光纤CRDS流体传感的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍了光腔衰荡光谱的技术背景、特点、意义和发展历程;综述了其在高反射率测量、原子分子吸收光谱研究、分析化学、痕量气体检测和大气环境检测等技术中的应用;概述了在此基础上发展起来的光纤腔衰荡技术及其优越性。本文的主要研究工作及研究成果如下:
     1、系统阐述了基于光强测量的CRDS技术和相移CRDS技术的原理;从技术角度分析了光源、增益放大器、耦合器件和探测器的参数选择和技术指标对测量精度和范围的影响;并重点分析了吸收单元——衰荡腔的分类,将其归纳为基于倏逝波原理的衰荡腔,引入微腔的衰荡腔以及引入光纤光栅的衰荡腔。对这三种结构进行了细致的总结,并指出了各自的优缺点。
     2、提出复折射率替代折射率的倏逝波模型计算流体吸收损耗,利用有限单元法建立了光纤四层折射率模型并计算得到了复折射率即消光系数;根据比尔-朗伯定律和倏逝波理论分别计算得到光纤的吸收损耗和传输损耗,并据此研究了当光纤包层被腐蚀后所泄漏的倏逝场及光纤的传输特性,并定量分析了被氢氟酸腐蚀的光纤包层直径对传输损耗的影响。
     3、采用氢氟酸腐蚀环内光纤的方法形成包层部分移除的吸收单元,设计并实现了免受温度影响的980nm光纤环衰荡腔系统和1560 nm皮秒级脉冲光纤环衰荡腔系统,利用5μL微流量注射器控制滴定浓度,检测二甲基亚砜溶液(DMSO)的折射率和浓度与损耗的对应关系。实现了对二甲亚砜溶液浓度的高精度测量,探测灵敏度达到1×10-3dB。
     4、提出并实验验证了碳纳米管涂覆的光纤倏逝波气体传感的新方法。在分析碳纳米管材料的发展和特性的基础上,总结了碳纳米管制备方法、碳纳米管和光纤的组装方法及其应用和发展。提出了利用碳纳米管的吸附和高温解吸附特性,将碳纳米管材料进行开口预处理并与光纤衰荡腔组装的方案,实现了对气体和易挥发有机溶剂(VOC)的实时初步传感测量。
     5、提出并实验验证了基于相移长周期光纤光栅(PS-LPG)的光纤环腔衰荡谱系统实现低损耗探测的新方法。采用耦合模理论分析了长周期光纤光栅的模式耦合和折射率传感特性,并用传输矩阵法分析了相移长周期光纤光栅的传输谱特性。根据理论分析结果选择适当的写制周期和长度,利用高频聚焦CO2激光脉冲技术在单模光纤上写制出低损耗(Loss<-0.74dB),谐振峰波长在1560nm的相移长周期光纤光栅,将其引入1560nm窄脉冲光纤环衰荡腔系统,避免了移除部分包层光纤的吸收单元结构脆弱的缺点,实现了对外界折射率和外界溶液浓度的实时检测。
     6、提出并实验验证了基于相移超长周期光纤光栅(PS-ULPG)的光纤环腔衰荡谱探测系统。利用超长周期光纤光栅谐振峰为高阶包层模与纤芯模式耦合,对外界环境变化更为敏感的特性,将高频CO2激光器写制的低传输损耗PS-ULPG作为吸收单元引入衰荡腔系统。根据耦合模理论的计算结果适当选择写制参数,在单模光纤上写制出谐振波长为1560nm超长周期光纤光栅以及相移超长周期光纤光栅,并将其引入1560nm的窄脉冲光纤环衰荡腔系统中。通过测量不同折射率的液体对光纤环衰荡谱衰荡时间的影响,实现了对外界直射率和外界溶液浓度的实时测量。
     7、在对目前单一组分、单一参量流体折射率传感分析的基础上,提出了以动态检测、传感单元设计等方式实现基于光纤腔衰荡光谱技术的多组分、多参量检测系统的思路,设计出典型的系统方案并进行了初步的应用探索。
This thesis provides a comprehensive introduction of the technical background, characteristics, advantages, and historical progress of cavity ring down spectroscopy (CRDS); moreover, the applications of CRDS in high reflectivity measurement, atomic and molecular absorption spectroscopy, analytic chemistry, mark gas detection, and atmosphere environmental monitoring have been also generally discussed about; furthermore, CRDS technology and its advantages have been briefly introduced. The main content of this thesis include the following aspects:
     1. CRDS techniques based on the measurement of optical intensity and phase have been systematically introduced; from the technical perspective, the influence of parameter selection of light source, gain amplifier, coupling components, and detector along with the technical features on the measurement resolution and range have been analyzed; and in particular, the absorption cell—ring down cavity is classified into the cavity based on evanescent waves, the cavity with micro-cavity, and the cavity based on fiber gratings. The above three configurations have been summarized in detail, and their respective merits have also been pointed out as well as the disadvantages.
