超临界水氧化硝基苯体系的分子动力学模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超临界水氧化法是近年来发展起来的一种新型、高效的废物处理技术,特别适用于难处理的有机废水。但由于超临界水体系高温高压等苛刻条件,实验研究有较大难度。本文采用分子动力学模拟方法,对超临界水氧化硝基苯体系进行了研究。
     首先通过对比分析,确定了适用于研究超(亚)临界水体系的模拟过程参数,计算得到的亚临界水和超临界水的自扩散系数与文献实验值相比,相对偏差均小于5%。在此基础上,进一步系统研究了温度373.2~863.2K、压力5~29MPa范围内水自扩散系数的变化规律,扩散系数随温度的升高而增大,随压力的增大而减小,温度和压力的影响在超临界状态下比亚临界状态下明显;同时考察了水中氢键及水分子的几何构型随温度压力的变化规律。
     根据超临界水氧化硝基苯过程中的自由基反应机理,硝基苯和?OH自由基首先结合生成[OHC6H5NO2]π?,这一步骤受扩散控制,其反应速率常数可通过硝基苯和?OH自由基在超临界水中的无限稀释扩散系数求得。本文在温度
     643.2~843.2K、压力23~29MPa范围内,计算了硝基苯和?OH自由基在超临界水中的无限稀释扩散系数,进而由Smoluchowski方程计算了硝基苯与?OH自由基反应扩散控制步骤的速率常数,为超临界水氧化硝基苯过程的反应动力学研究提供了必要的参考数据。
     为验证MD模拟方法的可靠性,采用超临界相平衡设备,在温度308.15~328.15K范围内测定了CO2-乙醇二元混合体系的泡点压力,并通过MD模拟方法在相同温度范围内计算了该体系的内聚能密度,以预测泡点压力范围,模拟结果与实验结果吻合较好。在此基础上,通过模拟预测了乙醇摩尔分数为0.5的H2O-乙醇二元体系相变点范围,513.2K时,相变压力范围为5.74~5.78MPa;523.2K时,相变压力范围为6.70~6.75MPa。
Supercritical water oxidation (SCWO) is a newly-developed, highly-effective technology for the treatment of hazardous organic wastewater. However, there are disadvantages in the experimental study due to the high reaction temperature and pressure condition requirements. In this paper, the properties of supercritical water oxidation system with nitrobenzene were investigated using the Molecular Dynamics (MD) simulation method.
     The suitable parameters of MD simulation for the sub-critical and supercritical water system were optimized. The calculated results of self-diffusion coefficients of water were in good agreement with the experimental results. The relative errors were no more than 5 percent. The self-diffusion coefficients of sub-critical and supercritical water were investigated systemically. The effects of temperature and pressure on hydrogen bond and the geometry of water molecules were investigated respectively.
     Based on the mechanism of hydroxyl radical reactivity with nitrobenzene in supercritical water, the formation of [OHC6H5NO2]π?, which is diffusion-controlled, is the first step. However,the diffusion-controlled rate constant of this step is related to the infinite dilute diffusion coefficients of the reactants. Therefore, the infinite dilute diffusion coefficients of nitrobenzene and hydroxyl in supercritical water were first investigated by MD simulation in the temperature range of 643.2~843.2K and pressure range of 23~29MPa, by which, the diffusion-controlled rate constant for the addition of hydroxyl radical to nitrobenzene could be calculated by the Smoluchowski equation. The results provided valuable information to the reaction kinetics of nitrobenzene in SCWO processes.
     Cohesive Energy Density (CED) is an important property of a substance which can characterize intermolecular force. In this paper, the changing trend of Cohesive Energy Density was investigated to estimate the phase behaviour of the binary mixture. In order to ensure the validity of the simulation method, the CO2-ethanol system was chosen as an instance, and the results agreed with the experiment results. Henceforth, the phase behaviour of H2O-ethanol system was simulated.
