新型结构纳米碳材料的制备及其热性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文内容分为三部分。在第一部分中,为了提高合成碳纳米管时催化剂制备的效率,采用化学镀方法在泡沫镍基底上定量镀覆作为催化剂的铁微粒,并利用化学气相沉积法成功地合成了多壁碳纳米管,利用扫描电镜、透射电镜、拉曼光谱和热重分析对合成的碳纳米管进行了表征,发现其直径分布均匀,纯度大于90%。在研究和实验中,得出了几点新的现象和结论。第一、在生长碳纳米管实验过程中,通入氢气可以使产物从碳纤维转变成碳纳米管,而当气源乙炔的流量减小到25sccm后,就会有新型的针型纳米材料伴随碳纳米管出现。第二、碳纳米管的产量与泡沫镍基底放置方式有关,当泡沫镍基底平行石英管轴线时,其产量会比垂直放置要大,产量相差最大可以达到6倍以上。第三、该方法在温度设置为550℃时,碳纳米管仍然能够合成,这为其在铝合金、玻璃基底上生长碳纳米管以改善材料导热性能或用于电子场致发射打下了基础。最后,我们发现合成碳纳米管的泡沫镍,其导热性能比纯泡沫镍要高,最高可达62%。这为发展超高导热系数的材料提供了一种可行的方案,例如在高导热系数基底如银或铜上化学镀金属催化剂颗粒生长定向碳纳米管,有望得到超高导热系数的材料。
     研究和发现新颖结构的纳米材料对于开发优异性能的产品具有重要的意义。在第二部分中,采用上述化学镀方法在泡沫镍基底制备催化剂,使用等离子体增强化学气相沉积法合成新型碳纳米材料。将此种工艺方法制备出的样品通过透射电子显微镜等测试手段进行表征和分析,发现其生长易聚集成束状,并呈现草状的几何外形,而且单根材料内部具有很大的空心区域。这种具有特殊结构的碳纳米材料在电子场致发射材料及氢气储存材料等领域有着潜在的应用前景。该研究丰富了在泡沫状粗糙表面沉积薄膜的实验研究。同时,我们发现生长时偏压的引入会使沉积系统出现静电效应,使草状碳纳米材料解除成束的状态,并且材料的长径比变大。通过对草状碳纳米材料合成工艺的研究,发现它对甲烷的流量比较敏感,需要在较窄的幅度内波动,而合成时的基台温度可以低至300℃。
     在第三部分中,通过分散石墨粉末和多壁碳纳米管到环氧树脂和固化剂,制备了一种新型的碳纳米复合材料,其导热系数达2.6W(m K)-1。之后,将碳纳米复合材料集成到新型的具有三层结构的热界面材料中,经测试,其最大的导热系数达4.9W(mK)-1,比测得的商业热界面材料导热系数大58%。它可以做为高亮度LED的散热材料以提高散热效率。同时发现当混合填料含量固定后,聚合物基体对碳纳米管分散能力有一个上限,且随着混合填料含量的上升而下降。通过理论分析结合实验数据,半定量地研究了多壁碳纳米管含量与复合材料导热系数之间的关系,并且找到固定混合填料含量下碳纳米管与石墨粉的最佳配比,为改善同类型材料的导热性能指明了方向。
The paper has three parts. Part one is about multi-walled carbon nanotubes (MWCNTs) synthesis. In order to accelerate catalyst producing, a novel method was present by plating iron on nickel foams substrate for synthesizing MWCNTs with chemical vapor deposition. The MWCNTs were characterized by scanning electron microscope, transmission electron microscope, resonance Raman spectroscopy and thermogravimetric analysis. Results show the diameters of MWCNTs are well-distributed and the purity is higher than90%. For exploring the potential of this method, various growth conditions were investigated. Some original conclusions were obtained. First, when hydrogen gas was introduced on growth, as-grown materials transforms from solid to hollow. Second, if the flow rate of acetylene was dropped to25sccm on growing, a new kind of the needle-like nano-material comes with MWCNTs. Third, output of MWCNTs which laying the substrate parallel to the axis of the flow tube is more than perpendicular. Fourth, the minimum growth temperature of MWCNTs is550℃which is much less than the decomposition temperature of precursor acetylene. Finally, it was found that the MWCNTs grown on nickel foam substrate exhibit higher value of thermal conductivity than the substrate itself. It suggests a feasible way to develop ultra-high thermal conductivity material, namely, by transplanting the orientated MWCNTs onto a substrate with high thermal conductivity such as silver and copper.
