基于TDLAS煤矿瓦斯浓度监测系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭是我国国民经济发展的重要能源,而目前瓦斯事故已经成为制约我国煤炭安全生产的主要因素,实现瓦斯气体的简便、准确、实时监测,对我国煤矿安全生产和经济社会建设都具有极其重要的意义。
     光谱吸收法气体检测技术基于分子的选择吸收性,即在被测气体的光吸收过程中,由于分子结构的能量分布的差异所导致不同的气体物质有不同的吸收峰带。与目前普遍采用的热催化元件及气敏检测法等相比,该技术具有更高的灵敏度、分辨率和抗干扰性,而且可实时监测,成为未来气体检测技术的发展方向。
     本文以煤矿瓦斯的主要成分甲烷为目标气体,研究设计了基于可调谐半导体激光吸收光谱法(TDLAS)和谐波检测技术相结合的瓦斯浓度监测系统。通过对气体近红外选择性吸收的理论分析,给出了气体吸收测量的理论依据,选取了系统检测采用的CH4分子吸收线,并讨论确定了基于谐波检测技术的瓦斯浓度计算方案;根据检测性能要求,甄选了系统光学检测所用的可调谐半导体激光二极管、LD驱动板卡和光电探测器型号;在信号处理部分,研究开发了以锁相放大技术为核心的微弱信号检测电路模块,利用调制信号产生的二次谐波与直流分量的比值R20作为浓度检测信号;设计了以MSP430为中心的系统控制计算模块,以及液晶显示电路;在数据传输部分,研究确定了系统的无线数据传输结构,并选用ROC101007/1蓝牙模块设计了无线传输接口电路。研发过程中始终以系统的高性能监测和便捷操作为出发点,便于实现集成化。通过相同或相似条件下实验论证及理论计算表明,系统浓度计算方案可行,而且灵敏度和分辨率均可满足煤矿实际监测要求。
Mine coal is important resource of our nationa l economy development, but recently gasaccidents have been the restrictive factor to our coal industria l safety production. So it is veryimportant to coal mine safety production and economic society construction while realizingconvenient, accurate and real-time monitoring to mine gas.
     Spectrum absorption sensing technology bases on the selective absorbability of gasmolecule, namely different gases have their own characteristic absorption peaks due to energydistribution in molecular structure, which decides the selectivity and identification ofspectrum absorption sensing technology. Comparing with widely adopted catalytic sensor andgas-sensitive detection, it has the better sensitivity, resolution and anti-interferenceperforma nce, and it also can realize real time monitoring. So it has become the developmenttrend of gas measure technology.
     While using the ma in component of mine gas methane as the target sample , this paperresearches and designs the gas concentration monitoring system based on TDLAS andharmonic detection. After analyzing the theory of near-infrared selective absorption of gas, itdescribes the academic base of the measurement of the gas by absorption theory and confirmsthe absorption spectra of methane. Different mathematica l models of gas concentrationharmonic measurement are built up. In the optica l part, according to detection requirements itselects the LD, LD drive and photodetector. In the signa l modulation part, the paper designsthe weak signa l measure circuits with the core of lock-in technology, and using the lightsource modulation harmonic modulation to realize the measure. In the data processing part, itdesigns the controlling and calculating module based on MSP430, as well as LCD displa ycircuit. In the data transmission part, it researches and confirms the wireless data transmissionstructure, and designs the wireless interface circuit by Bluetooth module ROC101007/1. The system is built up with the basic purpose of high performa nce and convenient operation, and itcan be integrated. After experimental demonstration in the same or similar conditions andtheoretica l calculation, the confirmed concentration mathematica l model is feasible, and bothsensitivity and resolution of system can meet the requirements of practica l monitoring in coalmine.