     2. The evanescent wave model using complex refractive index is presented to calculate the absorption loss of flow, and a four-layer refractive index model has been set up by using the finite element method to acquire the complex refractive index, namely the extinction ratio; furthermore, according to the Beer-Lambert law and evanescent wave principle, the absorption loss and transmission loss of the fiber have also been calculated, based on which the evanescent field leakage and transmission characteristics for the cladding-etched fiber have been investigated as well as the influence of cladding diameter of the HF-acid-etching fiber on its transmission loss has been quantitatively analyzed
     3. By using HF acid to etch the fiber inside the cavity, absorption cells with partially eradicated cladding are formed, based on which the temperature-immune 980nm fiber CRDS system and 1560nm pico-second pulse fiber CRDS system have been designed and experimentally achieved. With a 5-microliter injector to control the fluid concentration, the refractive index of DMSO solution as a function of the transmission loss has been experimentally calibrated. The high-precision concentration measurement of DMSO solution is achieved with a sensitivity of 1×10-3dB.
     4. A novel gas sensing technique based on the fiber evanescent sensor coated with carbon nanotubes is presented and experimentally validated. Based on the progress and characteristic introduction of the carbon nanotube materials, the preparation method of carbon nanotubes, the approach to assemble the carbon nanotubes with fibers, and their applications have been summarized. An assembly scheme is presented, which needs to preprocess the carbon nanotube materials with front opening considering the adsorption and de-adsorption characteristics of carbon nanotubes under high temperature. And by using this method, preliminary real-time measurement of gases and VOC is realized.
     5. A novel low loss measurement method based on the phase-shifted long-period grating (PS-LPG) is presented and experimentally validated. The mode coupling and refractive index sensing characteristics of the long-period grating are analyzed by using the coupled mode theory, and the transmission characteristics of the PS-LPG is analyzed based on the transfer matrix method. According to the theoretical results, appropriate grating pitch and length parameters are selected, and the PS-LPG with low loss ((Loss<-0.74dB) and a resonance wavelength of 1560nm, is inscribed onto a single-mode fiber under exposure of focused high frequency CO2 laser pulses. By introducing this grating into a 1560nm narrow line-width pulse CRDS system, the fragile structure of absorption cells with fiber cladding partially eradicated is avoided, and thus real-time measurement of environmental refractive index and solution concentration is realized.
     6. A fiber CRDS system based on the phased-shifted ultralong-period grating (ULPG) is proposed and experimentally validated. By exploiting the larger sensitivity of the resonance wavelengths resulting from the mode coupling between the core mode and higher order cladding modes, the low loss PS-ULPG fabricated by high frequency CO2 laser is introduced into a CRDS system as the absorption cell. According to the simulation results based on the coupled mode theory, appropriate grating parameters are selected, and the ULPG and PS-ULPG with resonance wavelengths of 1560nm are written onto single-mode fibers, which have been employed in a 1560nm narrow line-width pulsed fiber CRDS system. Through measuring the ring down time of the liquid with different refractive indices, the real-time measurement of environmental refractive index and solution concentration is achieved.
     7. Based on the present study on single-parameter refractive sensing of the flow with single constituent, the multi-parameter sensing system with multi-constituent is proposed based on the CRDS technology equipped with dynamic measurement and optimal design of sensing units. The typical scheme is presented and its preliminary application has been attempted as well.
引文
[I]J. M. Herbelin, J. A. McKay. Development of laser mirrors of very high reflectivity using the cavity-attenuated phase-shift method [J]. Appl. Opt.,1981,20(19):3341-3344.
    [2]D. Z. Anderson, J. C. Frisch, C. S. Masser. Mirror reflectometer based on optical cavity decay time [J]. Appl. Opt.,1984,23 (8):1238-1245.
    [3]D. A. G. Deacon, A. O'Keefe. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources [J]. Rev. Sci. Instrum.,1988,59(2):2544-2555.
