锰基金属氧化物及其复合材料超级电容器电极材料的制备与电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,超级电容器以其高功率密度、快充放电速度、长使用寿命和高安全性,逐渐成为下一代能源装置中最具潜力的储能设备,能够满足时代发展所需的现代电子设备和能源系统。根据电荷存储机理,超级电容器大致可以分成两类,即使用碳基电极材料的双电层超级电容器和使用具有氧化还原反应电极材料的赝电容超级电容器。到目前为止,对于赝电容超级电容器电极材料的研究主要集中在发展具有商用前景的过渡金属氧化物,因为它们具有丰度高、价格低廉、环境友好的特点,特别是能为氧化还原反应提供多种电荷价态,因而能够获得更高的能量密度和理论比电容值。由于不同的过渡金属氧化物有着各异的微观结构和组分,在作为电极材料时,电极/电解液界面性质和离子传输速率也不尽相同,因而电荷存储能力具有本质的差别。在这篇博士学位论文中,我们以多种不同微观结构的MnO2电极材料的制备为基础,围绕提高过渡金属氧化物电极材料电化学性能所面临的部分挑战,逐步发展Mn基复合金属氧化物电极材料,并探讨其在实际应用中的影响因素。论文中的主要内容概括如下:
     1采用水热法合成了长~40μm,宽~15nm的单晶α-MnO2超长纳米线。通过改变表面活性剂合成了a-MnO2纳米线和纳米棒。利用TEM-STM样品台测试了单根MnO2纳米线和纳米棒的原位电学性能,结果表明Mn02纳米线的导电性优于纳米棒,在-5-5V电压变化范围内,电流变化范围为-252.5~206.7nA,高于纳米棒(-122.3~92.3nA)。对比三种MnO2电极材料,超长纳米线的电化学性能最为优异,1A/g的电流密度下,其比电容值达到了345F/g,电流密度增大10倍时比电容仍然能保持54.7%。
     2采用恒电流沉积法在泡沫镍基底上生长了长约数微米,宽8-10nm的a-MnO2超细纳米带。通过改变测试温度,探讨了0℃、25℃和50℃下超细纳米带电极材料的电化学性能。发现在50℃时性能最为优异,200mA/g电流密度下比电容达到了509.5F/g,远高于0和25℃下的电容值。此外,50℃时也表现出较好的倍率性能,当扫描速度增加100倍时,能够保持初始比电容值的39.1%。通过变温下5000次的长循环稳定测试,发现MnO2超细纳米带最终仍然能够保留91.3%初始电容量,证明所制备的超细纳米带具有良好的抗温变效应。
     3设计并通过分步可控电沉积法将MnO2纳米片或纳米棒生长在Au包覆的C0304多孔纳米墙阵列上,形成Co3O4@Au@MnO2三维层状异质结。由于其独特的自组装结构和特征,即C0304多孔纳米墙、超薄MnO2纳米片以及夹在中间的高导电Au层,使得每一部分都为其用于能量储存提供所需的重要作用。合成的三维层状异质结电极材料具有优异的电化学性能,如高比电容(10mV/s时电容为851.4F/g,1A/g电流密度时为1532.4F/g),高倍率性能以及优异的长循环稳定性(5000圈循环测试后几乎没有衰减),因此该材料在高性能超级电容器中具有很好的应用前景。
     4采用水热法合成了平均直径为4-6μm的海胆状MnCo2O4.5前驱体,400℃煅烧后获得立方相MnCo2O4.5晶体。SEM和TEM表征发现其分级结构是由颗粒链接而成,使得海胆状MnCo2O4.5富含孔隙。将其作为电极材料,在5mV/s扫速下具有151.2F/g的比电容。重要的是,当电流密度增加50倍情况下,其比电容依然能保持初始的83.6%;不同电流密度充放电测试2100次后无衰减现象发生。
Supercapacitors have become the most promising candidates for next-generation power devices in recent years because of their excellent properties such as high power density, fast charge-discharge rate, long cycle life and safe operation for time-dependent power needs of modern electronics and power systems. According to the charge-storage mechanism, they are generally divided into two categories, i.e., electrical double-layer capacitors using carbon-active materials, and pseudocapacitors using redox-active materials. Up to now, for pseudocapacitors, there has been extensive interest in developing commercial attractive transition-metal oxide (TMO) electrodes, as these TMOs are natural abundance, low cost, and environmental friendliness, and particularly can provide various oxidation states for efficient redox charge transfer and enable a higher energy density and a high theoretical specific capacitance. As with different microstructures and compositions, they show substantial differences in supercapacitor performance due to dissimilarities in the electrode/electrolyte interface properties and ion transfer rates during the charge storage processes. Therefore, in this doctoral dissertation, beginning with manganese dioxide, and then developing some Mn-based metal oxide composites to meet some challenges in the transition metal oxide electrode materials. A variety of one-dimensional, two-dimensional and three-dimensional Mn-based TMOs or multi-component composite TMO materials have been synthesized by hydrothermal method and electrochemical deposition, and then were characterized by means of XRD, SEM and TEM, and finally fabricated into electrodes to examine the electrochemical performances, in particular, improving their practical electrode applications. The main points of this dissertation are summarized as follows:
     1. Single-crystal α-MnO2ultralong nanowires (-40μm in length and~15nm in diameter) were synthesized by a simple process of hydrothermal treatment. By varying the surfactants, the other two kinds of a-MnO2nanostructures (nanorods and nanoflowers) were also prepared. The electrical conductivity of as-prepared MnO2nanowires and nanorods was then studied by a new STM-TEM holder, and their obtained results showed that the MnO2ultralong nanowires possess better electrical conductivity compared with MnO2nanorods, and both of the voltages were ranged from-5to5V, and the current value of MnO2ultralong nanowires varies from-252.5to206.7nA, while the MnO2NR varies from-122.3to92.3nA. Compared with as-synthesized a-MnO2nanorods and nanoflowers, individual α-MnO2ultralong nanowires showed a better electrochemical performance, and their based electrodes exhibited an enhanced specific capacitance of345F g-1at1A/g with high rate capability (54.7%at10A g-1).