     The new structure nano-materials is significant for developing extraordinary products. In part two, the iron was plated on nickel foam to prepare the catalyst and synthesis the carbon nano-material with plasma-enhanced chemical vapor deposition. Then transmission electron microscope was used to characterize them and found these materials are incline to bunch. Meanwhile, it was found that they have grass-like shape and each single one has much hollow area.We believe these unique structure nano-materials have impressive prospects in electron field emission and hydrogen storage. The research deepens the comprehension of film deposition on the rough surface. Meanwhile, it was found that introducing of voltage changes the geometry of carbon material. It also increases the aspect ratio. From the study of synthesis techniques, we found the carbon material is sensitive to the flow rate of methane. They need to fluctuate on a narrow space. Oppositely, for growth temperature, they don't have demanding requirements. Even at300℃, it still can grow,
     In Part three, a novel composite material of nano-carbon with the highest value of thermal conductivity2.6W (m K)-1was present by dispersing graphite powders (GP) and MWCNTs in a polymer matrix of epoxy resin and the curing agent. Furthermore, this composite has been prepared as the heat dissipation system of high-brightness light emitting diodes (HB-LEDs), using a sandwich structured thermal interface material with metal for the inner layer and two composites for outer layers. The optimal for thermal conductivity of this thermal interface material is4.9W (m K)-1,58%higher than that of commercial products. This promising material can increase the cooling rate and lower the energy consumption of HB-LEDs.At the same time, there is a max value for MWCNTs dispersion in the polymer was found. It decreases with the increment of the load of hybrid filler. Analysis and experiment indicate the relation semi-quantitatively between the load of MWCNTs and thermal conductivity of the composite. The best ratio between MWCNTs and GP was found. It gives the direction to improve the thermal conductivity value of composites.
引文
1. W. Zhang et al., Low-temperature synthesis and microstructure-property study of single-phase yttrium iron garnet (YIG) nanocrystals via a rapid chemical coprecipitation, Mater. Chem. Phys.2011 125 (3) 646-651.
    2. Q.L. Zhang, H. Yang and J.X. Tong, Preparation of low-temperature sintered microwave dielectric ZnTiO3 ceramics doped with additives by sol-gel, Rare Metal Mat. Eng.2004 33 235-238.
    3. L.L. Zhang et al., Synthesis and characterization of KNd2Ti3O9.5 nanocrystal and its catalytic effect on decomposition of ammonium perchlorate, Mater. Chem. Phys.2011 125 (3) 322-325.
    4. A.J. Lopez et al., Tough ceramic coatings:Carbon nanotube reinforced silica sol-gel, Appl. Surf. Sci.2010 256 (21) 6375-6384.
    5. S. Iijima, Helical Microtubules of Graphitic Carbon, Nature 1991 354 (6348) 56-58.
    6. T.W. Ebbesen and P.M. Ajayan, Large-Scale Synthesis of Carbon Nanotubes, Nature 1992 358 (6383) 220-222.
    7. T.W. Ebbesen et al., Patterns in the Bulk Growth of Carbon Nanotubes, Chem. Phys. Lett.1993 209 (1-2) 83-90.
    8. D.S. Bethune et al., Cobalt-Catalyzed Growth of Carbon Nanotubes with Single-Atomic-Layerwalls, Nature 1993 363 (6430) 605-607.
    9. C.H. Kiang et al., Catalytic Synthesis of Single-Layer Carbon Nanotubes with a Wide-Range of Diameters, J. Phys. Chem.1994 98 (26) 6612-6618.
    10. J.M. Lambert et al., Improving Conditions Towards Isolating Single-Shell Carbon Nanotubes, Chem. Phys. Lett.1994 226 (3-4) 364-371.
    11. X. Lin et al., Large-Scale Synthesis of Single-Shell Carbon Nanotubes, Appl. Phys. Lett.1994 64(2)181-183.
    12. A.V. Krestinin and A.P. Moravsky, Mechanism offullerene synthesis in the arc reactor, Chem. Phys. Lett.1998 286 (5-6) 479-484.
    13. A.V. Krestinin and A.P. Moravskii, Kinetics of fullerene C-60 and C-70 formation in a reactor with graphite rods evaporated in electric arc, Chem. Phys. Rep.199918 (3) 515-532.
