用户名: 密码: 验证码:
泡沫驱渗流特征的实验和模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国对石油能源的需求日益增长,而石油勘探的难度不断增加,提高已开发油田的原油采收率日趋重要。泡沫驱油技术以泡沫独特的性质,能够有效地提高原油采收率,是一种正处于迅速发展阶段的新型三次采油技术。然而,泡沫驱油体系在多孔介质中的渗流机理十分复杂,准确合理地认识和描述其渗流特征和驱油机理是决定该体系具有更强的油藏适应性和矿场增油效果的关键问题。开展泡沫驱油渗流特征的基础研究具有重要的现实意义和理论价值。
     本文利用比较先进的美国TEMECO公司的泡沫驱替实验系统进行了无油模型和含油模型中单一泡沫和强化泡沫驱油体系渗流特征的物理模拟研究,讨论了气液比、注入方式、聚合物及渗透率等参数对泡沫封堵效果的影响。分别建立了基于分流理论的解析模型和基于泡沫组分物质的量守恒的描述强化泡沫驱渗流的数学模型,提出了由具有明确物理意义的参数确定的泡沫生成速度、自然破灭速度、遇油破灭速度表征模型,并进行了数值模拟研究。首次提出强化泡沫驱实验参数的多级拟合研究思路,达到了尽可能地降低或消除待定参数的多解性,实现物理模拟和数学模拟有机结合的目的。在此基础上,研究了泡沫生成速度、自然破灭速度、遇油破灭速度的分布及运移机制,描述了泡沫在多孔介质中渗流的分区规律,系统分析了强化泡沫驱油渗流特征。以气相中泡沫浓度表征泡沫稳定性,讨论了泡沫稳定性的影响因素,分析了强化泡沫驱油效果与泡沫稳定性的关系,认识了高效强化泡沫驱油机理,有助于进一步完善和发展泡沫驱渗流理论,改善强化泡沫驱效果,从而提高原油采收率。
     研究结果表明:强化泡沫体系中聚合物通过降低遇油破灭速度起到复合增效作用,增强泡沫遇油稳定性,大幅提高原油采收率。无油条件下,泡沫在多孔介质中具有活塞式驱替特征;含油条件下,泡沫驱替过程中存在生长区、稳态区、衰减区三部分。从驱油机理来看,泡沫驱是动态平衡过程,前缘破灭泡沫能够由后续稳定泡沫不断补充,后续水驱阶段泡沫仍能够稳定存在并向前推进。注泡沫阶段主要是以“调剖”机理为主,在纵向上扩大了波及体积;含水恢复阶段以“增加平面波及面积”机理为主。在诸多油藏参数和注入参数中,影响泡沫驱增油效果较明显的依次为段塞长度、原油粘度、气液比、注入时机等;影响泡沫稳定性的依次是气液比、聚合物浓度、变异系数等。
With the ever-increasing demand of petroleum energy in China and difficulty of exploration, enhancing the developed oil fields oil recovery became more and more important. Foam flooding, as the rapidly developed and novel tertiary oil recovery technique, could effectively enhance oil recovery for its special characteristics. However, the seepage mechanism of foam displacement system in porous media was very complicated and the correct and reasonable understanding and description of seepage characteristics and displacement mechanism was the key problem of reservoir adaptability and oil increment effect. The fundamental study of foam seepage characteristics was of practical importance and theoretical value.
     The physical simulation study of foam flooding and enhanced foam flooding displacement systems was conducted in both oil-free and oil-bearing models with the aid of advanced foam displacement experiment system of TEMECO company in the United States. The effects of gas/liquid ratio, injection mode, polymer and permeability on foam plugging effect were discussed. Analytical model based on fractional flow theory and mathematical model describing enhanced foam flooding based on molar weight conservation of foam component were established respectively. Formulations with definite physical meanings such as foam generation rate, natural coalescence rate and oil-contacting coalescence rate were developed and numerical simulation was conducted. The multistage matching approach of enhanced foam flooding experiment parameter was first put forwarded, which eliminated or decreased the multiplicity solutions of undetermined parameters as much as possible and achieved the combination of physical simulation and mathematical simulation. Then the distribution of generating rate, natural coalescence rate, oil-contacting coalescence rate and the foam migration characteristics were studied , the partition pattern of foam migration in porous media was described and the seepage characteristics of enhanced foam flooding was systematically analyzed. Foam concentration in gas phase was used to characterize the foam stability and the influencing factors of foam stability were discussed. The relation between displacement effect of enhanced foam flooding and foam stability was analyzed and the displacement mechanism of enhanced foam flooding was brought into cognition, which was conducive to the improvement and development of foam flooding filtration theory and improvement of enhanced foam flooding effect and ultimately enhanced oil recovery.