     2. Ultrafine a-MnO2nanobelts (8-10nm in diameter) were synthesized by a facile, template-free and effective electrochemical method on Ni foam, and an extensive study of the electrode properties with respect to changes of the temperature has been carried out. Through both CV and galvanostatic CD investigation, the specific capacitance has been seen to increase with increasing temperature, with values as high as509F g-1observed at50℃, higher than that of in0and25℃. Also, this electrode demonstrated a good rate capability with39.1%retention even the scan rate increasing to100times (1to100mV s-1). More importantly, the specific capacitance of the MnO2nanobelt electrode has91.3%retention after5000cycles with repeated heating and cooling during temperature of0to50℃, showing good high temperature-resistive long-term cycle stability.
     3.3D hierarchical heterostructures of MnO2nanosheets or nanorods grown on Au-coated Co3O4porous nanowall arrays were designed and synthesized, looking like a sandwiched configuration of Co3O4@Au@MnO2, by a facial and controllable electrochemical deposition process. Due to their unique self-assembling architecture characteristics involving porous Co3O4nanowalls, ultrathin MnO2nanosheets, and a high conductivity Au layer sandwiched between them, each component provides much needed critical function for efficient use of metal oxide for energy storage. The synthesized3D hierarchical heterostructures exhibited favorable electrochemical performances such as a high specific capacitance as851.4F g-1at10mV s-1and1532.4F g-1at1A g-1, good rate performance and an excellent long-term cycle stability (nearly no degradation after5000cycles), thus could be considered as perspective materials for high-performance electrochemical capacitors.
     4. An urchin-like cubic phase MnCo2O5hierarchical structure with4~6μm in diameter was synthesized by a facile hydrothermal method followed by calculation in400℃. SEM and TEM characterizations confirmed that the unique hierarchical structure was composed of1D nanochains consisting of nanoparticles, making the MnCo204.5becomes a highly porous texture. As an electrode material, it exhibited a specific capacitance of151.2F g-1at scan rate of5mV s-1. More importantly, this unique electrode demonstrated an outstanding rate capability with83.6%retention even at the current density increasing to50times (0.1to5A g-1), and showed excellent long-term cycle stability that it nearly had no decrease after2100cycles at progressively varied current densities.
引文
1 Becker H. L., Low voltage electrolytic capacitor. U. S. Patent 2800616,1957.
    2 Yu, G.; Xie, X.; Pan, L.; Bao, Z.; Cui, Y., Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2013,2 (2),213-234.
    3 邓梅根.电化学电容器电极材料研究.中国科学技术大学出版社,2009.
    4 Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S., Graphene and graphene oxide:synthesis, properties, and applications. Advanced Materials 2010,22 (35),3906-3924.
    5 Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S., Graphene-based ultracapacitors. Nano Letters 2008,8(10),3498-3502.
    6 Fan, J.; Wang, T.; Yu, C. Z.; Tu, B.; Jiang, Z. Y; Zhao, D. Y., Ordered, nanostructured tin-based oxides/carbon composite as the negative-electrode material for lithium-ion batteries. Advanced Materials 2004,76 (16),1432-1436.
    7 Wang, J.; Chen, M.; Wang, C.; Wang, J.; Zheng, J., Preparation of mesoporous carbons from amphiphilic carbonaceous material for high-performance electric double-layer capacitors. Journal of Power Sources 2011,196 (1),550-558.
    8 Liu, C.; Li,F.; Ma, L. P.; Cheng, H. M., Advanced materials for energy storage. Advanced Materials 2010,22 (8), E28-E62.
    9 Bordjiba, T.; Mohamedi, M.; Dao, L. H., New class of carbon-nanotube aerogel electrodes for electrochemical power sources. Advanced Materials 2008,20 (4), 815-819.
    10 Mastragostino, M.; Arbizzani, C.; Soavi, F., Conducting polymers as electrode materials in supercapacitors. Solid State Ionics 2002,148 (3-4),493-498.
    11 Sung, J. H.; Kim, S. J.; Lee, K. H., Fabrication of microcapacitors using conducting polymer microelectrodes. Journal of Power Sources 2003,124 (1), 343-350.
    12 Li, D.; Huang, J.; Kaner, R. B., Polyaniline nanofibers:a unique polymer nanostructure for versatile applications. Accounts of Chemical Research 2009,42 (1), 135-145.
