硅和锗基纳米材料的合成及作为锂离子电池负极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,便携式电子设备、电动工具以及电动汽车技术的高速发展对锂离子电池的性能提出了更高的要求,从而激发了新一代高比容量、长循环寿命的锂离子电池负极材料的研究。与目前商用的碳类负极材料相比,硅、锗基负极材料具有更高的比容量与能量密度,因此被认为是有潜力的下一代锂离子电池负极材料。但是硅、锗基负极材料在充放电循环过程中产生了巨大的体积变化,这会导致电极材料的粉碎以及电极导电网络的崩溃,从而使循环性能急剧衰减。通过构建特定的硅、锗基微纳结构以及与碳等材料复合等手段,能够在一定程度上改善硅、锗基负极材料的循环寿命。但是,目前国内外的研究仍然没有完全解决上述问题。因此,进一步设计和制备硅、锗基纳米负极材料,改善锂离子电池负极材料的充放电性能具有重要意义。
     本文通过无电金属沉积法合成了硅纳米线与多孔硅颗粒,利用模板法合成了硅锗复合材料一维纳米结构阵列,利用固相热分解法合成了多孔锗颗粒。在此基础上,研究了上述材料作为锂离子电池负极材料的性能,取得了以下主要创新成果:
     (1)利用无电金属沉积的方法,以单晶硅片和冶金硅粉末为原料,大量合成了Si纳米线以及多孔Si颗粒。作为锂离子电池负极材料,上述两种Si基材料由于具有纳米线形貌/多孔性质,能够缓解充放电过程中的体积膨胀,显示了优于碳材料以及Si粉体材料的充放电性能。在上述两种材料中,Si纳米线作为锂离子电池负极材料的性能更加优越。
     (2)以ZnO纳米棒阵列作为牺牲性模板,经共溅射的方法合成了SiGe多孔纳米棒阵列电极。作为锂电池负极材料,SiGe纳米棒阵列显示了优良的循环性能,其循环性能、倍率性能均好于平板电极以及相同方法合成的硅纳米棒阵列电极。这种多孔纳米棒阵列中存在的空隙,可以有效缓冲充放电过程的体积变化。而掺入Ge能够提高其导电性和锂离子迁移率,从而进一步提高其充放电性能。
     (3)利用化学气相沉积方法,在泡沫镍衬底上合成NixSiy纳米线阵列。通过共溅射的方法,在NixSiy表面沉积一层SiGe层,得到NixSiy-SiGe核壳纳米线阵列。作为锂电池负极材料,NixSiy-SiGe核壳纳米线阵列表现出了优于对应平板电极、纯硅电极以及SiGe纳米棒阵列电极的循环性能与倍率性能。这是由于NixSiy纳米线具有良好的导电性并且与电极基片具有良好的结合力,且Ge的掺入能够提高硅基材料的导电性和锂离子迁移率,因此能够进一步提高硅基材料的充放电性能。通过改变化学气相沉积过程中的SiH4与H2流量比,可以获得不同组分与形貌的NixSiy纳米线阵列。其中,Ni31Si12-SiGe核壳纳米线阵列电极的性能最为优越,这得益于Ni31Si12纳米线阵列更好的导电性以及与基片更牢固的结合力。
     (4)以Mg2Ge为源,在空气中热处理,经过后续酸洗,合成了多孔Ge颗粒。经乙炔裂解包碳后,得到了Ge@C多孔颗粒。这种颗粒由于具有多孔性,能够有效的缓解充放电过程中的体积膨胀,而且碳层能够提高导电性,并在充放电过程中有效缓解Ge的体积膨胀,因此能够表现出优于Ge粉体、以及商用碳材料的充放电性能。类似的方法还能被用来制备多孔Si粉等其他的多孔负极材料,提高其充放电性能。
Graphite is the commercial anode material of lithium-ion (Li-ion) batteries, however, their limited gravimetric capacity (372mAh g-1) has prompted intensive research for alternative anode materials with large capacity at low potentials due to the rapid technological evolution of portable electronic devices, power tools and electric vehicles. silicon (Si) and germanium (Ge) exhibit high specific capacity and energy density, which are considered as the potential alternative anode materials for Li-ion batteries. However, the large volume changes (>300%) during the lithium insertion and extraction brings cracking and crumbling of the electrode, which results in the capacity fades and poor cycling life of the Si and Ge anode. It is believed we can be effectively improved the cycling performance by the synthesis of Si and Ge nano/mirco-structures or composites because the nano/micro-structures and the second phase in the composites can buffer the volume change during the charge/discharge process. However, much effort should be devoted to further improve the charge/discharge performance of the Si and Ge anode.