    14. N. Li et al., Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method, Carbon 2010 48 (1) 255-259.
    15. J.H. Hafner et al., Catalytic growth of single-wall carbon nanotubes from metal particles, Chem. Phys. Lett.1998 296 (1-2) 195-202.
    16. J. Kong et al., Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers, Nature 1998 395 (6705) 878-881.
    17. B. Chen et al., Heterogeneous single-walled carbon nanotube catalyst discovery and optimization, Chem. Mater.2002 14 (4) 1891-1896.
    18. E. Joselevich and C.M. Lieber, Vectorial growth of metallic and semiconducting single-wall carbon nanotubes, Nano Lett.2002 2 (10) 1137-1141.
    19. B. Zheng et al., Efficient CVD growth of single-walled carbon nanotubes on surfaces using carbon monoxide precursor, Nano Letters 2002 2 (8) 895-898.
    20. A. Lan et al., Growth of single-wall carbon nanotubes within an ordered array ofnanosize silica spheres, Appl. Phys. Lett.2002 81 (3) 433-435.
    21. M. Yudasaka et al., Specific Conditions for Ni Catalyzed Carbon Nanotube Growth by Chemical-Vapor-Deposition, Appl. Phys. Lett.1995 67 (17) 2477-2479.
    22. G.S. Choi et al., Carbon nanotubes synthesized by Ni-assisted atmospheric pressure thermal chemical vapor deposition, J. Appl. Phys.2002 91 (6) 3847-3854.
    23. Y.H. Lee et al., Direct nano-wiring carbon nanotube using growth barrier:A possible mechanism of selective lateral growth, J. Appl. Phys.2002 91 (9) 6044-6050.
    24. C. Ducati et al., Temperature selective growth of carbon nanotubes by chemical vapor deposition, J. Appl. Phys.2002 92 (6) 3299-3303.
    25. A.M. Cassell et al., Combinatorial optimization of heterogeneous catalysts used in the growth of carbon nanotubes, Langmuir.2001 17 (2) 260-264.
    26. R.T.K. Baker et al., Formation of Filamentous Carbon from Iron, Cobalt and Chromium Catalyzed Decomposition of Acetylene, J. Catal.197330 (1) 86-95.
    27. R.T.K. Baker, Catalytic Growth of Carbon Filaments, Carbon 1989 27 (3) 315-323.
    28. X.F. Feng et al., In Situ TEM observation of the gasification and growth of carbon nanotubes using iron catalysts, Nano Res.20114 (8) 767-779.
    29. S. Bae et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nanotechnology 2010 5 (8) 574-578.
    30. Y.P. Zhao et al., Novel nano-column and nano-flower arrays by glancing angle deposition, Nano Lett.2002 2 (4) 351-354.
    31. Z.L. Wang et al., Controlled growth of large-area, uniform, vertically aligned arrays of alpha-Fe2O3 nanobelts and nanowires, J. Phys. Chem. B 2005 109 (1)215-220.
    32. X.F. Qian et al., Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route, Langmuir.2004 20 (8)3441-3448.
    33. H. Yang et al., Low-temperature vapor-solid growth and excellent field emission performance of highly oriented SnO(2) nanorod arrays, Acta. Mater. 201159(3)1291-1299.
    34. X.S. Fang et al., Direct observation of the growth process of MgO nanoflowers by a simple chemical route, Small 20051 (4) 422-428.
    35. U. Coscia et al., Characterizations of nanostructured silicon-carbon films deposited on p-layer by PECVD, Physica Status Solidi C-Current Topics in Solid State Physics, Vol 7 No 3-4 2010 7 (3-4) 766-769.
    36. G. Ambrosone et al., Study on the excimer laser annealed amorphous hydrogenated silicon carbon films deposited by PECVD, Physica Status Solidi C-Current Topics in Solid State Physics, Vol 7 No 3-420107 (3-4) 770-773.
    37. V. Pichot et al., Evidence of strong nanotube alignment and for iron preferential growth axis in multiwalled carbon nanotube carpets, Appl. Phys. Lett.2004 85 (3) 473-475.
    38. K. Kosugi, M.J. Bushiri and N. Nishi, Formation of air stable carbon-skinned iron nanocrystals from FeC2, Appl. Phys. Lett.2004 84 (10) 1753-1755.
