醇类物质光谱学和光子密度波扩散理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据甲醇溶液的紫外吸收光谱和紫外光激励的荧光光谱实验研究结果,得到了甲醇溶液能较好吸收波长短于260nm的紫外光,且随着溶液浓度变化其吸收光谱和荧光光谱的变化规律,进而对甲醇分子吸收和发射光谱的机理进行了讨论和分析。
     对乙醇溶液的吸收光谱和荧光光谱,以及与甲醇溶液的光谱对比研究结果表明:两者的最长吸收波长差为15nm左右,荧光中心波长差为33nm左右,推算得到了甲醇分子和乙醇分子产生荧光主跃迁的能级差,从而为准确区分甲醇和乙醇提供了实验依据;进而根据分子结构理论合理地解释了两种溶液的光谱特性存在差异的原因;并由此提出了用最长吸收波长和荧光光谱中心位置的光谱特性有效区分甲醇和乙醇分子的方法。
     针对乙醇物质的应用产品——白酒,我们选择地产的洋河大曲原酒进行了光谱学的研究,进而对不同地区的代表性白酒的三个品牌的浓香型商品酒进行了比较式光谱学研究,得到了几种具有典型应用价值的结果,为酒的陈化年代的估计和不同品牌酒的识别给出了一种有效的方法。
     我们还研究了正丙醇、异丙醇的紫外吸收光谱及荧光光谱,并进行了分析和比较。研究结果表明使用紫外吸收和荧光光谱能容易地鉴别正丙醇与异丙醇,同时对二者光谱的差异原因进行了解释。进而对四种醇类物质的光谱进行了对比研究。
     在光子密度波成像理论的光子密度波扩散方程求解与模拟计算方面,我们根据试验模型的要求,得到了在复光源照射下,无限长、半无限长矩形空间及立方体边界条件下的格林函数,应用这些格林函数求解了相应条件下光子传输方程扩散近似的形式解,并分别演算出了三种模型下,与入射面相对应的出射面处的光子通量和多散射介质中吸收系数改变量之间的关系表达式,从理论上解决了更加复合实际情况的光子传输方程扩散近似的求解问题。针对光子密度波的模拟计算问题,我们在已经得到的三种直角坐标下解析解的基础上,提出了一种快速计算光通量的算法,并编制了对应的计算程序。进而考察了三种求解模型光通量及其相对偏差随不同参数的变化,给出了不同解析模型的特点,并分析了不同参数对光子密度的影响。
     本文的研究结果为醇类物质的识别及白酒不同品牌和年代的鉴别提供了一种新的有效的测定方法,其结果对量子化学计算也有参考价值。光子密度波成像技术的研究结果为同类研究提供了理论基础,所提算法实现的程序及模拟计算结果也为今后的反演计算和实验研究奠定了基础。
The absorption and fluorescent spectra of four monohydric alcohol fully dissolved in water, and its characteristic are fully studied in theory and experiment. The solution of diffusion equation and numerical value simulation on photon density wave theory are also systematically studied in this paper.
    From the experimental outcomes of the UV-light absorption spectra and the fluorescent spectra of methanol, we find that methanol molecules can absorb the exciting light with a wavelength less than 260nm, and the fluorescent intensity has a regularity change with the concentration change of methanol. Thus the absorbing-emitting mechanism of methanol molecule is discussed and analysized.
    The UV-light absorption spectra and the fluorescent spectra of ethanol are studied, which are especially compared to the methanol solution. Based on the obtained results, a difference of 15nm in longest absorption wavelengths and a difference of 33nm in center fluorescent wavelength can be used precisely to distinct methanol and ethanol. The spectra difference of two solutions can be explained reasonably on the structural theory of molecule. Furthermore, a new method to distinguish methanol and ethanol is put forward by the spectra characteristics in longest absorption wavelengths and center fluorescent wavelength.