     In this dissertation, several Si and Ge-based nano/micro-structures have been synthesized. For example, Si nanowires and porous Si particles were synthesized by the etching of Si wafer and powder, respectively. SiGe porous nanorod arrays were synthesized by using ZnO nanorod arrays as the template. NixSiy-SiGe core-shell nanoarrays were synthesized via a chemical vapor deposition and co-sputtering method. The porous Ge particles were synthesized by thermal decomposition of Mg2Ge and acid washing. The above-mentioned materials were tested as anode materials of lithium ion batteries. The main innovative results are listed as follows:
     (1) Si nanowires and porous Si particles were massively synthesized by electroless etching of Si wafers and metallurgical Si powder. These two Si materials show the porous structures, thus can buffer the volume change during the charge/discharge process and lead to the improved cycling performance compared to bulk Si materials. Moreover, Si nanowires show the better performance than porous Si particles because of the1D nanostructures.
     (2) SiGe nanorod arrays were synthesized by using ZnO nanorod arrays as sacrificial templates via a co-sputtering method. When used as anode materials of Li-ion batteries, the SiGe nanorod arrays show the better cycling performance and higher reversible capacity than corresponding SiGe film and Si porous nanord arrays. It is believed that nanorod array structures can buffer the volume change and enhance the adhension between the nanorods and the current collector thus can show the enhanced performance. Moreover, the addition of Ge can further enhance the conductivity and improve the mobility of lithium ions, which can further enhance the charge/discharge performance.
     (3) NixSiy-SiGe core-shell nanowire arrays were synthesized by chemical vapor deposition and subsequent co-sputtering methods. When used as anode material of Li-ion batteries, the core-shell nanowire arrays show the better cycling performance and higher capacity than corresponding SiGe film and NixSiy-Si core-shell nanowire arrays. We believe that the core-shell nanowires own the good conductivity and good adhension with the current collector. Moreover, the addition of Ge can enhance the conductivity and improve the mobility of lithium ions, which can further enhance the charge/discharge performance.
     (4) Ge porous particles were synthesized by the thermal decomposition of Mg2Ge and subsequent acid washing. After the carbon coating, the as-synthesized Ge@C porous particles exhibit improved cycling performance than bulk Ge, bare Ge porous particles and carboneous materias. The porous structures and the carbon layer can buffer the volume change during the charge/discharge process, which may be responsible for the enhanced performance.
引文
[1]M. Armand and J.-M. Tarascon, Building better batteries, Nature,2008,451:652-657
    [2]R. F. Service, Getting there, Science,2011,332:1494-1496
    [3]Y. Oumellal, A. Rougier, G. A. Nazri, J.-M. Tarascon and L. Aymard, Metal hydrides for lithium-ion batteries, Nature Mater.,2008,7:916-921
    [4]J. B. Goodenough and Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater.,2010, 22:587-603
    [5]W. S. Harris, Electrochemical studies in cyclic ester. Thesis UCRL-8381, Ph. D. Berkeley, University of California,1958.
    [6]C. A. Vincent, Lithium batteries:a 50-year perspective,1959-2009, Solid State Ionics 2000,34: 159-167
    [7]W. van Schalkwijk and B. Scrosati. Advance in lithium ion batteries. Springer US,2002:1-2
    [8]M.S. Whittingham, Electrical energy storage and intercalation chemistry, Science,1976,192: 1126-1127
    [9]M. B. Armand and Van Gool. Fast ion transport in Solids. North-Holland, Amsterdam,1973: 665-673
    [10]B. C. H. Steele and Van Gool. Fast ion transport in Solids. North-Holland, Amsterdam,1973: 103-109
    [11]M. B. Armand. Materials for advanced batteries. New York:Plenum Press,1980:145
    [12]M. Lazzari and B. Scrosati, A cyclable lithium organic electrolyte cell based on two intercalation electrodes, J. Electrochem. Soc.,1980,127:773-774
    [13]D.W. Murphy, F.J. DiSalvo, J.N. Carides and J.V. Waszczak, Topochemical reactions of rutile related structures with lithium, Mat. Res. Bull.,1978,13:1395-1402
    [14]K. Mizushima, P.C. Jones, P.J. Wiseman, and J.B. Goodenough, LixCoO2 (0    [15]M.M. Thackeray, W.I.F. David, P.G. Bruce, and J. B. Goodenough, Lithium insertion into manganese spinels, Mat. Res. Bull.,1983,18:461-472
    [16]University of Cambridge (2005) DoITPoMS teaching and learning packages. http://www.doitpoms.ac.uk/tlplib/batteries/batteries_lithium.php
    [17]S. A. Needham, G. X. Wang, H. K. Liu, V. A. Drozd and R. S. Liu, Synthesis and electrochemical performance of doped LiCoO2 materials, J. Power Sources,2007,174: 828-831
    [18]L. Q. Sun, R. H. Cui, A. F. Jalbout, M. J. Li, X. M. Pan, R. S. Wang, H.M. Xie, LiFePO4 as an optimum power cell material, J. Power Sources,2009,189:522-526
    [19]T. J. Patey, R. Buchel, S. H. Ng, F. Krumeich, S. E. Pratsinis, P. Novak, Flame co-synthesis of LiMn2O4 and carbon nanocomposites for high power batteries, J. Power Sources,2009, 189:149-154
    [20]J. R. Dahn, Tao Zheng, Yinghu Liu, and J. S. Xue, Mechanisms for lithium Insertion in carbonaceous materials, Science,1995,270:590-593
    [21]J.-H. Park, W. Park, J. H. Kim, D. Ryoo, H. S. Kim, Y. U. Jeong, D.-W. Kim and S.-Y. Lee, Close-packed poly(methyl methacrylate) nanoparticle arrays-coated polyethylene separators for high-power lithium-ion polymer batteries, J. Power Sources,2011,196:7035-7038
    [22]T. Kawamura, S. Okada and J. Yamaki, Decomposition reaction of LiPF6-based electrolytes for lithium ion cells, J. Power Sources,2006,156:547-554
    [23]S.S. Zhang, K. Xu and T.R. Jow, A new approach toward improved low temperature performance of Li-ion battery, Electrochem. Comm.,2002,4:928-932
    [24]N.C. Chaklanabish and H.S. Maiti, Discharge characteristics and interface impedance of an Li/1 M LiClO4(PC)/V2O5 cell, J. Power Sources,1985,16:97-106
    [25]R. Liu, J. Duay and S. B. Lee, Heterogeneous nanostructured electrode materials for electrochemical energy storage, Chem. Comm.,2011,47:1384-1404
    [26]T. H. Kim, J. S. Park, S. K. Chang, S. G. Choi, J. H. Ryu and H.-K. Song, The current move of lithium ion batteries towards the next phase. Adv. Energy Mater.,2012,7:860-972.