    13 Ryu, K. S.; Lee, Y. G.; Han, K. S.; Park, Y. J.; Kang, M. G.; Park, N. G.; Chang, S. H., Electrochemical supercapacitor based on polyaniline doped with lithium salt and active carbon electrodes. Solid State Ionics 2004,175 (1-4),765-768.
    14 Zhou, H. H.; Chen, H.; Luo, S. L.; Lu, G. W.; Wei, W. Z.; Kuang, Y. F., The effect of the polyaniline morphology on the performance of polyaniline supercapacitors. Journal of Solid State Electrochemistry 2005,9(8),574-580.
    15 Yan, Y.; Cheng, Q.; Wang, G.; Li, C., Growth of polyaniline nanowhiskers on mesoporous carbon for supercapacitor application. Journal of Power Sources 2011, 196 (18),7835-7840.
    16 Cho, S.; Shin, K.-H.; Jang, J., Enhanced electrochemical performance of highly porous supercapacitor electrodes based on solution processed polyaniline thin films. ACS Applied Materials & Interfaces 2013,5(18),9186-9193.
    17 Cui, L.; Li, J.; Zhang, X.-g., Synthesis and characterization of core-shell nanostructured PPy/V2O5 composite. Materials Letters 2009,63 (8),683-686.
    18 Mokrane, S.; Makhloufi, L.; Alonso-Vante, N., Electrochemistry of platinum nanoparticles supported in polypyrrole (PPy)/C composite materials. Journal of Solid State Electrochemistry 2008,12 (5),569-574.
    19 Sharma, R. K.; Rastogi, A. C.; Desu, S. B., Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor. Electrochemistry Communications 2008,10 (2),268-272.
    20 Zhou, C.; Zhang, Y.; Li, Y.; Liu, J., Construction of high-capacitance 3D CoO@Polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Letters 2013,13 (5),2078-2085.
    21 Liu, R.; Duay, J.; Lee, S. B., Electrochemical formation mechanism for the controlled synthesis of heterogeneous Mn02/Poly(3,4-ethylenedioxythiophene) nanowires. ACS Nano 2011,5(7),5608-5619.
    22 Bong-Ok, P.; Lokhande, C. D.; Hyung-Sang, P.; Kwang-Deog, J.; Oh-Shim, J., Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes-effect of film thickness. Journal of Power Sources 2004,134(1),148-152.
    23 Chen, Y. M.; Cai, J. H.; Huang, Y. S.; Lee, K. Y.; Tsai, D. S., Preparation and characterization of iridium dioxide-carbon nanotube nanocomposites for supercapacitors. Nanotechnology 2011,22 (11),115706.
    24 Souza, A. R.; Arashiro, E.; Golveia, H.; Lassali, T. A. F., Pseudocapacitive behavior of Ti/RhOx+Co3O4 electrodes in acidic medium:application to supercapacitor development. Electrochimica Acta 2004,49 (12),2015-2023.
    25 Kim, S. I.; Lee, J. S.; Ahn, H. J.; Song, H. K.; Jang, J. H., Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology. ACS Applied Materials & Interfaces 2013,5(5),1596-1603.
    26 Dandan, H.; Pengcheng, X.; Xiaoyan, J.; Jun, W.; Piaoping, Y.; Qihui, S.; Jingyuan, L.; Dalei, S.; Zan, G.; Milin, Z., Trisodium citrate assisted synthesis of hierarchical NiO nanospheres with improved supercapacitor performance. Journal of Power Sources 2013,235,45-53.
    27 Rakhi, R. B.; Chen, W.; Cha, D.; Alshareef, H. N., Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Letters 2012,12 (5),2559-2567.
    28 Yuan, C.; Yang, L.; Hou, L.; Shen, L.; Zhang, X.; Lou, X. W., Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy & Environmental Science 2012,5 (7),7883-7887.
    29 Jiang, H.; Zhao, T.; Ma, J.; Yan, C.; Li, C., Ultrafine manganese dioxide nanowire network for high-performance supercapacitors. Chemical Communications 2011,47 (4),1264-1266.
    30 Lu, X.; Zheng, D.; Zhai, T.; Liu, Z.; Huang, Y.; Xie, S.; Tong, Y, Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energy & Environmental Science 2011,4 (8),2915-2921.
    31 Toupin, M.; Brousse, T.; Belanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chemistry of Materials 2004,16 (16),3184-3190.
    32 Lang, X.; Hirata, A.; Fujita, T.; Chen, M., Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nature Nanotechnology 2011,6 (4), 232-236.
    33 Li, Q.; Wang, Z. L.; Li, G. R.; Guo, R.; Ding, L. X.; Tong, Y. X., Design and synthesis of MnO2/Mn/MnO2 sandwich-structured nanotube arrays with high supercapacitive performance for electrochemical energy storage. Nano Letters 2012, 12 (7),3803-3807.
    1. Liu, D.; Garcia, B. B.; Zhang, Q.; Guo, Q.; Zhang, Y.; Sepehri, S.; Cao, G., Mesoporous hydrous manganese dioxide nanowall arrays with large lithium ion energy storage capacities. Advanced Functional Materials 2009,19 (7),1015-1023.
    2. Miller, J. R.; Simon, P., Materials science. Electrochemical capacitors for energy management. Science 2008,321 (5889),651-652.