    Yanghe original alcohol with typical flavor of Jiangsu was chosen in the study of its spectroscopy, just because alcohol is the most quantitive production and ethanol be applied to foodstuff industry. Three brands of stronger fragrant flavor alcohol which come from different regions were compared in study of spectroscopy. Many useful results were obtained that can be used to tell the age of the alcoholic and wine and identify the different brands.
    The UV-light absorption spectra and the fluorescent spectra of propanol and isopropanol are also compared in study. According to the results of our researches, propanol and isopropanol could be clearly distinguished by absorption spectra and fluorescent spectra. In this paper, the reasons of difference spectra of two liquids are also explained. Moreover, the fluorescent spectra of the four kinds of different alcohol were compared and the results were discussed.
    The solution of diffusion equation and the numerical value simulation on photon density wave theory are studied. We consider the general situation in which a amplitude of the point light source may be modulated at frequency Ω. The solutions of diffusion equation in infinite, semi-infinite and finite cube space with photon density wave were researched based on the need of experimental model. The analytic solution of Green-function is occurred under the boundary conditions, and the relationship between
    the flux J_n and absorption factor △μ_a was worked out by calculation. By use of three
引文
1 王忠和,张光寅.光子学物理基础[M].北京:国防工业出版社,1998,P1-5.
    2 赵瑶兴,孙祥玉.有机分子结构光谱鉴定[M].北京:科学出版社,2003,P1-60.
    3 夏慧荣,王祖赓.分子光谱学和激光光谱学导论[M].上海:华东师范大学出版社,1989,P1-17.
    4 彭禽勤,王璧人.波谱分析在精细化工中的应用[M].北京:中国石化出版社,2001,P75-99.
    5 樊美公.光化学基本原理与光子学材料科学[M].北京:科学出版社,2001,P1-27.
    6 洪山海.光谱解析法在有机化学中的应用[M].北京:科学出版社,1980,P365-416.
    7 宁永成.有机化合物结构鉴定与有机波谱学[M].北京:科学出版社,2000,P364-384.
    8 L. Pauling, The Nature of the Chemical Bond [M]. Cornell University, Ithaca, NY, 1960, P25-27
    9 S.Sarkar and R.N.Joarder, Molecular dusters and correlations in liquid methanol at room temperature, J.Chem.Phys. 99(3), 1993.
    10 I.M.Svishchev and P.G.Kusalik, Structure in liquid methanol from spatial distribution functions, J.Chem.Phys. 100(7), 1994.
    11 A.K.Soper, Hydration of Methanol in Aqueous Solution, Physical Review Letters, Vol.71, No.26, 1993.
    12 S.Dixit, J.Crain, W.C.K.Poon,et al, Molecular setregation observed in a concentrated alcohol-water solution, Letters to nature, 2002, 416.
    13 J.H. Guo, Y. Luo et al., Molecular Structure of Alcohol-Water Mixtures, Physical Review Letters, 2003, 91(15) : 157401-4.
    14 S.Sarkar and R.N.Joarder, Molecular dusters in liquid ethanol at room temperature, J.Chem.Phys. 1994, 100(7), 5118.
    15 C.Talon, M.A.Ramos, and S.Vieira, Low-temperature specific heat of amorphous, orientational glass, and crystal phases of ethanol, Physical Review B 2002, 66, 112201.
    16 A.Matic, C.Masciovecchio, D.Engberg, et al., Crystal-like Natrue ol Acoustic Excitations in Glassy Ethanol, Physical Review Letters, 2004, 93(14).
    17 Chris J.Benmore, Yen L.Loh, The structure of liquid ehanol: A neutron diffraction and molecular dynamics study, Journal of Chemical Physics, 2002,112(13).
    18 R.Laenen and C.Rauscher, A structural moldel for associated liquid ethanol developed from transient spectroscopy, J.Chem.Phys. 1997, 107(23), 9759.
