用户名: 密码: 验证码:
建筑节能常温发泡技术的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土是当今使用量最大的建筑材料之一,将泡沫引入混凝土,在混凝土内部产生微小的、封闭独立的均匀气泡,可形成质轻、保温性能好的泡沫混凝土,主要用于屋面、非承重墙及热力管道的保温层。随着泡沫混凝土在工程中应用的日益广泛,对发泡剂以及泡沫混凝土进行深入研究非常必要。
     本文主要针对泡沫节能材料的发泡剂、发泡技术、制备工艺、材料选择、材料配比做了一系列实验研究。
     实验表明,OP与纤维素醚复配作为发泡剂,纤维素醚浓度为0.3%~0.5%;OP浓度在0.4%~0.6%之间时,有较好发泡效果,而且成本低。
     复合材料的发泡结果表明,水料比在0.60~0.63时,浆料容易拌和,泡沫能均匀分布,不会出现分层,脱模时间较短,产品密度在0.65~0.70g/cm~3之间。
     粉煤灰在制备泡沫节能材料中主要作为惰性充填材料,随着粉煤灰掺量的增大,材料的抗压强度降低。在普通水泥作为胶结材料时,粉煤灰掺量不宜超过45%,在氯氧镁水泥作为胶结材料时,粉煤灰掺量不宜超过40%。
     氯氧镁水泥-粉煤灰混合材料的发泡试验证实,氧化镁和氯化镁保持在一定的比例范围内有利于提高氯氧镁水泥-粉煤灰泡沫混凝土的各种性能;当MgCl_2过量时,容易产生泛霜,而MgO过量时,不利于氯氧镁水泥的硬化;粉煤灰在一定程度上改善了氯氧镁水泥制品的抗水性和泛霜现象。
     另外,我们还对磷石膏制作隔热材料做了一些发泡研究,通过发泡在其内部形成分布均匀、相互独立的细小气孔后,可明显增加它的隔热能力。
Concrete is one of the largest building materials in use. The introduction of foam into concrete, made the concrete have a small internal, closed independent uniform bubbles, which can form light weight, good insulation properties of foam concrete, mainly used for roofing, non-load-bearing walls and thermal insulation layer pipeline. With the foam concrete’s widespread application in construction, an in-depth study of the blowing agents, as well as foam concrete is necessary.
     In this paper, to address the foaming agent, technology of foam materials, preparation, material selection, material ratio has done a series of experiments on.
     The results show that, OP and the cellulose ether compound as a blowing agent, when cellulose ether concentration between 0.3% ~ 0.5% and OP concentration between 0.4% ~ 0.6 %, have a good foaming effect and lawer cost.
     Through bubbling testing, the water ratio in the 0.60 ~ 0.63, the slurry mixing easy, foam can be uniformly distributed, will not be hierarchical, the product have a densty between 0.65~0.70g/cm3.
     Fly ash mainly as an inert filling material in foam energy-saving materials, the amount of fly ash is more, the compressive strength of foam materials is lawer. The common cement as the cementation materials, the content of fly ash shouldn’t be more than 45%, while the magnesium oxychloride cement as the cementation materials, the content of fly ash shouldn’t be more than 40%.
     In magnesium oxychloride cement foam material, magnesia and sodium chloride have a right ration can improve the proformance of magnesium oxychloride cement materials. Fly ash has improved the performance of the magnesium oxychloride cement products to some extent, such as water resistance and anti-frost phenomena.
     In addition, we also made same foaming research with Phosphogypsum materials, through the formation of small pores in their internal, which are uniformly distributed and independent of each other, have a marked increase in the capacity of its insulation.
引文
[1]曹明莉,吕兴军.发泡剂及泡沫混凝土技术现状与展望(一)[J].建材技术与应用. 2007, (4): 7-8.
    [2]曹明莉,吕兴军.发泡剂及泡沫混凝土技术现状与展望(二)[J].建材技术与应用. 2007, (5): 7-8.
    [3] Berlin A A, Shutov F A. Chem istry and Technology of Gas-filled High Polymer [M]. Nauka p ress: Moscow, 1980: 89 - 163.
    [4] Berlin A A, Shutov F A. Formed Polymers Based on Reactive oligomers [M]. Technological Publishing: Lancaster, PA, 1982.