    [4]D. Romanini, A. A. Kachanov, N. Sadeghi. CW cavity ring down spectroscopy [J]. Chem. Phy. Lett.,1997,264 (34):316-322
    [5]D. Romanini, K. K. Lehamann. Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta [J]. J. Chem. Phys.,1993, 99 (9):6287-6301.
    [6]C. Vallance. Innovations in cavity ringdown spectroscopy [J]. New J. Chem.,2005, 29():867-874
    [7]刘亚萍,张伟刚,姜萌,张绮,刘波.光纤腔衰荡光谱技术及其最新进展[J].物理学进展,2008,28(4):401-408
    [8]G. Rempe, R. J. Thompson, H. J. Kimble. Measurement of ultralow losses in an optical interferometer [J]. Opt. Lett.,1992,17 (5):363-365
    [9]龚元,李斌成.连续激光光腔衰荡法精确测量高反射率[J].中国激光,2006,33(9):1247-1250
    [10]M. Andachi, T. Nakayama, M. Kawasaki, S. Kurokawa, H. P. Loock. Fiber-optic ring-down spectroscopy using a tunable piscosecond gain switched diode laser Appl [J]. Phys. B,2007, 88(1):131-135
    [11]G. Stewart, K. Atherton, H. Yu and B. An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements [J]. Sci. Tech.,2001,12(1):843-849
    [12]G. Stewart, K. Atherton, B. Culshaw. Cavity enhanced spectroscopy in fiber cavities [J]. Opt. Lett.,2004,290:442-444
    [13]G. Stewart, P. Shields, B. Culshaw. Development of fibre laser systems for ring-down and intracavity gas spectroscopy in the near-IR [J]. Meas. Sci. Technol.,2004,15(3):1621-1628
    [14]N. Ni, C. C. Chan, Improving the measurement accuracy of CRD fibre amplified loop gas sensing system by using a digital LMS adaptive filter, Meas. Sci. Technol [J].2006,17(1): 2349-2354
    [15]周杏鹏,仇国富,王寿荣等.现代检测技术.北京:高等教育出版社,2004:55-73.
    [16]Bamoski M K, Friedrich H R. Fabrication of an access coupler with single-strand multimode fiber waveguides [J]. Appl. Opt.,1976,15(11):2629-2630
    [17]孙福革,戴东旭,孙龙.用光腔衰荡光谱方法精确测量高反镜的反射率.中国激光[J],1999,26(1):26-35
    [18]L. Reichert, M.D. Andres Hernandeza, J.P. Burrowsa. First CRDS-measurements of water vapour continuum in the 940 nm absorption band. Journal of Quantitative Spectroscopy & Radiative Transfer,2007,105(2):303-311
    [19]Ryuichi. Wada, A. J. Orr-Ewing. Continuous wave cavity ring-down spectroscopy measurement of NO2 mixing ratios in ambient air. Analyst,2005,130(1):1595-1600
    [20]周卫东,任志军等.衰荡腔光谱技术检测混合气体中甲醛含量.浙江师范大学学报,2007,30(1):11-15
    [21]刘永林,许树成,徐勇等.光腔衰荡光谱方法研究正丙醇羟基泛频光谱和分子构象.化学物理学报,2000,13(5):513-520
    [22]J. Hallock, E. S. F. Berman, R. N. Zare, Direct Monitoring of Absorption in Solution by Cavity Ring-Down Spectroscopy, Anal. Chem.,2002,74:1741-1743
    [23]J. Hallock, E. S. F. Berman, R. N. Zare, Use of Broadband, Continuous-Wave Diode Lasers in Cavity Ring-Down Spectroscopy for Liquid Samples, Appl. Spec.,2003,57 (5):571-573
    [24]C. J. Rennick, J. A. Smith, A. J. Orr-Ewing, et al., Cavity ring-down spectroscopy measurements of the concentrations of C2(X1S+) radicals in a DC arc jet reactor used for chemical vapour deposition of diamond films, Chem. Phys. Lett.,2004,383:518-522
    [25]Hans Peter Loock, Ring-down absorption spectroscopy for analytical microdevices, Trends in Analytical Chemistry, Vol.25, No.7,2006,655-664
    [26]Runkai Li, Hans-Peter Loock, Richard D. Oleschuk Capillary Electrophoresis absorption detection using fiber-loop ring-down spectroscopy, Anal. Chem.2006,78,5685-5692