    3. Winter, M.; Brodd, R. J., What are batteries, fuel cells, and supercapacitors? Chemical Reviews 2004,104 (10),4245-4269.
    4. Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M.; Su, D.; Stach, E. A.; Ruoff, R. S., Carbon-based supercapacitors produced by activation of graphene. Science 2011,332 (6037),1537-1541.
    5. Hu, C. C.; Chang, K. H.; Lin, M. C.; Wu, Y. T., Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Letters 2006,6 (12),2690-2695.
    6. Sharma, R. K.; Rastogi, A. C.; Desu, S. B., Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor. Electrochemistry Communications 2008,10 (2),268-272.
    7. Jiang, H.; Zhao, T.; Yan, C.; Ma, J.; Li, C., Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances. Nanoscale 2010,2 (10),2195-2198.
    8. Espinal, L.; Suib, S. L.; Rusling, J. F., Electrochemical catalysis of styrene epoxidation with films of MnO2 nanoparticles and H2O2. Journal of the American Chemical Society 2004,126 (24),7676-7682.
    9. Debart, A.; Paterson, A. J.; Bao, J.; Bruce, P. G., alpha-MnO2 nanowires:A catalyst for the O2 electrode in rechargeable lithium batteries. Angewandte Chemie-International Edition 2008,47 (24),4521-4524.
    10. Thackeray, M. M., Manganese oxides for lithium batteries. Progress in Solid State Chemistry 1997,25 (1-2),1-71.
    11. Jiang, H.; Zhao, T.; Ma, J.; Yan, C.; Li, C., Ultrafine manganese dioxide nanowire network for high-performance supercapacitors. Chemical Communications 2011,47 (4),1264-1266.
    12. Jiang, H.; Zhao, T.; Li, C.; Ma, J., Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. Journal of Materials Chemistry 2011,27 (11),3818-3823.
    13. Jiang, H.; Sun, T.; Li, C.; Ma, J., Hierarchical porous nanostructures assembled from ultrathin MnO2 nanoflakes with enhanced supercapacitive performances. Journal of Materials Chemistry 2012,22 (6),2751-2756.
    14. Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B., Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nature Materials 2010,9 (2),146-151.
    15. Tian, B.; Xie, P.; Kempa, T. J.; Bell, D. C.; Lieber, C. M., Single-crystalline kinked semiconductor nanowire superstructures. Nature nanotechnology 2009,4(12), 824-829.
    16. Ge, J.; Hu, Y.; Biasini, M.; Beyermann, W. P.; Yin, Y., Superparamagnetic magnetite colloidal nanocrystal clusters. Angewandte Chemie-International Edition 2007,46 (23),4342-4345.
    17. Ge, J.; Zhang, Q.; Zhang, T.; Yin, Y., Core-satellite nanocomposite catalysts protected by a porous silica shell:controllable reactivity, high stability, and magnetic recyclability. Angewandte Chemie-International Edition 2008,47 (46),8924-8928.
    18. Mai, L.; Xu, L.; Han, C.; Xu, X.; Luo, Y.; Zhao, S.; Zhao, Y, Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Letters 2010,10 (11),4750-4755.
    19. Zhao, Q.; Xie, Y.; Dong, T.; Zhang, Z., Oxidation-crystallization process of colloids:An effective approach for the morphology controllable synthesis of SnO2 hollow spheres and rod bundles. The Journal of Physical Chemistry C 2007,111 (31), 11598-11603.
    20. Yuan, C.; Zhang, X.; Su, L.; Gao, B.; Shen, L., Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. Journal of Materials Chemistry 2009,19 (32),5772-5777.
    21. Zou, R.; Yu, L.; Zhang, Z.; Chen, Z.; Hu, J., High-precision, large-domain three-dimensional manipulation of nano-materials for fabrication nanodevices. Nanoscale Research Letters 2011,6 (1),473.
    22. Toupin, M.; Brousse, T.; Belanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chemistry of Materials 2004,16 (16),3184-3190.
    23. Lu, X.; Zheng, D.; Zhai, T.; Liu, Z.; Huang, Y.; Xie, S.; Tong, Y., Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energy & Environmental Science 2011,4 (8),2915-2921.
    24. Xiao, W.; Xia, H.; Fuh, J. Y. H.; Lu, L., Growth of single-crystal alpha-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties. Journal of Power Sources 2009,193 (2),935-938.
    25. Xu, M.; Kong, L.; Zhou, W.; Li, H., Hydrothermal synthesis and pseudocapacitance properties of alpha-MnO2 hollow spheres and hollow urchins. The Journal of Physical Chemistry C2007,111 (51),19141-19147.
    26. Vargas, O. A.; Caballero, A.; Hernan, L.; Morales, J., Improved capacitive properties of layered manganese dioxide grown as nanowires. Journal of Power Sources2011,196 (6),3350-3354.
    27. Yang, Y.; Huang, C., Effect of synthetical conditions, morphology, and crystallographic structure of MnO2 on its electrochemical behavior. Journal of Solid State Electrochemistry 2010,14 (7),1293-1301.
    28. Xu, C.; Zhao, Y.; Yang, G.; Li, F.; Li, H., Mesoporous nanowire array architecture of manganese dioxide for electrochemical capacitor applications. Chemical Communications 2009,48,7575-7577.