    [5] Shutov F A. In tegrau structural polymer Foams: Technology, Propertise and Applications [M]. Sp ringer- Verlag: Berlin,New York, 1980.
    [6] Saunders J H, Hansen R H. Monographs on Plastics [A ].In: Fris K C, Saunders J H. Plastics Foam( PartⅠ) [C ]. MarcelDekker,New York, 1972.
    [7]张杰.轻质建材与几种常用发泡剂[J].企业技术开发, 1998, (12): 26-27.
    [8]王翠花,潘志华.蛋白质类发泡剂的合成及其泡沫稳定性[J].南京工业大学学报(自然科学版) , 2006, 28(4) : 92 - 96.
    [9]余红发,胡仁.蛋白质型发泡剂的性能研究[J].新型建筑材料, 1994, (12): 30-32.
    [10]曾尤,扬合,张巨松.国内外混凝土发泡剂及发泡技术分析[J].低温建筑技术, 2001, (4): 23-25.
    [11]潘春圃.工地制作泡沫混凝土[J].陕西煤炭技术, 1990, (1): 10-14.
    [12]华历.廉价的新型墙体材料—泡沫混凝土[J].新型建筑材料, 1991, (12): 21-24.
    [13]谷章昭.工程用泡沫混凝土正在国外崛起[J].上海建设科技, 1995, (3): 38~40.
    [14]盖广清.陶粒泡沫混凝土孔结构及其对性能影响的研究[J].硅酸盐建筑制品. 1995, (5): 13-15.
    [15]邵洪江等.粉煤灰泡沫混凝土研究[J].山东建材, 1999, (2): 1-4.
    [16]尚洪下等.泡沫混凝土砌块发泡剂的研制[J].新型建筑材料, 1999, (1): 15-16.
    [17]潘志华.新型高性能泡沫混凝土制备技术研究[J].建筑石膏与胶凝材料, 2002, (5): l-5.
    [18] L cox, S van Dijk. Foam concrete for Roof slops and Floor Leveling. Concrete. 2003, 37(2): 37.
    [19] M R Jones. Preliminary views on the potential of foamed concrete as structural material. Magazine of Concrete research, 2005, 57(l): 21-31.
    [20] L H Chao, F H Meng. Durability design and performance of self-consolidating lightweight concete. Construction and building Materials, 2005, 19:619-626.
    [21] Alaettin K, cengiz D A. High-strength lightweight concrete made with scoria aggregate containing mineral admixtures. Cement an Concrete Research, 2003, 33: 1595-1599.
    [22] EP kearsley, PJ wainwright. Porosity and permeability of foamed concrete. Cement and Concrete Reasearch, 2001, 31: 805-812.
    [23]蒋冬青.泡沫混凝土应用新进展.中国水泥, 2003, (3): 46-48.
    [24]魏惠媛,任孝平.泡沫混凝土砌块的性能及施工注意事项[J].砖瓦, 2004, (4): 32-33.
    [25]谭月华.发展加气多孔混凝土促进墙材革新[J].房材与应用, 2003, (l): 43-45.
    [26]肖达林,吴锦如.泡沫混凝土在防止钢筋混凝土管裂缝中的应用[J].湖南水利, 1994, (5): 30-31.
    [27]谢慈仪.混凝土外加剂作用机理及合成基础[M].重庆:西南师范大学出版社, 1998.
    [28]盖广清.陶粒泡沫混凝土孔结构及其对性能影响的研究[J].硅酸盐建筑制品, 1995, (5): 13-15.
    [29]沈威.水泥工艺学[M].武汉:武汉工业大学出版社, 1992.
    [30]何水清.墙体材料生产技法[M].北京:中国工人出版社, 1999.
    [31]王武祥.粉煤灰泡沫水泥的性能与应用[J],新型建筑材料, 1996, (7): 20-22.
    [32]潘志华.现浇泡沫混凝土常见质量问题分析与对策[J].建筑石膏与胶凝材料, 2004, (l): 4-7.
    [33]李娟,王武祥.改善泡沫混凝土洗水性能的研究[J].混凝土与水泥制品, 2001,(5): 43-44.
    [34]肖力光.高掺量粉煤灰泡沫混凝土砌块的试验研究[J].新型建筑材料, 2003, (1):33-35.
    [35]王洪镇.一种新型泡沫混凝土砌块的生产技术[J].混凝土与水泥制品, 2000, (l): 44-45.