    19 Takaaki Sato and Akio Chiba, Dynamical aspects of mixing schemes in ethanol-water mixtures in terms of the excess partial molar activation free energy, enthalpy, and entropy of the dielectric relaxation process, J. Chem. Phys., 1999,110(5), 2508
    20 Klein S, et al. Nutrition, 1991, 7(2):75-79.
    21 Diamond I, Messing RO. Neurologic effects of alcoholism. West J Med, 1994,161(3):279-287.
    22 S.M. Arabei, J.P.Galaup, P.Jardon. Analysis of the site selected fluorescence and the phosphorescence spectrum of hypericin in ethanol. Chemical Physics Letters.1997, 270:31-36.
    23 Creagh, A.L. Prausnitz, J.M.; Blanch, H.W. Effect of aqueous surfactant solutions on alcohol dehydrogenase (LADH). Biotechnology and Bioengineering. 1993, 41:156-161.
    24 Vlahovici, A. Andrei, M. Druta, I. A study of the dimethyl 3-benzoyl-5 (2 prime -pyridyl) -indolisine-1, 2-dicarboxylate exciplexes with alcohols. Journal of Luminescence SE J Lumin. 2002, 96:279-285.
    25 L.Murillo-Fuentes et al. Effect of maternal chronic alcohol administration in the rate laction performance and pup's growth. 2001.
    26 Schilling, G.Voigt, T.Tavares, D.Klockow.An enzymatic - fluorimetic method for monitoring of ethanol in ambient air.Analytical and Bioanalytical chemistry. 1999.
    27 Xu S C, Dai D, Xie J, Sha G, Zhang C. Quantitative measurement of O_2b←X(2,1,0←0) bands by using cavity ring-down spectroscopy. Chem. Phys. Lett., 1999, 303: 171.
    28 Krueger P J, Mettee H D. Spectroscopic studies of alcohols Ⅳ. Conformational heterogeneity of 1-propanol in dilute CCl_4 solution. Can. J. Chem. 1964, 42: 347.
    29 刘永林等.光腔衰荡光谱方法研究正丙醇羟基泛频光谱和分子构象.化学物理学报,2000,13(5),513-520.
    30 Flynn T D, Werner R L, Graham B M. Autral.The intensity of the hydroxyl band in Infra-red spectra. J. Chem., 1959, 12: 575.
    31 Ki M, Iwamura H. Bull. Intramolecular interaction between hydroxyl group and π -electrons. Ⅳ. Rotational isomers of alchols and shift of γ_(O-H) absorptions in phenyl substituted alchohols. Chem. Soc. Japan, 1959, 32: 950.
    32 Fruwert J, Hanschmann G, Geiseler G. Z. Zur dublettstruktur der OH-Valenzschwingungsbande. Physic Chem., 1965, 228:277.
    33 Saier E L, Cousins L R, Basila M R. Band shape of the OH stretching vibration in aliphatic alcohols evidence for the occurrence of an intramolecular interaction. J. Chem. Phys., 1964, 41: 40.
    34 Stuart A V, Sutherl G B B M. Effect of hydrogen bonding on the deformation frequencies of the hydroxyl group in alcohols. J. Chem. Phys., 1956, 24: 559.
    35 Wilson E B. Conformational studies on small molecules. Chem. Soc. Rev. 1972, 1: 293.
    36 Abdurahmanova A A, Rahimova R A, lvanov L M. Microwave spectrum of normal propyl alcohol. Phys. Letters (A) 1970, 32: 123.
    37 Radom L, Lathan W A, Hehre W J, Pople J A. Molecular orbital theory of the electronic structure of organic compounds. ⅩⅤⅡ. Internal rotation in 1, 2-disubstituted ethanes. J. Amer. Chem. Soc., 1973, 95: 693.
    38 Badger R M, Bauer S H. Absorption spectra of the vapors of twelve alchohols and of nitric acid in the region of the O-H harmonic band at λ 9500. J. Chem. Phys., 1936, 4: 711.