    [27]J.-M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature,2001,414:359-367
    [28]B. Hertzberg, A. Alexeev and G. Yushin, Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space, J. Am. Chem. Soc.,2010,132:8548-8549
    [29]R. A. Sharma and R. N. Seefurth, Thermodynamic properties of the lithium-silicon system, J. Electrochem. Soc.,1976,123:1763-1768
    [30]B. A. Boukamp, G. C. Lesh and R. A. Huggins, All-solid lithium electrodes with mixed-conductor matrix, J. Electrochem. Soc.,1981,128:725-729
    [31]J. R. Szczech and S. Jin, Nanostructured silicon for high capacity lithium battery anodes, Energy Environ. Sci.2011,4:56-72
    [32]U. Kasavajjula, C. Wang and A. J. Appleby, Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells, J. Power Sources,2007,163:1003-1039
    [33]R. Teki, M. K. Datta, R. Krishnan, T. C. Parker, T.-M. Lu, P. N. Kumta and N. Koratkar, Nanostructured silicon anodes for lithium Ion rechargeable batteries, Small,2009,5: 2236-2242
    [34]W.-J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, J. Power Sources,2011,196:13-24
    [35]T. Li, J.-Y. Yang, S.-G. Lu, H. Wang and H.-Y. Ding, Failure mechanism of bulk silicon anode electrodes for lithium-ion batteries, Rare Mater.,2013,32:299-304
    [36]X.-L. Wu, Y.-G. Guo and L.-J. Wan, Rational design of anode materials based on group IVA elements (Si, Ge, and Sn) for lithium-ion batteries, Chem. Asian J.,2013,8:1948-1958
    [37]S. Park, T. Kim, and S. M. Oh, Electrochemical dilatometry study on Si-embedded carbon nanotube powder electrodes, Electrochem. Solid-State Lett.2007,10:A142-A145
    [38]J.-S. Bridel, T. Azais, M. Morcrette, J.-M. Tarascon and D. Larcher, Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries, Chem. Mater., 2010,22:1229-1241
    [39]A. Magasinski, B. Zdyrko,I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. Fuller, I. Luzinov and G. Yushin, Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid, ACS Appl. Mater. Interf.2010,2:3004-3010
    [40]G. Liu, S. Xun, N. Vukmirovic, X. Song, P. Olalde-Velasco, H. Zheng, V. S. Battaglia, L. Wang and W. Yang, Polymers with tailored electronic structure for high capacity lithium battery electrodes, Adv. Mater.,2011,23:4679-4683
    [41]I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov and G. Yushin, A major constituent of brown algae for use in high-capacity Li-ion batteries, Science,2011,334:75-79
    [42]M.-H. Ryou, J. Kim, I. Lee, S. Kim, Y. K. Jeong, S. Hong, J. H. Ryu, T.-S. Kim, J.-K. Park, H. Lee and J. W. Choi, Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries, Adv. Mater.,2013,25:1571-1576
    [43]S. Ryu, Y. Lee, J.-W. Hwang, S. Hong, C. Kim, T. G. Park, H. Lee and S. H. Hong, High-strength carbon nanotube fibers fabricated by infiltration and curing of mussel-inspired catecholamine polymer, Adv. Mater.,2011,23:1971-1975
    [44]C. C. Nguyen, H. Choi, and S.-W. Song, Roles of oxygen and interfacial stabilization in enhancing the cycling ability of silicon oxide anodes for rechargeable lithium batteries, J. Electrochem. Soc.,2013,160, A906-A914
    [45]J.-H. Min, Y.-S. Bae, J.-Y. Kim, S.-S. Kim, and S.-W. Song, Self-organized artificial SEI for improving the cycling ability of silicon-based battery anode materials, Bull. Korean Chem. Soc.,2013,34:1296-1299
    [46]Z.P. Guo, J.Z. Wang, H.K. Liu, S.X. Dou, Study of silicon/polypyrrole composite as anode materials for Li-ion batteries, J. Power Sources,2005,146:448-451
    [47]T. H. Hwang, Y. M. Lee, B.-S. Kong, J.-S. Seo and J. W. Choi, Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes, Nano Lett.,2012,12: 802-807
    [48]R. Deshpande, Y-T. Cheng and M. W. Verbrugge, Modeling diffusion-induced stress in nanowire electrode structures, J. Power Sources,2010,195:5081-5088
    [49]X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu and J. Y. Huang, Size-dependent fracture of silicon nanoparticles during lithiation, ACS Nano,2012,6:1522-1531