引文
[1]李文峰.煤矿瓦斯可燃性气体及井下环境参数的检测[J].煤矿安全,2006.1,Vol.2:49-50
    [2]叶险峰,汤伟忠.CH4气体光纤传感器的研究[J].半导体光电,2000.6,Vol.21,No.3
    [3]陈永甫.红外辐射红外器件与典型应用[M].北京:电子工业出版社,2004
    [4]谭秋林.MEMS红外瓦斯传感检测系统的研究[D].太原:中北大学,2006
    [5] WangZha ng,ZhiyingWu, and Qingxuyu.Photoacoustic spectroscopy for fast and sensitiveammonia detection[J]. CHINESE OPTICS LETTERS, 2007, Vol.5(NO.11):677-679
    [6] Barbu T. Le, Vinogradov I. Durry G et al... TDLAS a laser diode sensor for the in situmonitoring of H2O, CO2 and their isotopes in the Martia n atmosphere [J]. Advances inSpace Research, 2006, 38(4):718-725
    [7] Hendricks A. G., Vandsburger U., Saunders W. R.. The use of tunable diode laserabsorption spectroscopy for the measurement of fla me dynamics Measurement [J].Science and Technology, 2006, 17(1):139~144
    [8] Druy Mark, Frish Mickey, Kessler Bill. Molecular spectroscopy workbench fromlaboratory technique to process gas sensor: The maturation of tunable diode laserabsorption spectroscopy[J]. Spectroscopy, 2006, 21(3):14~18
    [9]郑龙江,李鹏,秦瑞峰,杨俊明.气体浓度检测光学技术的研究现状和发展趋势[J].激光与光电子学进展,2008 ,Vol.45(NO.8):24-30
    [10]陈东等.开放光程TDLAS系统对北京城区NH3浓度的连续检测[J].光学技术,2007,Vol.33(NO.2): 311-314
    [11]陈东等.基于可调谐半导体激光吸收光谱的瓦斯监测方法研究[J].光学技术,2006,Vol.32(NO.4):598-600
    [12]王晓梅等.可调谐二极管吸收光谱痕量气体浓度算法的研究[J].光学技术,2006,Vol.32(NO.5):717-719
    [13]Ray Ayan, Bandyopadhyay Amitava, Sanjar De. A simple scanning semicond uctor diodelaser source and its applica tion in wavelength modulation spectroscopy around 825 nm[J].Optics and Laser Technology,2007,39(2):359~367
    [14]Chen Dong, Liu Wenqing, Zha ng Yujun etal..Fiber-distributed multi-cha nnel open-pathH2S sensor based on tunable diode laser absorption spectroscopy [J]. Chinese OpticsLetters,2007,5(2):121~124
    [15]Kan Riufeng,Liu Wenqing, Zha ng Yujun etal. A high sensitivity spectrometer with tunablediode laser for ambient methane monitoring[J]. Chinese Optics Letters,2007,5(1):54~57
    [16]Wang Min, Zha ng Yujun, Liu Jia nguo etal.. Applications of a tunable diode laserabsorption spectrometer in monitoring greenhouse gases [J].Chinese Optics Letters,2006,4(6):363~365
    [17]K.Chan, H.Ito, H.Inaba. 10km-Long Fiber-Optic Remote Sensing of CH4 Gas by NearInfrared Absorption[J]. Applied Physics B.1985.(38) :11~15
    [18]H.Tai, K.Yamamoto, S.Osawa. Remote Detection of Methane Using a 1.66um DiodeLaser in Combination with Optica l Fiders [J]. Proceedings 7th OFS. 1990:51~54
    [19]W Jin, G.Stewart, B.Culsha w. Absorption measurement of methane gas using a broadlight source and interferometric signa l processing[J]. Optics letters, 1993. 18(16):1364~1366
    [20]B.Culshaw, G.Stewart, F.Dong.Fiber Optic Techniques for Remote SpectroscopicMethane Detection-from Concept to System Realisa tion[J]. Sensors and Actuators B51.1998:25~37
    [21]王杰.基于光纤原理的乙炔气体传感器的研究[D].河北:燕山大学,2001
    [22]喻洪波,廖延彪,靳伟等.光纤化的气体传感技术[J].激光与红外,2002,190~200
    [23]朱淮武.有机分子结构波谱解析[M].北京:化学工业出版社.2005.31~38
    [24]江剑平.半导体激光器[M].北京:电子工业出版社.2000.125~148
    [25]李晓心.矿井甲烷气体光谱吸收式浓度测量仪的研究[D].河北:燕山大学, 2005
    [26]王侠,宋东草,杨尚明等.光纤甲烷气体传感器可行性研究[J].烟台大学学报.2004.17(2):101~105
    [27]Dubaniewicz T H, Chilton J E, Dobroski HJr. Fiber optics for atmospheric minemonitoring[J]. IEEE Transactions on Industry Applications, 1993. 29(4):749~753.