    39. T. de los Arcos et al., Influence of iron-silicon interaction on the growth of carbon nanotubes produced by chemical vapor deposition, Appl. Phys. Lett. 200280 (13) 2383-2385.
    40. B.O. Boskovic et al., Large-area synthesis of carbon nanofibres at room temperature, Nature Materials 20021 (3) 165-168.
    41. S. Hofmann et al., Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition, Appl. Phys. Lett.2003 83 (1) 135-137.
    42. G.W. Ho et al., Synthesis of well-aligned multiwalled carbon nanotubes on Ni catalyst using radio frequency plasma-enhanced chemical vapor deposition, Thin Solid Films 2001388 (1-2) 73-77.
    43. H. Ishida et al., Experimental study of fullerene-family formation using radio-frequency-discharge reactive plasmas, Thin Solid Films 2002 407 (1-2) 26-31.
    44. N. Satake et al., Production of carbon nanotubes by controlling radio-frequency glow discharge with reactive gases, Physica B-Condensed Matter 2002 323 (1-4) 290-292.
    45. L. Valentini et al., Formation of carbon nanotubes by plasma enhanced chemical vapor deposition:Role of nitrogen and catalyst layer thickness, J. Appl. Phys.2002 92 (10) 6188-6194.
    46. L. Delzeit et al., Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor, J. Appl. Phys.2002 91 (9) 6027-6033.
    47. S.G Wang et al., Aligned carbon nanotubes grown on the inner surface of iron ring through microwave plasma chemical vapor deposition, J. Mater. Sci. Lett. 200322 (14) 1017-1018.
    48. S. Bandow et al., Purification of single-wall carbon nanotubes by microfiltration, J. Phys. Chem. B 1997 101 (44) 8839-8842.
    49. R. Andrews et al., Continuous production of aligned carbon nanotubes:a step closer to commercial realization, Chem. Phys. Lett.1999 303 (5-6) 467-474.
    50. R. Andrews et al., Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures, Carbon 2001 39 (11) 1681-1687.
    51. C.J. Lee et al., Synthesis of bamboo-shaped carbon-nitrogen nanotubes using C2H2-NHS-Fe(CO)(5) system, Chem. Phys. Lett.2002 359 (1-2) 115-120.
    52. Y. Murakami et al., Characterization of single-walled carbon nanotubes catalytically synthesized from alcohol, Chem. Phys. Lett.2003 374 (1-2) 53-58.
    53. K. Hernadi et al., SWNTs as catalyst and/or support in the catalytic decomposition of hydrocarbons, Chem. Phys. Lett.2003 367 (3-4) 475-481.
    54. Y.C. Feng et al., Removal of some impurities from carbon nanotubes, Chem. Phys. Lett.2003 375 (5-6) 645-648.
    55. J.Y. Chang et al., Opening and thinning of multiwall carbon nanotubes in supercritical water, Chem. Phys. Lett.2002 363 (5-6) 583-590.
    56. D.E. Luzzi and B.W. Smith, Carbon cage structures in single wall carbon nanotubes:a new class of materials, Carbon 2000 38 (11-12) 1751-1756.
    57. N.A. Kiselev et al., SEM and HREM study of the internal structure of nanotube rich carbon are cathodic deposits, Carbon 1999 37 (7) 1093-1103.
    58. C.H. Kiang et al., Carbon Nanotubes with Single-Layer Walls, Carbon 1995 33 (7) 903-914.
    59. A. Thess et al., Crystalline ropes of metallic carbon nanotubes, Science 1996 273 (5274) 483-487.
    60. J. Chen et al., Dissolution of full-length single-walled carbon nanotubes, J. Phys. Chem. B 2001 105 (13) 2525-2528.
    61. J.H. Hafner et al., High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies, J. Phys. Chem. B 2001 105 (4) 743-746.
    62. A.M. Rao et al., Photoinduced Polymerization of Solid C-60 Films, Science 1993259 (5097) 955-957.
    63. A.M. Rao et al., Diameter-selective Raman scattering from vibrational modes in carbon nanotubes, Science 1997 275 (5297) 187-191.
    64. A.M. Rao et al., Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering, Nature 1997 388 (6639) 257-259.
    65. L.E. Mcneil et al., Raman Microscopy of Intercalated Graphite Fibers, Carbon 198624(1)73-76.
    66. A.G Souza et al., Probing the electronic trigonal warping effect in individual single-wall carbon nanotubes using phonon spectra, Chem. Phys. Lett.2002 354 (1-2) 62-68.