    [50]Z. Ma, T. Li, Y. L. Huang, J. Liu, Y. Zhou and D. Xue, Critical silicon-anode size for averting lithiation-induced mechanical failure of lithium-ion batteries, RSC Adv.,2013,3: 7398-7402
    [51]H. Kim, M. Seo, M. Park and J. Cho, A Critical size of silicon nano-anodes for lithium rechargeable batteries, Angew. Chem. Int. Ed.,2010,49:2146-2149
    [52]H. Li, X. Huang, L. Chen, G. Zhou, Z. Zhang, D. Yu, Y. J. Mo and N. Pei, The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature, Solid State Ionics,2000,135:181-191
    [53]M. Ge, J. Rong, X. Fang, A. Zhang, Y. Lu, and C. Zhou, Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes, Nano Res.,2013,6: 174-181
    [54]D. Chen, X. Mei, G. Ji, M. Lu, J. Xie, J. Lu and J. Y. Lee, Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles, Angew Chem. Int. Ed.,2012,51: 2409-2413
    [55]H. Wu, G. Yu, L. Pan, N. Liu, M. T. McDowell, Z. Bao and Y. Cui, Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles, Nature Commum.,2013,4:1-6
    [56]S.-H. Ng, J. Wang, D. Wexler, K. Konstantinov, Z.-P. Guo and H.-K. Liu, Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries, Angew. Chem. Int. Ed.,2006,45:6896-6899
    [57]X. Li, P. Meduri, X. Chen, W. Qi, M. H. Engelhard, W. Xu, F. Ding, J. Xiao, W. Wang, C. Wang, J.-G. Zhang and J. Liu, Hollow core-shell structured porous Si-C nanocomposites for Li-ion battery anodes, J. Mater. Chem.,2012,22:11014-11017
    [58]N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. Wang and Y. Cui, A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes, Nano Lett.,2012,12:3315-3321
    [59]Y. Park, N.-S. Choi, S. Park, S. H. Woo, S. Sim, B. Y. Jang, S. M. Oh, S. Park, J. Cho and K. T. Lee, Si-encapsulating hollow carbon electrodes via electroless etching for lithium-ion batteries, Adv. Energy Mater.,2012,3:206-212
    [60]K.-S. Park, K.-M. Min, S.-D. Seo, G.-H. Lee, H.-W. Shim, D.-W. Kim, Self-supported multi-walled carbon nanotube-embedded silicon nanoparticle films for anodes of Li-ion batteries, Mater. Res. Bull.,2013,48:1732-1736
    [61]H. Wu, G. Zheng, N. Liu, T. J. Carney, Y. Yang and Y. Cui, Engineering empty space between Si nanoparticles for lithium-ion battery anodes, Nano Lett.,2012,12:904-909
    [62]T. H. Hwang, Y. M. Lee, B.-S. Kong, J.-S. Seo and J. W. Choi, Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes, Nano Lett.,2012,12: 802-807
    [63]S.-L. Chou, J.-Z. Wang, M. Choucair, H.-K. Liu, J. A. Stride and S.-X. Dou, Enhanced reversible lithium storage in a nanosize silicon/graphene composite, Electrochem. Comm., 2010,12:303-306
    [64]X. Zhao, C. M. Hayner, M. C. Kung and H. H. Kung, In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries, Adv. Energy Mater.,2011,1: 1079-1084
    [65]J. Luo, X. Zhao, J. Wu, H. D. Jang, H. H. Kung and J. Huang, Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes, J. Phys. Chem. Lett. 2012,3,1824-1829
    [66]H. M. Jeong, S. Y. Lee, W. H. Shin, J. H. Kwon, A. Shakoor, T. H. Hwang, S. Y. Kim, B.-S. Kong, J.-S. Seo, Y. M. Lee, J. K. Kang and J. W. Choi, silicon@porous nitrogen-doped carbon spheres through a bottom-up approach are highly robust lithium-ion battery anodes, RSC Adv.,2012,2:4413-4417
    [67]S.-B. Son, S. C. Kim, C. S. Kang, T. A. Yersak, Y.-C. Kim, C.-G. Lee, S.-H. Moon, J. S. Cho, J.-T. Moon, K. H. Oh and S.-H. Lee, A highly reversible nano-Si anode enabled by mechanical confinement in an electrochemically activated LixTi4Ni4Si7 Matrix, Adv. Energy Mater.,2012,2:1226-1231
    [68]P. G. Bruce, B. Scrosati and J.-M. Tarascon, Nanomaterials for rechargeable lithium batteries, Angew Chem. Int. Ed.,2008,47:2930-2946
    [69]J.-H. Kima, H.-J. Sohn, H. Kim, G. Jeong and W. Choi, Enhanced cycle performance of SiO-C composite anode for lithium-ion batteries, J. Power Sources,2007,170:456-459
    [70]H. Kim, B. Han, J. Choo and J. Cho, Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries, Angew. Chem. Int. Ed.,2008,47: 10151-10154
    [71]Y. Yu, L. Gu, C. Zhu, S. Tsukimoto, P. A. van Aken and J. Maier, Reversible storage of lithium in silver-coated three-dimensional macroporous silicon, Adv. Mater.,2010,22: 2247-2250