    [28]高晋占.微弱信号检测[M].清华大学出版社,2004,11
    [29]王玉田,郭增军,王莉田.差分吸收式光纤甲烷气体传感器的研究[J].光电子激光,2001.12(7):675~678
    [30]E.1.Moses and C.1.Tang[Z].Opt.Lett., 1977, l
    [31]马维光.甲烷气体分子高灵敏高分辨吸收光谱的理论与实验研究[D].太原:山西大学,2005.6
    [32]高山虎等.可调谐半导体激光吸收光谱学测量甲烷的研究[J].量子电子学报,2006(5):388-392
    [33]刘增基等.光纤通信[M].西安:西安电子科技大学出版社,2001.8
    [34]周炳坤.激光原理[M].北京:国防工业出版社,2004
    [35]富容国等.PIN光电二极管探测器响应特性测试[J].光学与光电技术,2007,Vol,5(No.1):11~13
    [36]安毓英.光电探测原理[M].西安:西安电子科技大学出版社,2004
    [37]康华光.模拟电子技术基础[M].北京:高等教育出版社,1998
    [38]李智奇等.MSP430系列超低功耗单片机原理与系统设计[M].西安:西安电子科技大学出版社,2008
    [39]沈建华.MSP430系列16位超低功耗单片机原理与实践[M].北京:北京航空航天大学出版社,2008
    [40]陈东,贾兆丽.可调谐半导体激光波长调制光谱信号分析[J].大气与环境光学学报,2008Vol3(No.3):193~198
    [41]陈英等.基于可调谐半导体激光吸收光谱的瓦斯监测方法研究[J].光学技术,2006,Vol32(No.4):598~600
    [42]高山虎等.可调谐半导体激光吸收光谱学测量甲烷的研究[J].量子电子学报,2006,Vol26(No.3):388~392
    [43]阚瑞峰等.基于可调谐激光吸收光谱的大气甲烷监测仪[J].光学学报,2006,Vol26(No.1):67~70
    [44]张记龙等.基于气体特征光谱吸收和谐波检测的瓦斯浓度测量技术[J].煤炭学报,2009,Vol34(No.1):24~27
    [45]管立君.基于近红外吸收原理的甲烷浓度检测研究[D].河北:燕山大学,2008
    [46]Phillp A. Marth. Near-infrared diode laser spectroscopy in chemica l process andenvironmental air monitoring[J]. Chem. Soc. Rev,2002(31):201~210.
    [47]刘凌志,王建新,刘联会.基于FDTD方法的无线电波透地传输特性的研究[J].现代电子技术.2004(10):55-56
    [48]孙弋.新型煤矿井下应急无线通信系统的建立[J].西安科技大学学报,2008(1):117-121
    [49]朱正英.基于蓝牙的煤矿安全无线传输网络的设计[D].武汉:华中科技大学,2006
    [50]D.Suvak.Comparing the benefits of IrDA and Bluetooth[J].Wireless Systems Design,2000.5(5):31~36
    [51]于万民.基于蓝牙技术无线通信测试系统的研究与设计[D].哈尔滨:哈尔滨理工大学,2004
    [52]方明旭,何蓉短.距离无线与移动通信网络[M].北京:人民邮电出版社,2004
    [53]Manzoni.Pietro,Cano.Juan Carlos.Providing Interoperability between IEEE802.11 andBluetooth Protocols for Home Area Networks[J].Computer Networks,2003.(5):23~37
    [54]张文祥,徐世国.蓝牙技术在矿井无线通信中的应用[J].煤矿机械,2007(7):158-159
    [55]徐凤荣.ROK101007蓝牙模块及其在无线火灾自动报警系统中的应用[J].国外电子元器件,2006(11):54-57
    [56]www.ericsson.com/microelectronics

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700