    39 ZHOU Weidong, ZHANG Jingsong. Ultraviolet Photodissociation Dynamics of 1-Propanol and 2-Propanol by high-n Rydberg-Atom Time-of-flight (HRTOF) Technique, Chinese Journal of Chemical Physics, 2002, 15(3), 233-236.
    40 陈世忠,文国军,武文华.提高正丙醇是提高酒精质量的关键.酿酒,2002,29(6):10.
    41 傅其军,韦文昌.浅谈如何降低食用酒精中的正丙醇含量.广西轻工业,2003,6:20-21.
    42 饭野修,渡边正平(黄平译).葡萄酒中的高级醇苦味.酿酒科技,1995,3:55-57.
    43 谢克昌,李忠.甲醇及其衍生物[M].北京:化学工业出版社,2002,P1-43.
    44 房鼎业,应卫勇,骆光亮.甲醇系列产品及应用[M].上海:华东理工大学出版社,1993,P1-23.
    45 Sally Poulson, Sally Anderson. ORGANIC CHEMISTRY [M]. New York: Worth Publishers, Inc., 1980, P50-117.
    46 赵迪麟.化工产品应用手册[M].上海:上海科学出版社,1988,P62-141.
    47 黄茂福.化学助剂分析与应用手册[M].北京:中国纺织出版社,2001,P210-221.
    48 姚汝华,赵继伦.酒精发酵工艺学[M].广州:华南理工大学出版社,1999,P214.
    49 朱宝镛,章克昌.中国酒精[M].上海:上海文化出版社,2000,P426-427.
    50 S. M. de la Monte, J. R. Wands. Chronic gestational exposure to ethanol impairs insulin-stimulated survival and mitochondrial function in cerebellar neurons. Cellular and Molecular Life Sciences. 2002, 59(5): 882-893.
    51 Taraschi TF & Rubin E. Effect of ethanol on the chemical and structural properties of biologic membranes. Lab Invest. 1986, 52: 120-131.
    52 Wood G & Schroeder F. Membrane effects of ethanol; bulk lipid versus lipid domains. Life Sciences. 1988, 42: 467-475.
    53 F. Casatafineda, R. K. H. Kinne. Short exposure to millimolar concentrations of ethanol induces apoptotic cell death in multicellular HepG2 spheroids. Journal of Cancer Research and Clinical Oncology. 2000, 16(6): 305-310.
    54 樊美公等著.光化学基本原理与光子学材料科学[M].科学出版社,2001年,P319.
    55 刘莹,兰秀凤,高淑梅等.253.7nm 光辐照乙醇溶液荧光光谱分析[J].南京理工大学学报,2003,27(6):720-723.
    56 兰秀凤,刘莹,高淑梅等.乙醇溶液的荧光光谱及其特性的研究[J].激光技术,2003,27(5):477-479.
    57 KEMP Daniel S, VELLACCIO Frank. Organic Chemistry [M]. New York: Worth Publishers, Inc, 1980, P50-117.
    58 KALYANSUNDARAM K, THOMAS J.K, Solvent-Dependent Fluorescence of pyrene-3-carboxaldehyde and its applications in the estimation of polarity at micelle-water interfaces[J], J. Phys. Chem., 1977, 81(23), 2176.
    59 Guo J.-H, Luo Y, Augustsson A, et al. Molecular structure of alcohol-water mixtures [J]. Physical Review Letters, 2003, 91(15): 157401.
    60 黄君礼,鲍治宇.紫外吸收光谱法及其应用[M].北京:中国科学技术出版社.1992,2-6.
    61 钱松,孽惠茹.白酒风味化学[M].北京:中国轻工业出版社,1997,P1-98.
    62 李大和,黄圣明.浓香型曲酒生产技术[M].北京:轻工业出版社,1991,P1-66,P253-292.