    [72]B. M. Bang, H. Kim, H.-K. Song, J. Cho and S. Park, Scalable approach to multi-dimensional bulk Si anodes via metal-assisted chemical etching, Energy Environ. Sci., 2011,4:5013-5019
    [73]S. R. Gowda, V. Pushparaj, S. Herle, G. Girishkumar, J. G. Gordon, H. Gullapalli, X. Zhan, P. M. Ajayan and A. L. M. Reddy, Three-dimensionally engineered porous silicon electrodes for Li ion batteries, Nano Lett.2012,12:6060-6065
    [74]C. K. Chan, H. Peng, G. Liu, K. Mcllwrath, X. F. Zhang, R. A. Huggins and Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nature Nanotec.,2008,3: 31-35
    [75]E. Mullane, T. Kennedy, H. Geaney, C. Dickinson and K. M. Ryan, Synthesis of tin catalyzed silicon and germanium nanowires in a solvent-vapor System and optimization of the seed/nanowire interface for dual lithium cycling, Chem. Mater.,2013,25:1816-1822
    [76]C. K. Chan, R. N. Patel, M. J. O'Connell, B. A. Korgel and Y. Cui, Solution-grown silicon nanowires for lithium-ion battery anodes, ACS Nano,2010,3:1443-1450
    [77]A. M. Chockla, J. T. Harris, V. A. Akhavan, T. D. Bogart, V. C. Holmberg, C. Steinhagen, C. B. Mullins, K. J. Stevenson and B. A. Korgel, Silicon nanowire fabric as a lithium ion battery electrode material, J. Am. Chem. Soc.,2011,133:20914-20921
    [78]K. Peng, J. Jie, W. Zhang and S.-T. Lee, Silicon nanowires for rechargeable lithium-ion battery anodes, Appl. Phys. Lett.,2008,93:033105-033107
    [79]R. Huang and J. Zhu, Silicon nanowire array films as advanced anode materials for lithium-ion batteries, Mater. Chem. Phys.,2010,121:519-522
    [80]E. Ossei-Wusu, A. Cojocaru, H. Hartz, J. Carstensen and H. Foil, Silicon nanowires made via macropore etching for superior Li ion batteries, Phys. Status Solidi A,2011,208:1417-1421
    [81]R. Ruffo, S. S. Hong, C. K. Chan, R. A. Huggins and Y. Cui, Impedance analysis of silicon nanowire lithium ion battery anodes, J. Phys. Chem. C,2009,113:11390-11398
    [82]C. K. Chan, R. Ruffo, S. S. Hong and Y. Cui, Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes, J. Power Sources,2009, 189:1132-1140
    [83]S. T. Boles, A. Sedlmayr, O. Kraft and Reiner Monig, In situ cycling and mechanical testing of silicon nanowire anodes for lithium-ion battery applications, Appl. Phys. Lett.,2012,100: 243901-243905
    [84]J.-H. Cho, X. Li and S. T. Picraux, The effect of metal silicide formation on silicon nanowire-based lithium-ion battery anode capacity, J. Power Sources,2012,205:467-473
    [85]W. Xu, S. S. S. Vegunta and J. C. Flake, Surface-modified silicon nanowire anodes for lithium-ion batteries, J. Power Sources,2011,196:8583-8589
    [86]E. L. Memarzadeh, W. P. Kalisvaart, A. Kohandehghan, B. Zahiri, C. M. B. Holtab and D. Mitlin, silicon nanowire core aluminum shell coaxial nanocomposites for lithium ion battery anodes grown with and without a TiN interlayer, J. Mater. Chem.,2012,22:6655-6668
    [87]R. Huang, X. Fan, W. Shen and J. Zhu, Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes, Appl. Phys. Lett.,2009,95:133119-113122
    [88]A. Kohandehghan, P. Kalisvaart, M. Kupsta, B. Zahiri, B. S. Amirkhiz, Z. Li, E. L. Memarzadeh, L. A. Bendersky and D. Mitlin, Magnesium and magnesium-silicide coated silicon nanowire composite anodes for lithium-ion batteries, J. Mater. Chem. A,2013,1: 1600-1612
    [89]X. Li, J.-H. Cho, N. Li, Y. Zhang, D. Williams, S. A. Dayeh and S. T. Picraux, Carbon nanotube-enhanced growth of silicon nanowires as an anode for high-performance lithium-ion batteries, Adv. Energy Mater.,2012,2:87-93
    [90]H.-Y. Tuan and B. A. Korgel, Importance of solvent-mediated phenylsilane decompositon kinetics for high-yield solution-phase silicon nanowire synthesis, Chem. Mater.,2008, 20:1239-1241
    [91]L.-F. Cui, R. Ruffo, C. K. Chan, H. Peng and Y. Cui, Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes, Nano Lett.,2009,9: 491-495