     It was indicated that polymer in the enhanced foam flooding system have compound effect by means of decreasing oil coalescence rate, which strengthened foam stability and enhanced considerably oil recovery. The displacement characteristic of foam was characterized as piston-like displacement under the oil-free condition. The foam displacement process could be divided into three parts: growth zone, steady state zone and decay zone under oil-bearing condition. Foam flooding was a dynamic equilibrium process from the aspect of displacement mechanism. The front coalescence foam could be replaced by subsequent stable foam and the foam could still be stable and advance in the process of follow-up water flooding. Profile control mechanism played the main role in foam injection stage, which expanded vertical sweep volume. The enlargement of plane sweep area mechanism dominated in the stage of water cut recovery. The reservoir and injection influencing factors of foam flooding effect were listed in proper order as follows: plug length, oil viscosity, gas/liquid ratio and injection timing. The influencing factors of foam stability were successively gas/liquid ratio, polymer concentration and variation coefficient.
引文
[1]沈平平.中国陆上油田提高采收率潜力评价及战略研究[J].石油学报,2001,22(1):45-48.
    [2]杨普华.提高采收率研究的现状及近期发展方向[J].油气采收率技术,1999,6(4):1-5.
    [3]陈月明.注蒸汽热力采油[M].山东东营:石油大学出版社,1996.
    [4]冈秦麟.论我国的三次采油技术[J].油气采收率技术,1998,5(4):1-7.
    [5]侯健.提高原油采收率潜力预测方法[M].山东东营:中国石油大学出版社,2007.
    [6]陈铁龙.三次采油概论[M].北京:石油工业出版社,2000.
    [7]刘泽凯,闽家华.泡沫驱油在胜利油田的应用[J].油气采收率技术,1996,3(3):23-29.
    [8]王增林.强化泡沫驱提高原油采收率技术[M].北京:中国科学技术出版社,2007.
    [9]廖广志,李立众,孔繁华,等.常规泡沫驱油技术.北京:石油工业出版社,1999.
    [10]吴文祥.泡沫复合驱微观驱油机理及泡沫复合体系在多孔介质中的流动特性研究[D].黑龙江大庆:大庆石油学院,1999.
    [11]钱昱,张思富,吴军政,等.泡沫复合驱泡沫稳定性及影响因素研究[J].大庆石油地质与开发,2001,20(2):33-35.
    [12]梅海燕,董汉平,顾鸿军,等.起泡剂稳定性能评价实验[J].新疆石油地质,2004,25(6):644-646.
    [13]樊西惊.原油对泡沫稳定性的影响.油田化学,1997,14(4):384-388.
    [14]张贤松,王其伟,隗合莲.聚合物强化泡沫复合驱油体系试验研究[J].石油天然气学报,2006,28(2):137-138,160.
    [15]付继彤,张莉,尹德江,等.强化泡沫的封堵调剖性能及矿场试验[J].油气地质与采收率,2005,12(5):47-49.
    [16] Taber,J.J.,Martin,F.D.,Seright,R.S.EOR Screening Criteria Revisited-Part 1: Introduction to Screening Criteria and Enhanced Recovery Field Projects[J].SPE Reserv.Eng.,1997,Aug.:189-198.
    [17] Taber,J.J.,Martin,F.D.,Seright,R.S.EOR Screening Criteria Revisited-Part 2: Application and Impact of Oil Prices[J].SPE Reserv.Eng.,1997,Aug.:199-205.