    29. Feng, Z. P.; Li, G. R.; Zhong, J. H.; Wang, Z. L.; Ou, Y. N.; Tong, Y. X., MnO2 multilayer nanosheet clusters evolved from monolayer nanosheets and their predominant electrochemical properties. Electrochemistry Communications 2009,11 (3),706-710.
    30. Dai, Y.; Wang, K.; Xie, J., From spinel Mn3O4 to layered nanoarchitectures using electrochemical cycling and the distinctive pseudocapacitive behavior. Applied Physics Letters 2007,90 (10),104102.
    31. Feng, Z. P.; Li, G. R.; Zhong, J. H.; Wang, Z. L.; Ou, Y. N.; Tong, Y. X., MnO2 multilayer nanosheet clusters evolved from monolayer nanosheets and their predominant electrochemical properties. Electrochemistry Communications 2009,11 (3),706-710.
    1. Winter, M.; Brodd, R. J., What are batteries, fuel cells, and supercapacitors? Chemical Reviews 2004,104 (10),4245-4269.
    2. Burke, A., Ultracapacitors:why, how, and where is the technology. Journal of Power Sources 2000,91(1),37-50.
    3. Simon, P.; Gogotsi, Y., Materials for electrochemical capacitors. Nature Materials 2008,7(11),845-854.
    4. Wei, W.; Cui, X.; Chen, W.; Ivey, D. G., Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chemical Society Reviews 2011,40 (3), 1697-1721.
    5. Chen, W.; Rakhi, R. B.; Hu, L.; Xie, X.; Cui, Y.; Alshareef, H. N., High-performance nanostructured supercapacitors on a sponge. Nano Letters 2011,11 (12),5165-5172.
    6. Hu, C. C.; Chang, K. H.; Lin, M. C.; Wu, Y. T., Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Letters 2006,6(12),2690-2695.
    7. Li, W.; Liu, Q.; Sun, Y; Sun, J.; Zou, R.; Li, G.; Hu, X.; Song, G.; Ma, G.; Yang, J.; Chen, Z.; Hu, J., MnO2 ultralong nanowires with better electrical conductivity and enhanced supercapacitor performances. Journal of Materials Chemistry 2012,22, 14864-14867.
    8. Rakhi, R. B.; Chen, W.; Cha, D.; Alshareef, H. N., Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Letters 2012,12 (5),2559-2567.
    9. Lu, Q.; Lattanzi, M. W.; Chen, Y.; Kou, X.; Li, W.; Fan, X.; Unruh, K. M.; Chen, J. G.; Xiao, J. Q., Supercapacitor electrodes with high-energy and power densities prepared from monolithic NiO/Ni nanocomposites. Angewandte Chemie-International Edition 2011,50 (30),6847-6850.
    10. Benson, J.; Boukhalfa, S.; Magasinski, A.; Kvit, A.; Yushin, G., Chemical vapor deposition of aluminum nanowires on metal substrates for electrical energy storage applications. ACS Nano 2012,6(1),118-125.
    11. Jiang, H.; Yang, L.; Li, C.; Yan, C.; Lee, P. S.; Ma, J., High-rate electrochemical capacitors from highly graphitic carbon-tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires. Energy & Environmental Science 2011,4 (5),1813-1819.
    12. Kim, J. H.; Lee, K. H.; Overzet, L. J.; Lee, G. S., Synthesis and electrochemical properties of spin-capable carbon nanotube sheet/MnOx composites for high-performance energy storage devices. Nano Letters 2011,11 (7),2611-2617.
    13. Masarapu, C.; Zeng, H. F.; Hung, K. H.; Wei, B., Effect of temperature on the capacitance of carbon nanotube supercapacitors. ACS Nano 2009,3 (8),2199-2206.
    14. Liu, P.; Verbrugge, M.; Soukiazian, S., Influence of temperature and electrolyte on the performance of activated-carbon supercapacitors. Journal of Power Sources 2006,156 (2),712-718.
    15. Tsai, W. Y.; Lin, R.; Murali, S.; Zhang, L. L.; McDonough, J. K.; Ruoff, R. S.; Taberna, P. L.; Gogotsi, Y.; Simon, P., Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from-50 to 80 degrees C. Nano Energy 2013,2 (3),403-411.
    16. Jiang, H.; Zhao, T.; Yan, C.; Ma, J.; Li, C., Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances. Nanoscale 2010,2 (10),2195-2198.
    17. Zhang, Q.; Qu, Y.; Liu, M.; Li, X.; Zhou, J.; Zhang, X.; Zhou, H., A sensitive enzyme biosensor for catecholics detection via the inner filter effect on fluorescence of CdTe quantum dots. Sensors and Actuators B-Chemical 2012,173,477-482.
    18. Yan, J.; Khoo, E.; Sumboja, A.; Lee, P. S., Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. ACS Nano 2010,4 (7),4247-4255.
    19. Jiang, H.; Zhao, T.; Ma, J.; Yan, C.; Li, C., Ultrafine manganese dioxide nanowire network for high-performance supercapacitors. Chemical Communications 2011,47 (4),1264-1266.
    20. Vargas, O. A.; Caballero, A.; Hernan, L.; Morales, J., Improved capacitive properties of layered manganese dioxide grown as nanowires. Journal of Power Sources 2011,196 (6),3350-3354.