    [92]L.-F. Cui, Y. Yang, C.-M. Hsu and Y. Cui, Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries, Nano Lett.,2009,9:3370-3374
    [93]M.-H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui and J. Cho, Silicon nanotube battery anodes, Nano Lett.,2009,9:3844-3847
    [94]C. Zhao, Q. Li, W. Wan, J. Li, J. Li, H. Zhou and D. Xu, Coaxial carbon-silicon-carbon nanotube arrays in porous anodic aluminum oxide templates as anodes for lithium ion batteries, J. Mater. Chem.,2012,22:12193-12197
    [95]J. Rong, X. Fang, M. Ge, H. Chen, J. Xu and C. Zhou, Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anodes, Nano Res.,2013,6:182-190
    [96]T. Song, J. Xia, J.-H. Lee, D. H. Lee, M.-S. Kwon, J.-M. Choi, J. Wu, S. K. Doo, H. Chang, W. I. Park, D. S. Zang, H. Kim, Y. Huang, K.-C. Hwang, J. A. Rogers and U. Paik, Arrays of sealed silicon nanotubes as anodes for lithium ion batteries, Nano Lett.,2010,10: 1710-1716
    [97]J. Ha and U. Paik, Hydrogen treated, cap-opened Si nanotubes array anode for high power lithium ion battery, J. of Power Sources,2013,244:463-468
    [98]J.-K. Yoo, J. Kim, Y. S. Jung and K. Kang, Scalable Fabrication of silicon nanotubes and their application to energy storage, Adv. Mater.,2012,24:5452-5456
    [99]H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu and Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control, Nature Nanotec.,2012,7:310-315
    [100]S. Choi, J. C. Lee, O. Park, M.-J. Chun, N.-S. Choi and S. Park, Synthesis of micro-assembled Si/titanium silicide nanotube anodes for high-performance lithium-ion batteries, J. Mater. Chem. A,2013,1:10617-10621
    [101]T. Takamura, S. Ohara, M. Uehara, J. Suzuki and K. Sekine, A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life, J. Power Sources, 2004,129:96-100
    [102]H. Usui, M. Shibata, K. Nakai and H. Sakaguchi, Anode properties of thick-film electrodes prepared by gas deposition of Ni-coated Si particles, J. Power Sources,2011,196:2143-2148
    [103]Y.-J. Kim, M.-H. Kim, J.-H. Yang and J.-W. Park, Electrochemical properties of aluminum-doped silicon films as anode materials for lithium-ion batteries, J. Korean Phys. Soc.,2006,49:1196-1201
    [104]J. O. Song, H. T. Shim, D. J. Byun and J. K. Lee, A study on the effect of structure and P-doping of Si thin film as an anode for lithium rechargeable batteries, Adv. Nanomater. Proc.,2007,124-126:1063-1066
    [105]M. Thakur, M. Isaacson, S. L. Sinsabaugh, M. S. Wong and S. L. Biswal, Gold-coated porous silicon films as anodes for lithium ion batteries, J. Power Sources,2012,205:426-432
    [106]C. Yu, X. Li, T. Ma, J. Rong, R. Zhang, J. Shaffer, Y. An, Q. Liu, B. Wei and H. Jiang, Silicon thin films as anodes for high-performance lithium-ion batteries with effective stress relaxation, Adv. Energy Mater.,2012,2:68-73
    [107]S. Zhang, Z. Du, R. Lin, T. Jiang, G. Liu, X. Wu and D. Weng, Nickel nanocone-array supported silicon anode for high-performance lithium-ion batteries, Adv. Mater.,2010,22: 5378-5382
    [108]X. H. Liu, S. Huang, S. T. Picraux, J. Li, T. Zhu and J. Y. Huang, Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling:an in situ transmission electron microscopy study, Nano Lett.,2011,11:3991-3997
    [109]D. Larcher, S. Beattie, M. Morcrette, K. Edstrom, J.-C. Jumas and J.-M. Tarascon, Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries, J. Mater. Chem.,2007,17:3759-3772
    [110]L. Baggetto and P. H. L. Notten, Lithium-ion (de)insertion reaction of germanium thin-film electrodes:an electrochemical and in situ XRD study, J. Electrochem. Soc.2009,156: A169-A175
    [111]J.Graetz, C. C. Ahn, R. Yazami and B. Fultz, Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities, J. Electrochem. Soc.,2004, 151.A698-A702
    [112]G. Cui, L. Gu, L. Zhi, N. Kaskhedikar, P. A. van Aken, K. Mullen and J. Maier, A germanium-carbon nanocomposite material for lithium batteries, Adv. Mater.,2008,20: 3079-3083