    67. P. Corio et al., Potential dependent surface Raman spectroscopy of single wall carbon nanotube films on platinum electrodes, Chem. Phys. Lett.2003 370 (5-6) 675-682.
    68. L. James et al., Modeling the principle physical parameters of graphite carbon foam, Carbon 2010 48 (9) 2418-2424.
    69. J.J. Zhu et al., A graphite foam reinforced by graphite particles, Carbon 2007 45(13)2547-2550.
    70. T. Murakami et al., New Manufacturing Method of Iron Foam using Precursor Made of Iron, Graphite and Hematite Powders, Porous Metals and Metallic Foams:Metfoam 2008 145-148.
    71. N.C. Gallego, T.D. Burchell and J.W. Klett, Irradiation effects on graphite foam, Carbon 2006 44 (4) 618-628.
    72. P. Gadelle et al., Effect of hydrogen on the orientation of carbon layers in deposits from the carbon monoxide disproportionation reaction over Co/Al2O3 catalysts, Carbon 2000 38 (10) 1469-1479.
    73. T.E. Burns, J.R. Dennison and S.N. Ehrlich, Synchrotron X-ray diffraction studies of multilayer nitrogen physisorbed on porous graphite foam, Langmuir. 19991 5(4)1423-1428.
    74. Y.J. Zhong et al., Thermal and mechanical properties of graphite foam/Wood's alloy composite for thermal energy storage Carbon 2010 48 (5) 1689-1692.
    75. K. Takehira et al., Autothermal reforming of CH4 over supported Ni catalysts prepared from Mg-Al hydrotalcite-like anionic clay, J. Catal.2004 221 (1) 43-54.
    76. J. Pasel et al., Combination of autothermal reforming with water-gas-shift reaction-small-scale testing of different water-gas-shift catalysts, J. Power Sources 2004126 (1-2) 112-118.
    77. Y.M. Chen and J.M. Ting, Ultra high thermal conductivity polymer composites, Carbon 2002 40 (3) 359-362.
    78. J.F. Liu et al., Thermal Conductivity of the Carbon Nanotube/Silicone Grease Composite, Journal of Material s Science & Engineering 2009 27 (2) 271-273.
    79. R.C. Haddon et al., Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet-Carbon Nanotube Filler for Epoxy Composites, Adv. Mater. 200820 (24) 4740-4744.
    80. 徐任信 et al.,短切碳纤维/AIN/环境树脂绝缘导热复合材料性能研究, 绝缘材料 2008 41(3)33-36.
    81. C. Liu et al., Hydrogen storage in single-walled carbon nanotubes at room temperature, Science 1999 286 (5442) 1127-1129.
    82. B.J. Hinds et al., Aligned multiwalled carbon nanotube membranes, Science 2004303 (5654) 62-65.
    83. S.S. Fan et al., Self oriented regular arrays of carbon nanotubes and their field emission properties, Science 1999 283 (5401) 512-514.
    84. S.J. Tans, A.R.M. Verschueren and C. Dekker, Room-temperature transistor based on a single carbon nanotube, Nature 1998 393 (6680) 49-52.
    85. H. Yang et al., Synthesis of large-area single-walled carbon nanotube films on glass substrate and their field electron emission properties, Mater. Chem. Phys.2010 124(1)78-82.
    86. L. Zhang, Y. Wang and Q.Q. Ni, Carbon nanotube template-assisted synthesis of zinc ferrite nanochains, Mater. Chem. Phys.2010124 (2-3) 1029-1033.
    87. X.W. Wang, Z.H. Yuan and B.C. Fang, Template-based synthesis and magnetic properties of Ni nanotube arrays with different diameters, Mater. Chem. Phys. 2011125(1-2) 1-4.
    88. Z.W. Pan et al., Very long carbon nanotubes, Nature 1998 394 (6694) 631-632.
    89. W.Z. Li et al., Large-scale synthesis of aligned carbon nanotubes, Science 1996274(5293)1701-1703.
    90. V.I. Merkulov et al., Shaping carbon nanostructures by controlling the synthesis process, Appl. Phys. Lett.200179 (8) 1178-1180.
    91. V.I. Merkulov et al., Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition, Appl. Phys. Lett.2001 79 (18) 2970-2972.
