三版).北京:科学出版社,2006
    [125]樊美公,姚建年,佟振合等.分子光化学与光功能材料科学.北京:科学出版社,2009
    [126]Bing-Jie Ni, Fang Fang, Wen-Ming Xie, et al. Characterization of extracellular polymeric substances produced by mixed microorganisms in activated sludge with gel-permeating chromatography, excitation emission matrix fluorescence spectroscopy measurement and kinetic modeling. Water Research,2009,43(3):1350-1358
    [127]Chunyan Wang, Wendong Li, Xiaoning Luan, et al. Species identification and concentration quantification of crude oil samples in petroleum exploration using the concentration-synchronous-matrix-fluorescence spectroscopy. Talanta, 2010,81(1):684-691
    [128]Bernard Valeur. Molecular fluorescence principles and applications. Weinheim: WILEY-VCH Verlag GmbH,2002
    [129]Joseph R. Lakowicz. Principles of fluorescence spectroscopy (3rd edition). Springer-Verlag Berlin Heidelberg,2006
    [130]陆明刚,吕小虎.分子光谱分析新法引论.北京:中国科技出版社,1993
    [131]王彦吉,宋增福.荧光分析与色谱分析.北京:北京大学出版社,1995
    [132]Tsuzuki S., L thi H.P. Interaction energies of van der waals and hydrogen bonded systems calculated using density functional theory:Assessing the PW91 model. J. Chem. Phys.,2001,114(9):3949-3957
    [133]Baier V. N., Katkov V. M. Spectrum and polarization of coherent and incoherent radiation and the LPM effect in oriented single crystal. Nuclear Instruments and Methods in Physics Research B,2008,266:3828-3834
    [134]Pei L. S., Zhang J., Kong W. et al. Polarization spectroscopy of aluminum phthalocyanine hydroxide embedded in superfluid helium droplets. Chemical Physics Letters,2008,462:173-177
    [135]刘莹,兰秀风,高淑梅等.乙酸的光谱学及其特性的研究.应用激光,2002,22(6):595-562
    [136]K. Yamamoto, N. Nishi. Hydrophobic hydration and hydrophobic interaction of carboxylic acids in aqueous solution:mass spectrometric analysis of liquid fragments isolated as clusters. J. Am. Chem. Soc.1990,112(2):549-558
    [137]J. A. Aquino, D. Tunega, G. Haberhauer, et al. Solvent effects on hydrogen bonds-a theoretical study. J. Phys. Chem.,2002,106(9):1862-1871
    [138]R. W. Sims, M. R. Willcott, R. R.Inners. The use of static and dynamic physical property measurements to infer structural properties of associated liquids:acetic acid-water. J. Chem. Phys.,1979,70:4562-4573
    [139]陈国珍,黄贤智,郑株梓等.荧光分析法.北京:科学出版社,1990
    [140]Joseph N. Forkey, Margot E. Quinlan, Yale E. Goldman. Protein structural dynamics by single-molecule fluorescence polarization. Progress in Biophysics & Molecular Biology,2000,74:1-35
    [141]四川大学分析测试中心.分析化学.北京:科学出版社,2001
    [142]Ludwig R. The effect of hydrogen bonding on the thermodynamic and spectroscopic properties of molecular clusters and liquids. Phys. Chem. Chem. Phys., 2002,4:5481-5487
    [143]张铁利,方达伟,张在宣.基于L-M光纤中的受激拉曼增益谱的分析.光电子技术与信息,2004,17(5):46-48
    [144]朱贵锋,金施群,卞铭.十字线结构光光条提取方法的研究.计量测试与检定,2006,16(3):12-14
    [145]王鼎昌译.分子光谱与分子结构Ⅱ:多原子分子的红外光谱与喇曼光谱.北京:科学出版社,1986
    [146]宋心琦,周福添,刘剑波.光化学原理·技术·应用.北京:高等教育出版社,2001
    [147]L.C.Palilis, A.J.Ma'kinen, M.Uchida and Z.H.Kafafi. Highly efficient molecular organic light-emitting diodes based on exciplex emission. Applied Physics Letters, 2003,82(14):2209-2211
    [148]D. Nettels, A. Hofer, P. Moroshkin, et al. Discovery of dumbbell-shaped Cs Hen exciplexes in solid 4He. Phys. Rev. Lett.,2005,94:063001
    [149]M. Mazzeo, D. Pisignano, F. Della Sala, et al. Organic single-layer white light-emitting diodes by exciplex emission from spin-coated blends of blue-emitting molecules. Applied Physics Letters,2003,82(3):334-336
    [150]Jeanne L. Molecular spectroscopy. Pearson Education, Inc.,1999
    [151]姜月顺,李铁津等.光化学.北京:化学工业出版社,2005
    [152]肖慎修,王崇愚,陈天朗.密度函数理论的离散变分方法在化学和材料物理学中的应用.北京:科学出版社,1998
    [153]Koch W., Holthausen M. A chemist's guide to density functional theory. New York: Wiley-Vch Weinheim.2000
    [154]王广厚.团簇物理学.上海:上海科技出版社,2003
    [155]Zhanpeisov N.U., Takanashi S., Kajimoto S., Fukumura H. On the origin of the Raman band shifts for H-bonded complexes of normal alcohols and 2-butoxyethanol with water:A Theoretical DFT and MP2 study. Chem. Phys. Lett.,2010,491(4-6):51-155
    [156]Vinogradov S.N., Linnell R.H. Hydrogen bonding. New York: Van Nostrand Reinhold, 1971
    [157]刘靖疆.基础量子化学与应用.北京:高等教育出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700