    [18] Fried,A.N.The Foam-Drive Process for Increasing the Recovery of Oil.USBM,1961.
    [19]王德民,等.泡沫复合驱油方法[P].中国专利:98813947,1998-04-06.
    [20]张贤松,王其伟,宋新旺,等.孤岛中二区28-8井注强化氮气泡沫研究[J].油田化学, 2005,22(4):366-369,384.
    [21]刁素.高温高盐泡沫体系及其性能研究[D].四川南充:西南石油大学,2006.
    [22]叶仲斌,魏发林,罗平亚,等.泡沫增效三元复合驱油体系渗流行为研究[J].西南石油学院学报,2002,24(4):49-52.
    [23]王渊.泡沫流体冲砂洗井参数设计[D].山东东营:石油大学(华东),2001.
    [24]杨燕.泡沫体系及其驱油效率的研究[D].四川南充:西南石油学院,2001
    [25]陈正国,马睿.水-油-表面活性剂体系相行为.胶体与聚合物[J],2001,19(3):42-43.
    [26] Roof,J.G.Snap-off of Oil Droplets in Water-wet Pores[C].SPE 2504,1970.
    [27] Mast,R.F.Microscopic Behavior of Foam in Porous Media[J].SPE 3997,1972.
    [28] Owete,Brigham.Flow Behavior of Foam:A Porous Micromodel Study[J].SPE 11349,1987.
    [29] Ransohoff,T.C.,Padke,C.J.Mechanism of Foam Generation in Glass-Bead Packs[J].SPE Reservoir Engineering,1988:573-585.
    [30] Falls,A.H.,G.J.Hirasaki,T.W.Patzek,et al.Development of a Mechanistic Foam Simulator:The Population Balance and Generation by Snap-off[J].SPE Reservoir Engineering.Aug.1988:887-892.
    [31] Kharabaf,H.,Yortsos,Y.C.A Pore-Network Model for Foam Formation and Propagation in Porous Media[J].SPE 36663,1996.
    [32]吴文祥,侯吉瑞,卢文忠.大庆油田三元复合驱油体系注入方式物理模拟实验研究[J].油田化学,1998,15(4):354-357.
    [33]吴文祥,姜海峰.多元泡沫分流作用及其驱油效果影响因素研究.油田化学,2002,19(2):173-177.
    [34] Alvarez,J.M.Foam Flow Behavior in Porous Media:Effects of Flow Regime and Porous Media Heterogeneity[D].The University of Texas at Austin,1998.
    [35] Shen,C.,Nguyen,Q.,Huh,C.,et al.Does Polymer Stabilize Foam in Porous Media?[C].SPE 99796,2006.
    [36] Raza , S . H . Foam in Porous Media : Characteristics and Potential Applications[J].Soc.Pet.Eng.J.,1970:328-336.
    [37] Khatib,Z.I.,Hirasaki,G.J.,Falls,A.H.Effects of Capillary Pressure on Coalescence and Phase Mobilities in Foams Flowing Through Porous Media[C].SPE 15442,1988.
    [38] Timothy J.M.TheRrole of Residual Oil in the Mechanistic Simulation of Foam Flow in Porous Media : Experiment and Simulation with the Population-Balance Method[D].University of Washington,1999.
    [39]吴文祥,姜海峰.多元泡沫分流作用及其驱油效果影响因素研究[J].油田化学,2002,19(2):173-177.
    [40]张思富,廖广志,张彦庆,等.大庆油田泡沫复合驱油先导性矿场试验[J].石油学报,2001,22(1):49-53.
    [41]兰玉波,刘春林,赵永胜.大庆油田泡沫复合驱矿场试验评价研究[J].天然气工业,2006,26(6):102-104.
    [42]麻金海.胜利金家油田泡沫驱油室内研究[J].油田化学,1997,14(2):156-158.
    [43]寇永强.坨11区块泡沫驱油的室内研究与现场实践[J].油田化学,2005,22(2):184-187.