    [113]M. H. Park, Y. H. Cho, K. Kim, J. Kim, M. Liu and J. Cho, Germanium nanotubes prepared by using the kirkendall effect as anodes for high-rate lithium batteries, Angew. Chem. Int. Ed.,2011,50:9647-9650
    [114]D. Wang, Y. L. Chang, Q. Wang, J. Cao, D. B. Farmer, R. G. Gordon and H. J. Dai, Surface chemistry and electrical properties of germanium nanowires, J. Am. Chem. Soc.,2004,126: 11602-11611
    [115]X. H. Liu, Y. Liu, A. Kushima, S. Zhang, T. Zhu, J. Li and J. Y. Huang, In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures, Adv. Energy Mater.2012,2:722-741
    [116]C. K. Chan, X. F. Zhang and Y. Cui, Nano Lett., High capacity Li ion battery anodes using Ge nanowires,2008,8:307-309
    [117]M. G. Kim and J. Cho, Nanocomposite of amorphous Ge and Sn nanoparticles as an anode material for Li secondary battery, J. Electrochem. Soc.,2009,156:A277-A282
    [118]S. Yoon, C-M. Park, and H-J. Sohn, Electrochemical characterizations of germanium and carbon-coated germanium composite anode for lithium-ion batteries. Electrochem. Solid-State Lett.,2008,11:A42-A45
    [119]H. Lee, M. G. Kim, C. H. Choi, Y.-K. Sun, C. S. Yoon and J. Cho, Surface-stabilized amorphous germanium nanoparticles for lithium-storage material, J. Phys. Chem. B,2005, 109:20719-20723
    [120]M.-H. Park, K. Kim, J. Kim and J. Cho, Flexible dimensional control of high-capacity Li-ion-battery anodes:From 0D hollow to 3D porous germanium nanoparticle assemblies, Adv. Mater.,2010,22:415-418
    [121]H. Lee, H. Kim, S.-G. Doo and J. Cho, Synthesis and optimization of nanoparticle Ge confined in a carbon matrix for lithium battery anode material, J. Electrochem. Soc.,2007, 154:A343-A346
    [122]Y. Xiao, M. Cao, L. Ren and C. Hu, Hierarchically porous germanium-modified carbon materials with enhanced lithium storage performance, Nanoscale,2012,4:7469-7474
    [123]R. A. DiLeo, S. Frisco, M. J. Ganter, R. E. Rogers, R. P. Raffaelle and B. J. Landi, Hybrid germanium nanoparticle single-wall carbon nanotube free-standing anodes for lithium ion batteries, J. Phys. Chem. C,2011,115:22609-22614
    [124]G. Jo, I. Choi, H. Ahna and M. J. Park, Binder-free Ge nanoparticles-carbon hybrids for anode materials of advanced lithium batteries with high capacity and rate capability, Chem. Comm.,2012,48:3987-3989
    [125]Y.-D. Ko, J.-G. Kang, G.-H. Lee, J.-G. Park, K.-S. Park, Y.-H. Jin and D.-W. Kim, Sn-induced low-temperature growth of Ge nanowire electrodes with a large lithium storage capacity, Nanoscale,2011,3:3371-3375
    [126]M.-H. Seo, M. Park, K. T. Lee, K. Kim, J. Kim and J. Cho, High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries, Energy Environ. Sci.,2011,4: 425-428
    [127]A. M. Chockla, K. C. Klavetter, C. B. Mullins, and B. A. Korgel, Solution-grown germanium nanowire anodes for lithium-ion batteries, ACS Appl. Mater. Interfaces,2012,4: 4658-4664
    [128]H. Kim, Y. Son, C. Park, J. Cho and H. C. Choi, Catalyst-free direct growth of a single to a few layers of graphene on a germanium nanowire for the anode material of a lithium battery, Angew. Chem. Int. Ed.,2013,52:5997-6001
    [129]C. Wang, J. Ju, Y. Yang, Y. Tang, J. Lin, Z. Shi, R. P. S. Han and F. Huang, In situ grown graphene-encapsulated germanium nanowires for superior lithium-ion storage properties, J. Mater. Chem. A,2013,1:8897-8902
    [130]B. Laforge, L. Levan-Jodin, R. Salot and A. Billard, Study of germanium as electrode in Thin-Film Battery, J. Electrochem. Soc.,2008,155:A181-A188
    [131]N. G. Rudawski, B. L. Darby, B. R. Yates, K. S. Jones, R. G. Elliman and A. A. Volinsky, Nanostructured ion beam-modified Ge films for high capacity Li ion battery anodes, Appl. Phys. Lett.,2012,100:083111-083115
    [132]Y. Yu, C. Yan, L. Gu, X Lang, K. Tang, L. Zhang, Y. Hou, Z. Wang, M. W. Chen, O. G. Schmidt and J. Maier, Three-dimensional (3D) bicontinuous Au/Amorphous-Ge thin films as fast and high-capacity anodes for lithium-ion batteries, Adv. Energy Mater.,2013,3:281-285