    21. Yang, Y.; Huang, C., Effect of synthetical conditions, morphology, and crystal lographic structure of MnO2 on its electrochemical behavior. Journal of Solid State Electrochemistry 2010,14 (7),1293-1301.
    22. Rakhi, R. B.; Chen, W.; Cha, D.; Alshareef, H. N., Substrate Dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Letters 2012,12 (5),2559-2567.
    1. Miller, J. R.; Simon, P., Materials science-Electrochemical capacitors for energy management. Science 2008,321 (5889),651-652.
    2. Simon, P.; Gogotsi, Y., Materials for electrochemical capacitors. Nature Materials 2008,7(11),845-854.
    3. Wei, D.; Scherer, M. R. J.; Bower, C.; Andrew, P.; Ryhaenen, T.; Steiner, U.; A nanostructured electrochromic supercapacitor. Nano Letters 2012,12 (4),1857-1862.
    4. Chen, W.; Rakhi, R. B.; Hu, L.; Xie, X.; Cui, Y; Alshareef, H. N., High-performance nanostructured supercapacitors on a sponge. Nano Letters 2011,11 (12),5165-5172.
    5. Li, W.; Liu, Q.; Sun, Y.; Sun, J.; Zou, R.; Li, G.; Hu, X.; Song, G.; Ma, G.; Yang, J.; Chen, Z.; Hu, J., MnO2 ultralong nanowires with better electrical conductivity and enhanced supercapacitor performances. Journal of Materials Chemistry 2012,22 (30), 14864-14967.
    6. Jiang, H.; Sun, T.; Li, C.; Ma, J., Hierarchical porous nanostructures assembled from ultrathin MnO2 nanoflakes with enhanced supercapacitive performances. Journal of Materials Chemistry 2012,22 (6),2751-2756.
    7. Rakhi, R. B.; Chen, W.; Cha, D.; Alshareef, H. N., Substrate Dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Letters 2012,12 (5),2559-2567.
    8. Lu, Q.; Lattanzi, M. W.; Chen, Y.; Kou, X.; Li, W.; Fan, X.; Unruh, K. M.; Chen, J. G.; Xiao, J. Q., Supercapacitor electrodes with high-energy and power densities prepared from monolithic NiO/Ni nanocomposites. Angewandte Chemie-International Edition 2011,50(30),6847-6850.
    9. Benson, J.; Boukhalfa, S.; Magasinski, A.; Kvit, A.; Yushin, G., Chemical vapor deposition of aluminum nanowires on metal substrates for electrical energy storage applications. ACS Nano 2012,6(1),118-125.
    10. Xie, K.; Li, J.; Lai, Y.; Lu, W.; Zhang, Z. a.; Liu, Y.; Zhou, L.; Huang, H., Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage. Electrochemistry Communications 2011,13(6),657-660.
    11. Yu, G.; Hu, L.; Vosgueritchian, M.; Wang, H.; Xie, X.; McDonough, J. R.; Cui, X.; Cui, Y.; Bao, Z., Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Letters 2011,11(7),2905-2911.
    12. Yuan, C.; Yang, L.; Hou, L.; Shen, L.; Zhang, X.; Lou, X. W.; Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy & Environmental Science 2012,5 (7),7883-7887.
    13. Lu, X.; Zhai, T.; Zhang, X.; Shen, Y.; Yuan, L.; Hu, B.; Gong, L.; Chen, J.; Gao, Y.; Zhou, J.; Tong, Y.; Wang, Z. L., WO3-x@Au@MnO2 core-shell nanowires on carbon fabric for high-performance flexible supercapacitors. Advanced Materials 2012,24 (7),938-944.
    14. Wang, H.; Zhang, L.; Tan, X.; Holt, C. M. B.; Zahiri, B.; Olsen, B. C.; Mitlin, D., Supercapacitive properties of hydrothermally synthesized Co3O4 nanostructures. The Journal of Physical Chemistry B 2011,115 (35),17599-17605.
    15. Wang, Y; Zhong, Z.; Chen, Y.; Ng, C. T.; Lin, J., Controllable synthesis of Co3O4 from nanosize to microsize with large-scale exposure of active crystal planes and their excellent rate capability in supercapacitors based on the crystal plane effect. Nano Research 2011,4 (7),695-704.
    16. Xia, X. H.; Tu, J. P.; Mai, Y. J.; Wang, X. L.; Gu, C. D.; Zhao, X. B., Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. Journal of Materials Chemistry 2011,21 (25),9319-9325.
    17. Hosono, E.; Fujihara, S.; Honma, I.; Zhou, H. S., Fabrication of morphology and crystal structure controlled nanorod and nanosheet cobalt hydroxide based on the difference of oxygen-solubility between water and methanol, and conversion into Co3O4. Journal of Materials Chemistry 2005,15 (19),1938-1945.
    18. Meher, S. K.; Rao, G. R., Ultralayered Co3O4 for High-Performance Supercapacitor Applications. The Journal of Physical Chemistry C 2011,115 (31), 15646-15654.
    19. Qing, X.; Liu, S.; Huang, K.; Lv, K.; Yang, Y.; Lu, Z.; Fang, D.; Liang, X., Facile synthesis of Co3O4 nanoflowers grown on Ni foam with superior electrochemical performance. Electrochimica Acta 2011,56 (14),4985-4991.