    [27]M. Gupta, H. Jiao, A. O'Keefe, Cavity-enhanced spectroscopy in optical fibers, Opt. Lett. 2002,27(21):1878-80
    [28]Tuomo Von Lerber, Markus W. Sigrist, Cavity-ring-down principle for fiber- optic resonators: experimental realiztion of bending loss and evanscent-field sensing, Applied Optics,2002, 41(18):3567-3575
    [29]P. B. Tarsa, K. K. Lehmann, Cavity ringdown strain gauge, Opt. Lett.,2004,29(12): 1339-1341
    [30]P. B. Tarsa, P. Rabinowitz, K. K. Lehmann, Evanescent field absorption in a passive optical fiber resonator using continuous-wave cavity ring-down spectroscopy, Chem. Phys. Lett., 2004,383(1):297-303
    [31]P. B. Tarsa, P. Rabinowitz, K. K. Lehmann, Single-cell detection by cavity ring-down spectroscopy, Appl. Phys. Lett.,2004,85(19):4523-4525
    [32]G Stewart, B, Culshaw, Optical waveguide modeling and design for evanescent field chemical sensors, Optical and Quantum Electronics,1994,26,249-259
    [33]N. Ni, C. C. Chan, L. Xia, P. Shum, Fiber Cavity Ring-Down Refractive Index Sensor, Photonics Technology Letters,2008,20(16):1351-1353
    [34]N. Ni, C. C. Chan, et al. Cavity ring-down long-period fibre grating strain sensor, Meas. Sci. Technol.,2007,18:3135-3138
    [35]N. Ni. and C. C. Chan, Improving the measurement accuracy of CRD fibre amplified loop gas sensing system by using a digital LMS adaptive filter, Meas. Sci. Technol.,2006,17: 2349-2354
    [36]S. Pu, X.G. Gu, Fiber loop ring-down spectroscopy with a long-period grating cavity, Opt. Lett.,2009,34 (12):1774-1776
    [37]G. Whitenett, G. Stewart, B. Culshaw, Optical fibre instrumentation for environmental monitoring applications, J. Opt. A:Pure Appl. Opt.,2003,5(1):140-145
    [38]R. Stephen Brown, Lgor Kozin, Zhaoguo Tong, Richard D. Oleschuk, Hans Peter Loock, Fiber-loop ring-down spectroscopy, Journal of Chemical Physics,2002,117(23): 10444-10447
    [39]Zhaoguo Tong, M. Jakubinek, A. Wright, A. Gillies, Hans-Peter Loock, Fiber-loop ring-down spectroscopy:A sensitive absorption technique for small liquid samples, Rew. Sci. Instrum., 2003,74(11):4818-4826
    [40]Z.G. Tong, A. Wright, H.P. Loock, Phase-Shift Fiber-Loop Ring-Down Spectroscopy, Anal. Chem.,2004,76(1):6594-6599
    [41]Chuji Wang, A. Mbi, An alternative method to develop fibre grating temperature sensors using the fibre loop ringdown scheme, Meas. Sci. Technol.,2006,17(2):1741-1751
    [42]Chuji Wang, Susan T. Scherrer, Fiber ringdown pressure sensors, Opt. Lett.,2004,29(4): 352-354
    [43]Chuji Wang, Susan T. Scherrer, Fiber loop ringdown for physical sensor development: pressure sensor, Applied Optics,2004,43(35):6458-6464
    [44]D. E. Vogler, M. G. Muller, M. W. Sigrist, Fiber-optic cavity sensing of hydrogen diffusion, Appl. Opt.,2003.42 (27):5413-5417
    [45]刘波,张键,罗建花等.基于光纤腔衰落解调技术的光纤光栅传感研究.光电子激光,2007,18(9):1043-1045
    [46]Bo Liu, Jianhua. Luo, Guiyun Kai, Temperature and Strain Senor, Microwave and Optical Technology Letters,2008,50 (1):111-113
    [47]T. B. Colin, K. H. Yang, W. C. Stwalley. The effect of mode distribution on evanescent field intensity:application in optical fiber sensors. Soc. Appl. Spect.,1991,45 (8):1291-1295