    [36]邵洪江.早强剂和蒸养对粉煤灰泡沫混凝土性能的影响[J].吉林建材, 1999, (l): 16-18.
    [37]张巨松.混凝土发泡功能的探讨[J].混凝土, 2000, (7): 34-35.
    [38]刘振贤.一种新型憎水发泡剂的研制[J].中国建材科技, 1999, (5): 22-23.
    [39]谷章昭.工程用泡沫混凝土正在国外崛起[J].上海建设科技, 1995, (3): 38-40.
    [40]杨南如.无机非金属材料测试方法[M].武汉:武汉工业大学出版社, 1992.
    [41]关博文,刘开平,赵秀峰.泡沫混凝土研究及应用新进展[J].广东建材, 2008, (2): 19-21.
    [42]黄燕,吴福海,林加全.我国建筑节能现状与发展前景展望[J].广东科技, 2008:56-57
    [43]赵铁军,高倩,王兆利.大掺量粉煤灰对泡沫混凝土抗压强度的影响[J].粉煤灰, 2002, 14(6): 7-10.
    [44]吴保汉.新型粉状混凝土复合塑化剂的研究[J].广西电力工程, 1999, (1): 35-38.
    [45]肖力光,盖广清,杨艳.高掺量粉煤灰泡沫混凝土砌块的试验研究[J].新型建筑材料, 2003, (l): 27-30.
    [46]严捍东,钱晓倩.新型建筑材料教程.北京中国建材工业出版社[M], 2005
    [47]张建新,彭家惠,李青等.羟丙基甲基纤维素醚对特细砂水泥砂浆性能的影响[J].混凝土与水泥制品, 2009, 2 (1): 7-9.
    [48]席勇.浅谈粉煤灰的综合利用[J].中国资源综合利用, 2009, 3(3): 15-18.
    [49]赵海君,严云,胡志华.粉煤灰生产地聚水泥的研究现状及效益展示[J].水泥工程, 2007, (3): 21-24.
    [50]阎西康.土木工程材料[M].天津大学出版社, 2004, 3
    [51] C Mazuranic, H Billinski, B Matkovic. Reaction products in the systemMgCl2-NaOH-H2O[J]. J Am Ceram Soc, 1982, (65): 523.
    [52]严育通,景燕,马军.氯氧镁水泥的研究进展[J].盐湖研究, 2008, 3(1): 60-66.
    [53]吴金焱,朱书全.氯氧镁水泥及其制品的研发进展[J].中国非金属矿工业导刊, 2006, (1): 15-18.
    [54] Deng Dehua, Zhang Chuanmei. The formation mechanism of the hydrate phases in magnesium oxychloride cement [J]. Cement and Concrete Research, 1999, 29: 1365-1371.
    [55] Deng Dehua, Zhang Chuanmei. The effect of aluminate minerals on the phases in magnesium oxychloride cement [J]. Cement and Concrete Research, 1996, 26(8): 1203-1211.
    [56] E.I.Ved, E.F.Zharow, Phong H Van. Mechanism of magnesium oxychloride formations during the hardening of magnesium oxy-chloride cements(Russ.)[J]. ZhPrikc Khim, 1976, 49: 2154.
    [57] [H.Bilinski, B.Matkovic, C.Mazuravic, T.A.Zunic. The formation of magnesium oxychloride phases in the system MgO-MgCl2-H2O and NaOH-MgCl2-H2O [J]. J Am Ceram Soc, 1984, 67: 266.
    [58] C.Mazuranic, H.Billinski, B.Matkovic. Reaction productsin the system MgCl2-NaOH-H2O [J]. J Am Ceram Soc, 1982, 65: 523.
    [59]李兴仁.也说资源化利用磷石膏问题[J].中国建材, 2008, (3): 51.
    [60]何水清.利用磷石膏生产建材[J].科技纵横, 2008, (2): 23-26.
    [61]吴兆正.我国资源化利用磷石膏的若干建议[J].中国建材, 2008, (1): 65-68.
    [62]杨沛浩.磷石膏的综合利用[J].中国资源综合利用, 2009, 1(27): 21-14.
    [63]杨斌,李沪萍,罗康碧.磷石膏综合利用的现状[J].化工科技, 2005, 13 (2): 61~65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700