    20. Yang, L.; Cheng, S.; Ding, Y; Zhu, X.; Wang, Z. L.; Liu, M., Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors. Nano Letters 2012,12 (1),321-325.
    21. Guan, C.; Li, X.; Wang, Z.; Cao, X.; Soci, C.; Zhang, H.; Fan, H. J., Nanoporous walls on macroporous foam:rational design of electrodes to push areal pseudocapacitance. Advanced Materials 2012,24 (30),4186-4190.
    22. Cheng, Y.; Lu, S.; Zhang, H.; Varanasi, C. V.; Liu, J., Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Letters 2012,12 (8),4206-4211.
    23. Choi, B. G.; Yang, M.; Hong, W. H.; Choi, J. W.; Huh, Y. S.,3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 2012,6(5),4020-4028.
    24. Liu, J.; Jiang, J.; Cheng, C.; Li, H.; Zhang, J.; Gong, H.; Fan, H. J., Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays:A new class of high-performance pseudocapacitive materials. Advanced Materials 2011,23 (18), 2076-2081.
    25. Bao, L.; Zang, J.; Li, X., Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano Letters 2011,11 (3),1215-1220.
    26. Li, Q.; Wang, Z. L.; Li, G. R.; Guo, R.; Ding, L. X.; Tong, Y. X., Design and synthesis of MnO2/Mn/MnO2 sandwich-structured nanotube arrays with high supercapacitive performance for electrochemical energy storage. Nano Letters 2012, 12 (7),3803-3807.
    27. Xia, X.; Tu, J.; Zhang, Y.; Wang, X.; Gu, C.; Zhao, X. B.; Fan, H. J., High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 2012,6 (6),5531-5538.
    28. Lang, X.; Hirata, A.; Fujita, T.; Chen, M., Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nature Nanotechnology 2011,6 (4), 232-236.
    29. Zhou, C.; Wang, H.; Peng, F.; Liang, J.; Yu, H.; Yang, J., MnO2/CNT supported Pt and PtRu nanocatalysts for direct methanol fuel cells. Langmuir 2009,25 (13), 7711-7717.
    30. Lu, X.; Zheng, D.; Zhai, T.; Liu, Z.; Huang, Y.; Xie, S.; Tong, Y., Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energy & Environmental Science 2011,4 (8),2915-2921.
    31. Pang, S. C.; Anderson, M. A.; Chapman, T. W., Novel electrode materials for thin-film ultracapacitors:Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. Journal of the Electrochemical Society 2000, 147 (2),444-450.
    32. Wang, Y. S.; Tsai, D. S.; Chung, W. H.; Syu, Y. S.; Huang, Y. S., Power loss and energy density of the asymmetric ultracapacitor loaded with molybdenum doped manganese oxide. Electrochimica Acta 2012,68,95-102.
    33. Meher, S. K.; Rao, G. R., Effect of microwave on the nanowire morphology, optical, magnetic, and pseudocapacitance behavior of CO3O4. The Journal of Physical Chemistry C 2011,115 (51),25543-25556.
    34. Wang, J.-G; Yang, Y.; Huang, Z. H.; Kang,F., Coaxial carbon nanofibers/MnO2 nanocomposites as freestanding electrodes for high-performance electrochemical capacitors. Electrochimica Acta 2011,56 (25),9240-9247.
    35. Fan, Z.; Yan, J.; Wei, T.; Zhi, L.; Ning, G.; Li, T.; Wei, F., Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Advanced Functional Materials 2011,21 (12), 2366-2375.
    36. Guan, C.; Liu, J.; Cheng, C.; Li, H.; Li, X.; Zhou, W.; Zhang, H.; Fan, H. J., Hybrid structure of cobalt monoxide nanowire@ nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor. Energy & Environmental Science 2011,4(11),4496-4499.
    37. Liu, J.; Cheng, C.; Zhou, W.; Li, H.; Fan, H. J., Ultrathin nickel hydroxidenitrate nanoflakes branched on nanowire arrays for high-rate pseudocapacitive energy storage. Chemical Communications 2011,47 (12),3436-3438.
    1. Rolison, D. R.; Long, J. W.; Lytle, J. C.; Fischer, A. E.; Rhodes, C. P.; McEvoy, T. M.; Bourga, M. E.; Lubers, A. M., Multifunctional 3D nanoarchitectures for energy storage and conversion. Chemical Society Reviews 2009,38 (1),226-252.
    2. Miller, J. R.; Simon, P., Materials science. Electrochemical capacitors for energy management. Science 2008,321 (5889),651-652.
    3. Simon, P.; Gogotsi, Y., Materials for electrochemical capacitors. Nature Materials 2008,7(11),845-854.
    4. Wang, G.; Zhang, L.; Zhang, J., A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews 2012,41 (2),797-828.
    5. Li, W.; Liu, Q.; Sun, Y.; Sun, J.; Zou, R.; Li, G.; Hu, X.; Song, G.; Ma, G.; Yang, J.; Chen, Z.; Hu, J., MnO2 ultralong nanowires with better electrical conductivity and enhanced supercapacitor performances. Journal of Materials Chemistry 2012,22 (30), 14864-14867.
    6. Rakhi, R. B.; Chen, W.; Cha, D.; Alshareef, H. N., Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Letters 2012,12 (5),2559-2567.