    92. M. Chhowalla et al., Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition, J. Appl. Phys. 200190(10)5308-5317.
    93. L. Delzeit et al., Growth of carbon nanotubes by thermal and plasma chemical vapour deposition processes and applications in microscopy, Nanotechnology 200213 (3) 280-284.
    94. L. Delzeit et al., Multilayered metal catalysts for controlling the density of single-walled carbon nanotube growth, Chem. Phys. Lett.2001 348 (5-6) 368-374.
    95. Z.F. Ren et al., Synthesis of large arrays of well-aligned carbon nanotubes on glass, Science 1998 282 (5391) 1105-1107.
    96. J. Han et al., Growth and emission characteristics of vertically well-aligned carbon nanotubes grown on glass substrate by hot filament plasma-enhanced chemical vapor deposition, J. Appl. Phys.200088 (12) 7363-7365.
    97. Y.C. Choi et al., Effect of surface morphology of Ni thin film on the growth of aligned carbon nanotubes by microwave plasma-enhanced chemical vapor deposition, J. Appl. Phys.20008 8 (8)4898-4903.
    98. K. Zhang et al., Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling, Nanotechnology 2008 19 (21) 215706-1-8.
    99. J.G. Hagopian et al., Multiwalled carbon nanotubes for stray light suppression in space j(?)ght instruments, Proc. of SPIE 2010 7761-7769.
    100. A.C. Ferrari et al., Raman spectrum of graphene and graphene layers, Phys. Rev. Lett.2006 97 (18) 187401-187404.
    101. A. Malesevic et al., Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition, Nanotechnology 2008 19 (30) 305604-1-6.
    102. J.L. Figueiredo et al., The Reversibility of Filamentous Carbon Growth and Gasification, J. Catal.1988110 (1) 127-138.
    103. T.Y. Choi et al., Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-omega method, Appl. Phys. Lett.2005 87(1)013108-1-3.
    104. P. Kim et al., Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett.200187 (21) 215502-1-4.
    105. J.P. Gwinn and R.L. Webb, Performance and testing of thermal interface materials, Microelectr. J.2003 34 (3) 215-222.
    106. k. Zhang et al., in:HB-LED packaging Electronic Components and Technology Conf,56th ECTC, San Diego CA 2006 177-182.
    107. X.F. Shang et al., A model calculation of the tip field distribution for a carbon nanotube array and the optimum intertube distance, Nanotechnology 2008 19 (6)065708-1-5.
    108. Z.Q. Wang et al., Thermal Transport in Suspended and Supported Few-Layer Graphene, Nano Lett.20111 1 (1) 113-118.
    109. X.B. Wang et al., Large-Scale Synthesis of Few-Layered Graphene using CVD, Chem. Vapor. Depos.2009 15 (1-3) 53-56.
    110. A. Reina et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Lett.2009 9 (1) 30-35.
    111. X.S. Li et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, Science 2009 324 (5932) 1312-1314.
    112. W.W. Cai et al., Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition, Nano Lett.2010 10 (5) 1645-1651.
    113. X.S. Li et al., Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process, Nano Lett.201010 (11) 4328-4334.
    114. Z.J. Li et al., Spontaneous Formation of Nanostructures in Graphene, Nano Lett.2009 9 (10) 3599-3602.
    115. M.L. Mueller et al., Slow Hot-Carrier Relaxation in Colloidal Graphene Quantum Dots, Nano Lett.201111 (1) 56-60.
    116. C.H. Lui et al., Imaging Stacking Order in Few-Layer Graphene, Nano Lett. 201111(1)164-169.
    117. X.A. Liu et al., Low temperature elastic properties of chemically reduced and CVD-grown graphene thin films, Diam. Relat. Mater.201019 (7-9) 875-878.
    118. S. Park et al., Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents, Nano Lett.2009 9 (4) 1593-1597.
    119. X.S. Li et al., Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes, Nano Lett.2009 9 (12) 4359-4363.
    120. Y.X. Huang et al., Nanoelectronic biosensors based on CVD grown graphene, Nanoscale 2010 2 (8) 1485-1488.
    121. R. Ding et al., Tailored Ni-Cu alloy hierarchical porous nanowire as a potential efficient catalyst for DMFCs, Catalysis Science & Technology 2011 1 (8) 1406.
    122. G.M. Yang et al., Enhanced Field Electron Emission Properties of Hybrid Carbon Nanotubes Synthesized by RF-PECVD, Chem. Vapor. Depos.2009 15 (10-12) 291-295.