    63 沈怡方.白酒生产技术全书[M].北京:中国轻工业出版社,1998,P16-18,P762-792.
    64 李大和.白酒勾兑技术问答[M].北京:中国轻工业出版社,1995,P53-63.
    65 沈尧绅,曾祖训.白酒气相色谱分析[M].北京:中国轻工业出版社,P66.
    66 郭文杰,卢建春,吕朝贵等.白酒的陈化、老熟与容器和时间关系.酿酒科技,2001,6:53-56.
    67 付立新,孟丽芬,许德春等.辐射加速白酒陈化研究.吉林农业大学学报,1994,16(3):67-70.
    68 付立新,孟丽芬,许德春等.辐射白酒对其理化指标影响的研究.激光生物光,1996,5(3):900-882.
    69 吴晖,高孔荣.微波白酒陈化的机理研究.1997,3:73-75.
    70 厚荣,盛良全,施春华等.水杨酸与牛血清蛋白相互作用的荧光光谱研究.光谱学与光谱分析2004,24(1):78-81.
    26 覃方丽,闵顺耕,李宁.近红外光谱法测定有机混合物中的正己烷、环己烷、甲苯的含量.光谱学与光谱分析2003,23(6):1090-1092.
    71 KEMP Daniel S, VELLACCIO Frank, Organic Chemistry[M], New York: Worth Publishers, Inc, 1980, P50-117.
    72 英锡相,袁昌鲁等.反相高效液相色谱法测定心安胶囊中牡荆素的含量,中成药,2002,24(5):342-344.
    73 王京平,唐树和等.光度显色剂8-羟基喹啉5-磺酸的纯化方法.化学通报2003年第5期P357-359.
    74 刘延强,尹文乐等.毛细管气相色谱法分析正丙醇.色谱,1998,8(6):398-399.
    75 吕可诚,张春平,张光寅等.生物光子学进展[J].光子学报,1997,26(12):1123-1129.
    76 王玉堂.光子学的重要分支学科及其发展.光学在线.Http://www.photics.net
    77 李学勇.把握生命科学与生物技术发展的战略机遇.中国创业投资与高科技,2003(6):4-6
    78 邱元武.21世纪是光子时代.激光与光电子学进展,2000(1):1-6.
    79 刑达.生物医学光子学的无损伤影响方法.激光生物学报,2001,10(3):169.110
    80 骆清铭.光电技术在生物医学中的应用——现状与发展[J].光学与光电技术,2003,1(1):7-14.
    81 刘颂豪,邓铁铸.光子中医学.中国中医基础医学杂志.2001,7(4):1-3.
    82 李增惠.生物医学光子学与医学成像若干前沿问题----香山科学会议第152次学术讨论会.中国基础科学,2001(2):44-45.
    83 唐晓加,张为俊,韩亚农等.应用于生物组织的光学成像技术及国内可实施技术探讨[J].中国医学物理学杂志,2000,17(1):17-20.
    84 Yodh A, Chance B. Spectroscopy and imaging with diffusion light. Physics Today, 1995, 48: 34-40
    85 Chance B, Alfano R R. Proc SPIE, 1995, p2389: 291.
    86 E. B. de Haller, Time-resolved transillumination and optical tomography, J. Biomed. opt. 1996(1): 7-17
    87 X. D. Li, T. Durduran, A. G. Yodh, B.Chance, and D.N.Pattanayak, Diffraction tomography for biochemical imaging with diffuse-photon density waves, Opt. Lett. 1997, 22: 573-575
    88 S. Jaruwatanadilok, A. Ishimaru and Y. Kuga, Photon density wave for imaging through random media. Waves Random In Media, 2002, 12: 351-364.
    89 邓小元,邢达.光子密度波在正常和异常生物组织中传播的模拟研究.光学学报,2002,29(12):1057-1060.