    [48]M. Gupta, H. Jiao, A. O'Keefe. Cavity-enhanced spectroscopy in optical fibers. Opt. Lett., 2002,27(21):1878-1880
    [49]B. D. Gupta, A. K. Tomar, A. Sharma. A novel probe for an evanescent wave fibre- optic absorption sensor. Opt. And Quantum Electro.,1995,27(2):747-753
    [50]陈振宜,光纤熔锥耦合系统理论新方法及其在光纤器件和传感中的应用:[博士学位论文],上海:上海大学,2006
    [51]W. Snyder, Optical Waveguide Theory. London, Chapman and Hall Ltd,1983:338-345
    [52]S. K. Knijwania, B. D. Gupta. Fiber Optic evanescent field absorption sensor:effect of fiber parameters and geometry of the probe. Opt. Quantum Electro.,1999,31:625-636
    [53]廖延彪.光纤光学.北京:清华大学出版社,2000:267-284
    [54]R. Engeln, G. von Helden, G. Berden, G. Meijer, Phase shift cavity ring down absorption spectroscopy, Chemical Physics Letters,1996,262:105-109
    [55]J.H. van Helden, D.C. Schram, R. Engeln, Phase-shift cavity ring-down spectroscopy to determine absolute line intensities, Chemical Physics Letters,2004,400:320-325
    [56]G. Berden, R. Peeters, G. Meijer, Cavity ring-down spectroscopy:Experimental schemes and applications, Int. Rev. in Phy.Chemistry,2000,19 (4):565-607
    [57]Turan Erdogan. Cladding-mode resonances in short-and long period fiber grating filters. J. Opt. Soc. Am,1997,14 (8):1760-1773
    [58]Jiang Meng, Zhang Weigang, Zhang Qi, Liu Yaping, Investigation on an evanescent wave fiber-optic absorption sensor based on fiber loop cavity ring-down spectroscopy, Optics Communications 2010,28 (2):249-253
    [59]Jiang Meng, Zhang Weigang, Liu Haitao, Fabrication of temperature-insensitive chirped fiber grating pressure sensor, Conference on Advanced Sensor Systems and Applications III 2008,6830,83018-83018
    [60]邓定桓,詹黎,夏宇兴.75 fs全光纤超短脉冲激光器,科学通报,2008,53(1):36-39
    [61]甘雨,向望华,周晓芳等.被动调Q锁模掺镱光纤激光器.中国激光,2006,33(8):1021-1024
    [62]杨玲珍,陈国夫,王屹山等.超短脉冲掺Yb3+光纤激光器实验研究,中国激光,2005,32(2):153-15
    [63]宋创兴,徐文成,罗智超等.可调谐锁模脉冲环形腔掺铒光纤激光器,光学学报,2009,29(5):1292-1295
    [64]赵羽,刘永智,赵德双,等.被动锁模光纤激光器光谱边带,光学学报,2009,29(4):991-995
    [65]宋方,徐文成,陈伟成,等.78飞秒的被动锁模掺铒光纤激光器,中国激光,2007,34(9):1174-1177
    [66]姜萌,张伟刚,颜爱东,尚佳彬,碳纳米管涂覆的光纤环衰荡腔探测技术初步研究,中国激光,接收待发表
    [67]A. Noya, H. G. Park, F. Fornasiero, Nanofluidics in carbon nanotubes, Nanotoday,2007,2(6): 22-29
    [68]Sze Y. Set, Hiroshi Yaguchi, Yuichi Tanaka, Mark Jablonski, Ultrafast Fiber Pulsed Lasers Incorporating Carbon Nanotubes, Quantum Electronics,2004,10(1):137-146
    [69]Jeroen W. G. Wildoer, Liesbeth C. Venema, Andrew G. Rinzler, Electronic structure of atomically resolved carbon nanotubes, Nature,1998,391:59-61
    [70]C.D. Scott, S. Arepalli, P. Nikolaev, R.E. Smalley, Growth mechanisms for single-wall carbon nanotubesin a laser-ablation process, Appl. Phys. A 2001,72:573-580
    [71]H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki. Y. Ohtsuka, Y. Achiba, Optical properties of single-wall carbon nanotubes, Synth. Met.1999,103,2555-2558
    [72]高书燕,王俊,彭春耘,LB技术在纳米粒子组装中的应用,应用化学,2005,22(7): 697-702
    [73]Lucy Netzer, Jacob Sagiv, A new approach to construction of artificial monolayer assemblies, J. Am. Chem. Soc.,1983,105 (3):674-676
    [74]S. Yamashita, Y. Inoue, S. Maruyama, S. Y. Set, Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers, Optics Letters,2004,29 (14):1581-1583