    [44]杨光璐,蔺玉秋,刘加林,等.辽河油田稠油油藏氮气泡沫驱适应性研究[J].新疆石油地质,2004,25(2):188-190.
    [45]尚根华,高树生,刘为,等.辽河油田注蒸汽泡沫封堵实验研究[J].CT理论与应用研究,1996,5(3):29-36.
    [46] Bertin,H.J.,Apaydin,O.G.,Kovscek,A.R.Foam Flow in Heterogeneous Porous Media: Effect of Crossflow[C].SPE 39678,1998.
    [47] Chen,L.H.,Lucas,L.R.,Nogaret,L.A.D.,et al.Laboratory Monitoring of Surfactant Imbibition using Computerized toMography[C].SPE 59006,2000.
    [48] Wassmuth,F.R.,Green,K.A.,Randall, L.Details of In-situ Foam Propagation Exposed with Magnetic Resonance Imaging[J].SPEREE,Apr.2001:135-145.
    [49]韩大匡.油藏数值模拟基础[M].北京:石油工业出版社,1993.
    [50] Marfoe,C.H.,Kazemi,H.,Ramirez,W.F.Numerical Simulation of Foam Flow in Porous Media[C].SPE 16709,1987.
    [51] Islam,M.R.Numerical Simulation of Foam Flow in Porous Media[J].J.Can.Pet.Tech,1990,29 (4):47-51.
    [52] Law,D.H.S.,Yang,Z.M.,Stone,T.W.Effect of the Presence of Oil on Foam Performance:A Field Simulation Study[J].SPERE,1992:228-236.
    [53] Mohammadi,S.S.,Coombe,D.A.,Stevenson,V.M.Test of Steam-Foam Process for Mobility Control in South Casper Creek Reservoir[J].J.Can.Pet.Tech.1993,32(10):49-54.
    [54] Fisher,A.W.,et al.Mathematical Modeling of Foam Flooding[J].SPE 20195,1990.
    [55]羊争鸣,张建,赵郭平.一个实用的蒸汽加泡沫过程的油藏数值模型[J].石油学报,1994,15(2):99-109.
    [56] Rossen , W . R ., Mamun , C . K . Minimal Path for Transport in Networks[J].Phys.Rev.B.,1993,47:11815.
    [57] Miller,J.M.,Fogler,H.S.Prediction of Fluid Distribution in Porous-Media Treated with Foamed Ge[J].Chem.Eng.Sci.1995,50:3261.
    [58] Chen,M.,Yortsos,Y.C.,Rossen,W.R.A Pore-Network Study of the Mechanisms of Foam Generation[J].SPE 90939,2004.
    [59] Rossen,W.R.,Gauglitz,P.A.Percolation Theory of Creation and Mobilization of Foam in Porous Media[J].AIChEJ,1990,36:1176.
    [60] Laidlaw,W.G.,Wilson,W.G.,Coombe,D.A.A Lattice Model of Foam Flow in Porous Media:A Percolation Approach[J].Transport in Porous Media,1993,11:139.
    [61] Kharabaf,H.,Yortsos,Y.C.Pore Network Model for Foam Formation and Propagation in Porous Media[J].SPE 36663,1996.
    [62] Chou,S.I.Percolation Theory of Foam in Porous Media[J].SPE 20239,1990.
    [63] Rossen,W.R.,Zhou,Z.H.,Mamun,C.K.Modeling Foam Mobility in Porous Media[J].SPE 22627,199l.
    [64] Shi,J.X.,Rossen,W.R.Simulation and Dimensional Analysis of Foam Processes in Porous Media[J].SPE 35166,1996.
    [65] Xu , Q ., Rossen , W . R . Experimental Study of Gas Injection in a Surfactant-Alternating-Gas Goam Process[C].SPE 84183,2003.
    [66] Rossen,W.R.et al.Mechanistic Simulation of Foam Processes in Porous Media[J].SPE28940,1994.
    [67] Falls,A.H.,Gauglitz,P.A.,Hirasaki,G.J.,et al.Development of a Mechanistic Foam Simulator:The Population Balance and Generation by Snap-Off[J].SPE 14961,1986.