    [133]T. Song, H. Cheng, H. Choi, J.-H. Lee, H. Han, D. H. Lee, D. S. Yoo, M.-S. Kwon, J.-M. Choi, S. G. Doo, H. Chang, J. Xiao, Y. Huang, W.1. Park, Y.-C. Chung, H. Kim, J. A. Rogers and U. Paik, Si/Ge double-layered nanotube array as a lithium ion battery anode, ACS Nano,2012,6:303-309
    [134]C.-M. Hwang, C.-H. Lim and J.-W. Park, Evaluation of Si/Ge multi-layered negative film electrodes using magnetron sputtering for rechargeable lithium ion batteries, Thin Solid Films,2011,519:2332-2338
    [135]C.-M. Hwang and J.-W. Park, Electrochemical characterizations of multi-layer and composite silicon-germanium anodes for Li-ion batteries using magnetron sputtering, J. Power Sources,2011,196:6772-6780
    [136]J. Wang, N. Du, H. Zhang, J. Yu and D. Yang, Cu-Si1-xGex core-shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries, J. Power Sources, 2012,208:434-439
    [137]J. Wang, N. Du, Z. Song, H. Wu, H. Zhang and D. Yang, Synthesis of SiGe-based three-dimensional nanoporous electrodes for high performance lithium-ion batteries, J. Power Sources,2013,223:185-189
    [138]C.-M. Hwang and J.-W. Park, Electrochemical properties of Si-Ge-Mo anode composite materials prepared by magnetron sputtering for lithium ion batteries, Electrochimica Acta, 2011,56:6737-6747
    [139]P. R. Abel, A. M. Chockla, Y.-M. Lin, V. C. Holmberg, J. T. Harris, B. A. Korgel, A. Heller and C. B. Mullins, Nanostructured Si(1-X)Gex for tunable thin film lithium-ion battery anodes, ACS Nano,2013,7:2249-2257
    [140]C. Y. Lee, W. T. Chang and C. S. Liu, Polycrystalline GexSi1-x thin film formation by chemical vapor deposition using silicon difluoride and germanium tetrachloride as precursors, J. Mater. Chem.,2001,11:687-690
    [141]A. Brenner and G. E. Riddell, Nickel coating on steel by chemical reduction, J. Res. Natl. Bur. Std.,1946,37:31-34
    [142]L. A. Porter, Jr., H. C. Choi, A. E. Ribbe and J. M. Buriak, Controlled electroless deposition of noble metal nanoparticle films on germanium surfaces, Nano Lett.,2002,2:1067-1071
    [143]S.-Y. Chang, C.-J. Hsu, R.-H. Fang and S.-J. Lin, Electrochemical deposition of nanoscaled palladium catalysts for 65 nm copper metallization, J. Electrochem. Soc.,2003, 150:C603-C607
    [144]L. Magagnin, R. Maboudian and C. Carraro, Selective deposition of thin copper films onto silicon with improved adhesion, Electrochem. Solid State Ionics,2001,4:C5-C7
    [145]K.-Q. Peng, Y.-J. Yan, S.-P. Gao and J. Zhu, Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry, Adv. Mater.,2002,146:1164-1167
    [146]H. Zhang, D. Yang, X. Y. Ma and D. L. Que, Synthesis and field emission characteristics of bilayered ZnO nanorod array prepared by chemical reaction. J. Phys. Chem. B,2005,109: 17055-17059
    [147]J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H.-J. Choi and P. Yang, Single-crystal gallium nitride nanotubes, Nature,2003,422:599-602
    [148]H. Wang, Q. Pan, Y. Cheng, J. Zhao and G. Yin, Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries, Electrochimica Acta,2009,54:2851-2856
    [149]G. Wang, Z.W. Lu, X.P. Gao, X.J. Liu and J.Q. Wang, Electrochemical performance of La-Co-Sn alloys as anode materials for Li-ion batteries, J. Power Sources,2009,189: 655-659
    [150]N. Du, X. Fan, J. Yu, H. Zhang and D. Yang, Ni3Si2-Si nanowires on Ni foam as a high-performance anode of Li-ion batteries, Electrochem. Comm.,2011,13:1443-1446
    [151]A. J. Pugsley, C. L. Bull, A. Sella, G. Sankar and P. F. McMillan, XAS/EXAFS studies of Ge nanoparticles produced by reaction between Mg2Ge and GeCl4, J. Solid State Chem., 2011,184:2345-2352
    [152]I.-S. Hwang, J.-C. Kim, S.-D. Seo, S. Lee, J.-H. Lee and D.-W. Kim, A binder-free Ge-nanoparticle anode assembled on multiwalled carbon nanotube networks for Li-ion batteries, Chem. Comm.,2012,48:7061-7063
    [153]Y. Kim, H. Hwang, K. Lawler, S. W. Martin and J. Cho, Electrochemical behavior of Ge and GeX2 (X= O, S) glasses:improved reversibility of the reaction of Li with Ge in a sulfide medium, Electrochimica Acta,2008,53:5058-5064

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700