    [75]Junxia Wang, Dongqing Jiang, Zhiyuan Gu, Xiuping Yan, Multiwalled carbon nanotubes coated fibers for solid-phase microextraction of polybrominated diphenyl ethers in water and milk samples before gas chromatography with electron-capture detection, Journal of Chromatography A,2006,1137:8-14
    [76]M. Pisco, M. Consales, A. Cutolo, A. Cusano, M. Penza, P. Aversa, Hollow fibers integrated with single walled carbon nanotubes:Bandgap modification and chemical sensing capability, Sensors and Actuators B,2008,129:163-170
    [77]A. Cusano, M. Consales, A. Cutolo, M. Penza, P. Aversa, Optical probes based on optical fibers and single-walled carbon nanotubes for hydrogen detection at cryogenic temperatures. Applied Physics Letters,2006,89 (20):201106
    [78]Andrea Cusano, Marco Pisco, Marco Consales, Antonello Cutolo, Michele Penza, Novel Optochemical Sensors Based on Hollow Fibers and Single Walled Carbon Nanotubes, Photonics Technology Letters,2006,18 (22):2431-2433
    [79]Yoichi Murakami, Erik Einarsson, Tadao Edamura, Shigeo Maruyama, Polarization Dependence of the Optical Absorption of Single-Walled Carbon Nanotubes, Physical Review Letters,2005,94 (8):087402-087405
    [80]Y. C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y. P. Zhao, T. M. Lu, G. C. Wang, Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55μm, Appl. Phys. Lett.2002,81,975-977
    [81]A. Martinez, K. Zhou, I. Bennion, Shinji Yamashita. In-fiber microchannel device filled with a carbon nanotube dispersion for passive mode-lock lasing. Optics Express,2008,16(20): 15425-15430
    [82]王廷志,党纯.准直碳纳米管的非均匀生长研究.微细加工技术,2007,4():43-46
    [83]Yong-Won Song, Shinji Yamashita, Erik Einarsson, Shigeo Maruyama, All-fiber pulsed lasers passively mode locked by transferable vertically aligned carbon nanotube film, Optics Letters,2007,32 (11):1399-1401
    [84]Yong-Won Song, Shinji Yamashita, Shigeo Maruyama, Single-walled carbon nanotubes for high-energy optical pulse formation, Applied Physics Letters,2008,92 (2):021115/1-3
    [85]Yong-Won Song, Shinji Yamashita, Chee S. Goh, Sze Y. Set, Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers, Optics Letters, 2007,32(2):148-150
    [86]Yanwu Zhu, Hendry Izaac Elim, Yong-Lim Foo, Ting Yu, Yanjiao Liu, Wei Ji, Jim-Yang Lee. Multiwalled Carbon Nanotubes Beaded with ZnO Nanoparticles for Ultrafast Nonlinear Optical Switching. Adv. Mater.2006,18():587-592
    [87]周振华,武小满,王毅,林国栋,张鸿斌.氢气在碳纳米管基材料上的吸附-脱附特性.物理化学学报,2002,18(8):692-698
    [88]武小满,王毅,董昆明,周金梅.H2在K0-MWCNTs上储存和吸附-脱附特性研究.化学学报,2005,63(6):484-490
    [89]Yu Qiao, Guoxin Cao, and Xi Chen. Effects of Gas Molecules on Nanofluidic Behaviors. J. Am. Chem. Soc.2007,129,2355-2359
    [90]朱海滨,胡伟琴.顶端开口碳纳米管的制备新方法.嘉兴学院学报,2006,18(3):16-18
    [91]余荣清,詹梦熊,程大典.液相化学腐蚀法用于碳纳米管的纯化及顶端开口研究.化学通报,1996,4:25-26
    [92]从松颖.碳纳米管在气湿敏传感器中的应用研究:[硕士学位论文],大连:大连理工大学,2007
    [93]H. Kogelnik. Theroy of optical waveguides. In:Tamir T, ed. Guided-Wave Optoelectronics. Berlin:Springer-Verlag,1990
    [94]A M Vengsarkar, J R Pedrazzani, J B Judkins. Long-period fiber-grating-based gain equalizers. Opt. Lett.,1996,21 (5):336-338
    [95]K. O. Hill. Efficient mode conversion in telecommunication fiber using externally written grating. Electron Lett.,1990,26 (16):1270-1272