    [68] Friedmann,F.,Chen,W.H.,Gauglitz,P.A.Experimental and Simulation Study of High- Temperature Foam Displacement in Porous Media[C].SPE 17357,1991.
    [69] Kovscek,A.R.,Patzek,T.W.,Radke,C.J.Simulation of Foam Transport in Porous Media[J].SPE 26402,1993.
    [70] Kovscek,A.R.,Patzek,T.W.,Radke,C.J.Mechanistic Prediction of Foam Displacement in Multidimensions:A Population Balance Approach[J].SPE 27789,1994.
    [71] Kovscek,A.R.,Patzek,T.W.,Radke,C.J.Mechanistic Foam Flow Simulation in Heterogeneous and Multidimensional Porous Media[J].SPE 39102,1997.
    [72] Chang,S.H.,et al.The Effect of Microscopic Heterogeneity on CO2_Foam Mobility: Part2:Mechanistic Foam Simulation[J].SPE/DOE 20219.
    [73] Ettinger,R.A.,Radke,C.J.Influence of Texture on Steady Foam Flow in Berea Sandstone[J].SPE 19688.
    [74] Fergui,O.,Bertin,H.,et al.Transient Aqueous Foam Flow in Porous Media:Experiments and Modeling[J].Journal of Petroleum Science and Engineering,1998,20:9-29.
    [75] Bertinetal,H.J.Development of a Bubble Population Correlation for Foam Flow Modeling in Porous Media[J].SPE Journal,Dec.1998:356-362.
    [76]秦积舜,李爱芬.油藏物理学[M].山东东营:石油大学出版社,2001.
    [77]李合全.泡沫复合体系渗流机理及数值模拟研究[D].北京:石油大学,1998.
    [78] Hirasaki,G.J.,Lawson,J.B.Mechanisms of Foam Flow in Porous Media:Apparent Viscosity in Smooth Capillaries[J].SPE 12129.
    [79] Huh,C.,Rossen,W.R.Approximate Pore-Level Modeling for Apparent Viscosity of Polymer-Enhanced Foam in Porous Media[J].SPE 99653.
    [80] Kovscek,A.R.,Bertin,H.J.Estimation of Foam Mobility in Heterogeneous Porous Media[J].SPE 75181.
    [81] Vassenden,F.,Holt,T.Experiment Foundation for Relative Permeability Modeling ofFoam[J].SPE 39660.
    [82] Radke,C.J.,Gillis,J.V.A Dual Gas Tracer Technique for Determining Trapped Gas Saturation During Steady Foam Flow in Porous Media[C].SPE 20519,1990.
    [83] Bernard,G.G.,Jacobs,W.L.Effect of Foam on Trapped Gas Saturation and on Permeability of Porous Media to Water[J].SPE Journal,1965,5(4):295-300.
    [84] Bernard,G.G.,Holm,L.W.Effect of Foam on Permeability of Porous Media to Gas [J].SPE Journal,1964,4(3):267-274.
    [85] Gauglitz,P.A.,Friedmann,F.,Kam,S.I.,et al.Foam Generation in Homogeneous Porous Media[J].Chem.Eng.Sci.,2002.
    [86] Kam,S.I.,Rossen,W.R.A Model for Foam Generation in Homogeneous Media[J].SPE 77689,2002.
    [87] Xu,Q.Theoretical and Experimental Study of Foam for Enhanced Oil Recovery and Acid Diversion[D].The University of Texas at Austin,2003.
    [88] Osterloh,W.T.,Jante,M.J.Effects of Gas and Liquid Velocity on Steady-State Foam Flow[J].SPE 24179,1992.
    [89] Alvarez,J.M.Unified Model for Steady_State Foam Behavior at High and Low Foam Qualities[J].SPE 56825,1999.
    [90] Pope , G . A . The Application of Fractional Flow Theory to Enhanced Oil Recovery[J].SPEJ,Jun.1980:1981-205.
    [91]刘慧卿.油藏数值模拟方法专题[M].山东东营:石油大学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700