    123. GM. Yang et al., Investigation on nanodiamond and carbon nanotube-diamond nanocomposite synthesized using RF-PECVD, Chem. Vapor. Depos.2008 14 (7-8) 236-240.
    124. S. Vizireanu et al., PECVD synthesis of 2D nanostructured carbon material, Surf. Coat. Tech.2012 211 2-8.
    125. A. Tailleur et al., PECVD low temperature synthesis of carbon nanotubes coated with aluminum nitride, Surf. Coat. Tech.2012 211 18-23.
    126. B. Zimmermann et al., High rate deposition of amorphous hydrogenated carbon films by hollow cathode arc PECVD, Surf. Coat. Tech.2012 212 67-71.
    127. D.J. Eaglesham and M. Cerullo, Dislocation-Free Stranski-Krastanow Growth of Ge on Si(100), Phys. Rev. Lett.1990 64 (16) 1943-1946.
    128. F.C. Frank and J.H. Vandermerwe, One-Dimensional Dislocations 3 Influence of the 2nd Harmonic Term in the Potential Repesentation, on the Properties of the Model, Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 1949 200 (1060) 125-134.
    129. N. Narendran and Y.M. Gu, Life of LED-Based White Light Sources, Journal of Display Technology 20051 (1) 167-171.
    130. S.V. Garimella, Advances in mesoscale thermal management technologies for microelectronics, Microelectr. J.200637 (11) 1165-1185.
    131. Ghoshal.U et al., High-Performance Liquid Metal Cooling Loops, In:Proceedings of the 21th IEEE Semiconductor Thermal Measurement and Management Symposium.San Jose CA 2005 16-19.
    132. M. Tawk et al., Study and realization of a high power density electronics device cooling loop using a liquid metal coolant,2011 Ieee Energy Conversion Congress and Exposition (Ecce) 2011 36-43.
    133. Y. Xu, C.K. Leong and D.D.L. Chung, Carbon nanotube thermal pastes for improving thermal contacts, J. Electron. Mater.2007 36 (9) 1181-1187.
    134. J.W. Che, T. Cagin and W.A. Goddard, Thermal conductivity of carbon nanotubes, Nanotechnology 2000 11 (2) 65-69.
    135. M.A. Osman and D. Srivastava, Temperature dependence of the thermal conductivity of single-wall carbon nanotubes, Nanotechnology 200112 (1) 21-24.
    136. J. Hone et al., Thermal conductivity of single-walled carbon nanotubes, Phys. Rev. B 1999 59 (4) R2514-R2516.
    137. S. Berber, Y.K. Kwon and D. Tomanek, Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett.2000 84 (20) 4613-4616.
    138. H.Q. Xie and M. Choi, Self-organized and reversibly dispersible pellets of multi-walled carbon nanotubes, New Carbon Materials 2008 23 (1) 1-6.
    139. S.T. Huxtable et al., Interfacial heat flow in carbon nanotube suspensions, Nat Mater 2003 2(11)731-4.
    140. C.W. Nan, Z. Shi and Y. Lin, A simple model for thermal conductivity of carbon nanotube-based composites, Chem. Phys. Lett.2003 375 (5-6) 666-669.
    141. S. Shenogin et al., Role of thermal boundary resistance on the heat flow in carbon-nanotube composites, J. Appl. Phys.2004 95 (12) 8136-8144.
    142.. N. Shenogina et al., On the lack of thermal percolation in carbon nanotube composites, Appl. Phys. Lett.2005 87 (13) 133106-1-3.
    143. C.W. Nan et al., Effective thermal conductivity of particulate composites with interfacial thermal resistance, J. Appl. Phys.1997 81 (10) 6692-6699.
    144. P. Keblinski and F. Cleri, Contact resistance in percolating networks, Phys. Rev. B 2004 69 (18) 184201-1-4.
    145. M.B. Bryning et al., Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites, Appl. Phys. Lett.2005 87 (16) 161909-161911.
    146. R. Prasher, Thermal conductance of single-walled carbon nanotube embedded in an elastic half-space, Appl. Phys. Lett.2007 90 (14) 143110-1-3.
    147. D.Zhu, Z.Sun et al, Synthesis of The Polyfluorene Luminescent Material and Its Application in Flexible Polymer Light-emitting Diode, Chinese Jo urnal of Luminescence,20123 3 (1) 17-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700