    [96]A M Vengsarkar. Long-period fiber gratings as band-rejection filters. J. Lightwave Technology,1996,14(1):58-65
    [97]A D Kersey, M. A. Davis, H.J. Patrick. Fiber grating sensors. J. Lightwave Technology,1997, 15(8):1442-1463
    [98]A D Ellis, R. Kashyap, Ⅰ. Crisp, Dispersion compensating, reconfigurable optical add drop multiplexer using chirped fiber Bragg gratings. Electron. Lett.,1997,33 (17):1474-1475
    [99]F Bakhti, P.Sansonetti. Realization of low back-reflection, wide-band fiber band filter bandpass filters using phase-shifted long-period gratings. OFC'97,1997, FB4:349-350
    [100]A W Snyder, J D Love. Optical Waveguide Theory. London:Chapman and Hall,1984
    [101]Tsao C. Optical Fibre Waveguide Analysis. New York:Oxford University Press,1991
    [102]孔梅.长周期光纤光栅的理论和应用研究:[博士学位论文].浙江:浙江大学,1999.3,28-38
    [103]T. Erdogan. Fiber grating spectra. J. of Lightwave Technol,1997,15 (8):1277-1294
    [104]T. Erdogan. Cladding-mode resonances in short and long period fiber grating filters. J. Opt. Soc.Am.A,1997,14(8):1760-1773
    [105]T. Erdogan, T. Errata. Clading-mode resonances in short- and long-period fiber grating filters. J. Opt. Soc. Am. A,2000,17 (11):2113
    [106]T. Erdogan, J E.Sipe. Tilted fiber phase gratings. J. Opt. Soc. Am., A,1996,13 (2):296-313
    [107]Tsao C. Modal characteristics of three-layer optical fiber waveguide:a modified approach. J. Opt. Soc. Am. A,1989,6 (4):555
    [108]Zheng Z, Shi W, Ji X. The Cladding Mode Dispersion Relation and HE/EH Mode of Three-layered Optical Fiber. J. Optoelectronics Laser,2003,14 (5):501-504
    [109]Bae J, Chun J. Synthesis of long-period fiber gratings with the inverted erbium gain spectrum using the multiport lattice filter model. J. Lightwave Technol.,2004,22 (8): 1976-1986
    [110]Chern G W, Wang L A. Transfer-matrix method based on perturbation expansion for periodic and quasi-periodic binary long-period gratings. J. Opt. Soc. Am. A,1999,16 (11): 2675-2689
    [111]Shu X, Zhang L, Bennion I. Sensitivity Characteristics of long-period fiber gratings. J. Lightwave Technol.,2002,20 (2):255-266
    [112]何瑾琳,孙小菡,张明德,逢焕刚.相移长周期光纤光栅的光谱特性及其在光分插复用器中的应用.光学学报,2000,20(8):1106-1111
    [113]王义平,饶云江,曾祥楷.长周期光纤光栅弯曲特性的模式耦合理论分析.光子学报,2002,31(10):1205-1208
    [113]Y. J. Rao, Y. P. Ping, Z. L. Ran, and T. Zhu. Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses. J. Lightw. Technol.,2003,21(5): 1320-1327
    [114]T. Zhu, Y.J. Rao, J.L. Wang. Characteristics of novel ultra-long-period fiber gratings fabricated by high-frequency CO2 laser pulses. Optics Communications,2007,277():84-88
    [115]范弘建,张伟刚,颜爱东,姜萌,屈柯楠.非均匀超长周期光纤光栅的频谱分析.中国激光,2010,37(6)已接受待发表
    [116]李景义,饶云江,牛永昌,聂玲.高频C02激光脉冲写入的相移长周期光纤光栅.光子学报,2005,34(1):38-40
    [117]朱涛,饶云江,莫秋菊,王久玲.高频C02激光脉冲写入超长周期光纤光栅特性研究.物理学报,2007,56(9):5287-5292
    [118]Mangan B J, Knight J C, Birks T A, et al. Experimental study of dual-core photonic crystal fibre. Electron. Lett.,2000,36(16):1358-1359
    [1]9]张绮,张伟刚,张健,刘卓琳,姜萌,刘亚萍.飞秒激光刻蚀光纤微腔及其在光纤环衰荡腔中的应用.中国激光,2009,36(4):713-717
    [120]张伟刚.光纤腔衰荡谱系统设计及流体传感研究.激光与光电子学进展,2010,47(3):030601/1-030601/19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700