    7. Lu, Q.; Lattanzi, M. W.; Chen, Y; Kou, X.; Li, W.; Fan, X.; Unruh, K. M.; Chen, J. G.; Xiao, J. Q., Supercapacitor electrodes with high-energy and power densities prepared from monolithic NiO/Ni nanocomposites. Angewandte Chemie International Edition 2011,50 (30),6847-6850.
    8. Benson, J.; Boukhalfa, S.; Magasinski, A.; Kvit, A.; Yushin, G.,Chemical vapor deposition of aluminum nanowires on metal substrates for electrical energy storage applications. ACS Nano 2012,6(1),118-125.
    9. Zhang, G.; Yu, L.; Wu, H. B.; Hoster, H. E.; Lou, X. W., Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Advanced Materials 2012,24 (34),4609-4613.
    10. Wei, T. Y.; Chen, C. H.; Chien, H. C.; Lu, S. Y.; Hu, C. C., A cost-effective supercapacitor material of ultrahigh specific capacitances:spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process. Advanced Materials 2010,22 (3), 347-351.
    11. Zhou, L.; Zhao, D.; Lou, X. W., Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Advanced Materials 2012,24 (6), 745-748.
    12. Zhang, G.; David Lou, X. W., Controlled growth of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers for high-performance supercapacitors. Scientific Reports 2013,3,1470.
    13. Jiang, H.; Ma, J.; Li, C., Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors. Chemical Communication 2012,48 (37),4465-4467.
    14. Deng, D. H.; Pang, H.; Du, J. M.; Deng, J. W.; Li, S. J.; Chen, J.; Zhang, J. S., Fabrication of cobalt ferrite nanostructures and comparison of their electrochemical properties. Crystal Research and Technology 2012,47 (10),1032-1038.
    15. Zhang, M.; Guo, S.; Zheng, L.; Zhang, G.; Hao, Z.; Kang, L.; Liu, Z. H., Preparation of NiMn2O4 with large specific surface area from an epoxide-driven sol-gel process and its capacitance. Electrochimica Acta 2013,87,546-553.
    16. Fei, J.; Cui, Y.; Yan, X.; Qi, W.; Yang, Y.; Wang, K.; He, Q.; Li, J., Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment. Advanced Materials 2008,20 (3),452-456.
    17. Sun, G; Dong, B.; Cao, M.; Wei, B.; Hu, C, Hierarchical dendrite-like magnetic materials of Fe3O4, gamma-Fe2O3, and Fe with high performance of microwave absorption. Chemistry of Materials 2011,23 (6),1587-1593.
    18. Wang, B.; Chen, J. S.; Wu, H. B.; Wang, Z.; Lou, X. W., Quasiemulsion-templated formation of alpha-Fe2O3 hollow spheres with enhanced lithium storage properties. Journal of the American Chemical Society 2011,133 (43), 17146-17148.
    19. Li, H. B.; Yu, M. H.; Wang, F. X.; Liu, P.; Liang, Y.; Xiao, J.; Wang, C. X.; Tong, Y. X.; Yang, G. W., Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nature Communications 2013,4,1894.
    20. Wang, X.; Liu, B.; Wang, Q.; Song, W.; Hou, X.; Chen, D.; Cheng, Y. B.; Shen, G., Three-dimensional hierarchical GeSe2 nanostructures for high performance flexible all-solid-state supercapacitors. Advanced Materials 2013,25 (10),1479-1486.
    21. Xiao, Y.; Liu, S.; Li, F.; Zhang, A.; Zhao, J.; Fang, S.; Jia, D.,3D hierarchical Co3O4 twin-spheres with an urchin-like structure:large-scale synthesis, multistep-splitting growth, and electrochemical pseudocapacitors. Advanced Functional Materials 2012,22 (19),4052-4059.
    22. Song, M. K.; Cheng, S.; Chen, H.; Qin, W.; Nam, K. W.; Xu, S.; Yang, X. Q.; Bongiorno, A.; Lee, J.; Bai, J.; Tyson, T. A.; Cho, J.; Liu, M., Anomalous pseudocapacitive behavior of a nanostructured, mixed-valent manganese oxide film for electrical energy storage. Nano Letters 2012,12 (7),3483-3490.
    23. Shu-Hong Yu, H. C.l., Markus Antonietti, Polymer-controlled morphosynthesis and mineralization of metal carbonate superstructures. The Journal of Physical Chemistry B 2003,107,7396-7405.
    24. Wang, Q.; Liu, B.; Wang, X.; Ran, S.; Wang, L.; Chen, D.; Shen, G., Morphology evolution of urchin-like NiCo2O4 nanostructures and their applications as psuedocapacitors and photoelectrochemical cells. Journal of Materials Chemistry 2012,22 (40),21647-21653.
    25. Sun, Y.; Zou, R.; Li, W.; Tian, Q.; Wu, J.; Chen, Z.; Hu, J., A controllable hydrothermal synthesis of uniform three-dimensional hierarchical microstructured ZnO films. CrystEngComm 2011,13,6107-6113.
    26. Yuan, C.; Li, J.; Hou, L.; Zhang, X.; Shen, L.; Lou, X. W. D., Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Advanced Functional Materials 2012,22 (21),4592-4597.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700