    90 T. Durduran, B. Chance and A. G. Yodh et al. Algorithms for 3D Localization and Imaging Using Near Field Diffraction Tomography with Diffuse Light. Optics Express, 1999, 4 (8): 247-262
    91 张西芹,邢达等.漫散射光自相关用于生物介质成像的实验研究.光子学报,2002,31(3):273-276.
    92 Scott A. Walker, David A. Boas, and Enrico Gratton. Photon density wave Scattered from cylindrical inhomogeneities: theory and experiments. APPLIED OPTICS, 1998, 37(10): 1935-1944.
    93 杨炯炯,骆清铭等.近红外光学成像技术及其在神经科学中的应用.生理科学进展,2002,33(3):265-268
    94 张逸新.随机介质中光的传播与成像.北京:国防工业出版社,2002.
    95 吴龟灵,骆清铭等.光子扩散理论及其在生物医学中的应用.光电子·激光,2001,12(3):323-328.
    96 朱拓,朱湘东等.多散射介质中光子密度波扩散方程的求解.激光技术,2002,26(4):318-320.
    97 许川山,余苗等.激光在生物组织中传输特性的研究.LASER JOURNAL,2002,23(3):81-82.
    98 潘忠诚.数学物理方法教程[M].天津:南开大学出版,1993.
    99 郭敦仁.数学物理方法[M].北京:人民教育出版社,1979.
    100 Gollin R E. Field Theory of Guided waves.2nd ed. NewYork. IEEE Press 1991.
    101 朱拓,孔艳,朱湘东等.半无限空间中光子密度波扩散方程的求解.光电子·激光,2004,15(5):625-629.
    102 朱拓,陈国庆,朱益清等.长方体内多量散射介质光子密度波扩散方程研究.光电子·激光,2004,15(9):1132-1136.
    103 X. Cheng and D. A. Boas. Diffuse optical reflection tomography with continuous-wave illumination. OPTICS EXPRESS [J]. 1998, 3(3): 118-123.
    104 张睿,刘小林等.反向倍 法在生物组织漫射光计算中的应用.激光生物学报[J],2002,1(11):329-333.
    105 张连顺,张春平等.光与生物组织相互作用模型及图像重建.激光与光电子学进展[J],2002,39(4):21-25.
    106 Jaruwatanddilok Sermsak, Inshimaru Akria and Kuga Yasuo. Photon density wave for imaging through random media [J]. Waves In random Media, 2002, 12: 351-364.
    107 张西芹,邢达等.漫散射光自相关用于生物介质成像的实验研究.光子学报[J],2002,31(3):273-276.
    108 Vadim A. Markel, John C. Schotland. Inverse Problem in Optical Diffuse Tomography. Ⅰ. Fourier-Laplace Inversion Formulas, J. Opt. Soc. Am. A, 2001, 18 (6): 1336-1347.
    109 Vadim A. Markel, John C.Schotland. Inverse Problem in Optical Diffuse Tomography. Ⅱ. Role of boundary conditions, J. Opt. Soc. Am. A, 2002, 19 (3): 558-566.
    110 唐贵林,吕海宝等.人体组织中光的漫反射理论与仿真研究.量子电子学报[J],2002,19(3):226-230.
    111 赵曼,王丽,韩秀友等.浑浊介质对超短脉冲光学性质的影响[J],激光杂志,2003,24(2):32-34.
    112 Chan Yi-Hsin, Chou Chien, Chang Hsiu-Fong etal. The measurement of optical properties of a multiple scattering medium based on diffused photon pair density wave [J]. Proceedings of SPIE, 2003, 4958: 259-272.
    113 张连顺,张春平,王新宇等.生物组织光学特性参数无损测量的模拟研究[J].量子电子学报,2002,19(4):318-322.
    114 程云朋主编,矩阵论[M].西北工业大学出版社,2001.
    115 林凌,李刚,王艳秋等.人体脂肪和肌肉组织光学特性的活体检测[J].光电子·激光,2001,12,(4):425-429.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700