引文
[1] Modell M, Supercritical Water Oxidation, In Standard Handbook of Hazardous Waste Treatment and Disposal, Freeman, H. M., Ed., McGraw-Hill: New York, 1989
    [2] 王连生, 环境健康化学, 北京: 科学出版社, 1994.6
    [3] 丁军委,有机物在超临界水中氧化反应研究,博士学位论文,浙江大学,2000
    [4] Zhang G M, Hua I, Supercritical water oxidation of nitrobenzene, Ind. Eng. Chem. Res., 2003, 42: 285-289
    [5] 徐永威,含硝基苯废水在超临界水中的催化氧化,硕士学位论文,天津大学,2006
    [6] 朱自强,超临界流体技术—原理和应用,北京:化学工业出版社,2001.4
    [7] 韩布兴等,超临界流体科学与技术,北京,中国石化出版社,2005,1~2
    [8] 彭英利等,超临界流体技术应用手册,北京,化学工业出版社,2005,2
    [9] Lee S H, Cummings P T, Simonson J M, et al, Molecular dynamics simulation of the limiting conductance of NaCl in supercritical water, Chem. Phys. Lett., 1998, 293: 289-294
    [10] Kritzer P, Corrosion in high-temperature and supercritical water and aqueous solutions: a review, J. Supercriti. Fluids, 2004, 29: 1-29
    [11] 葛红光,超临界水氧化高浓度含氮有机废水研究,博士学位论文,西安建筑科技大学,2004
    [12] Ding Z Y, Savage P E, Catalytic oxidation in supercritical water, Ind. Eng. Chem. Res., 1996, 35: 3257~3279
    [13] Grigull U, Properties of water and steam in SI-Units.3-ed, Heidelberg: Springe, 1982
    [14] Uematsu M, Frank E U, Static dielectric constant of water and steam, J. Phys. Chem. Ref. Data., 1980,9: 1291-1306
    [15] Marshal W L, Frank E U, Ion product of water substance, 0-1000℃, 1-10,000bar, New International Formulation and its background, J. Phys. Chem. Ref. Data., 1981, 10: 259-304
    [16] Wagner W, Pru? A, The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, J. Phys. Chem. Ref. Data, 2002, 31(2): 387-535
    [17] Yamaguchi T, Structure of subcritical and supercritical hydrogen-bonded liquids and solutions, J. Mol. Liq., 1998, 78: 43-50
    [18] Gorbaty G E, Kalinichev A G, Hydrogen bonding in supercritical water. 1. Experimental result, J. Phys. Chem., 1995, 99: 5336-5340
    [19] 杨馗,徐明仙,林春绵,超临界水的物理化学性质,浙江工业大学学报,2001,29(4):386-390
    [20] Ding Z Y, Frisch M A, Li L X, et al, Catalytic oxidation in supercritical water, Ind. Eng. Chem. Res., 1996, 35: 3257-3279
    [21] Li L, Chen P, Gloyna E F, Generalized kinetic model for wet oxidation of organic compounds, AIChE, 1991,37(11): 1687-1697
    [22] Lee D S, Park S D, Decomposition of nitrobenzene in supercritical water, J. Hazard. Mater., 1996,51:67~76
    [23] Feng J, Aki S N V K, Chateauneuf J E, et al, Hydroxyl radical reactivity with nitrobenzene in subcritical and supercritical water, JACS, 2002, 124: 6304-6311
    [24] Frenkel D, Smit B, Understanding molecular simulation: from algorithms to applications, San Diego: Academic press, 1996
    [25] 朱宇,陆小华,丁皓等,分子模拟在化工应用中的若干问题及思考,化工学报,2004,55(8):1213~1223
    [26] Lindahi E, Hess B, van der Spoel D, GROMACS3.0: a package for molecular simulation and trajectory analysis, J. Mol.Modeling, 2001, 7(8): 306-317
    [27] Smith W, Forester T R, DL-POLY-2.0: a general-purpose parallel molecular dynamics simulation package, J.Mol.Graphics, 1996, 14(3): 136-141
    [28] Refson K, Moldy: a portable molecular dynamics simulation program for serial and parallel computers, Comput. Phys. Comm., 2000, 126(3): 310-329
    [29] Car R, Parrinello M, Unitied approach of molecular-dynamics and density- functional theory, Phys. Rev. Lett., 1985, 55(22): 2471-2474
    [30] Alder B J, Wainwright T E, Studies in molecular dynamics: General method, J. Chem.Phys, 1959, 31(1): 459-466
    [31] Allen M P, Tildesley D J, Computer simulation of liquids, Oxford: Clarendon press, 1987
    [32] Raabe D.著,项金钟,吴兴惠译,计算材料学,北京:化学工业出版社,2002,7-9
    [33] Sadus R J, Molecular simulation of fluids theory, Algorithms and object-orientation, Amsterdam: Elsevier science, 1999
    [34] Harp G D, Berne B J, Linear and angular momentum autocorrelation functions indiatomic liquids, J. Chem. Phys., 1968, 49: 1249~1254
    [35] Ecans D J, Murad S, Singularity mechanics of nonequilibrium liquids, New York: Academic Press, 1977
    [36] Ciccotti G, Ferraio M, Ryckaert J P, Molecular dynamics of rigid systems in Cartesian coordinates: a general formulation, Mol. Phys., 1982, 47: 1253~1264
    [37] Andersen H C, Molecular dynamics simulations at constant pressure and/or temperature, J. Chem. Phys., 1980, 72: 2384~2393
    [38] Nosé S, A molecular dynamics method for simulation in the canonical ensemble, Mol. Phys., 1984, 52: 255~268
    [39] Berendsen H J C, Postma J P M, van Gunsteren W F, et al, Molecular dynamics with coupling to an external bath, J. Chem. Phys., 1984, 18: 3684~3690
    [40] Hoover W, Canonical dynamics: equilibrium phase-space distribution, Phys. Rev. A, 1985, 31: 1695~1697
    [41] Rapaport D C, The art of molecular dynamics simulation, UK: Cambridge University press, 1995
    [42] Guardia E, Marti J, Density and temperature effects on the orientational and dielectric properties of supercritical water, Phys. Rev. E., 2004, 69: Art. No.011502, 1-11
    [43] Nobuyuki M, Chihiro W, Masaru N, Structural study of supercritical water. Ⅱ. computer simulations, J. Chem. Phys., 1999, 110(16): 8000-8011
    [44] Chialvo A A, Cummings P T, Simonson J M, et al, Molecular simulation study of speciation insupercritical aqueous NaCl solutions, J. Mol. Liq., 1997, 73,74: 361-372
    [45] Chialvo A A, Cummings P T, Simonson J M, et al, Thermodynamics and kinetics and kinetics of ion speciation in supercritical aqueous solutions: a molecular-based study, Fluid Phase Equilibria, 1998, 150-151: 107-115
    [46] Yamamoto M, Iwai Y, Arai Y, Monto Carlo simulation for PVT relationship of CO2 + n-C4H10 and i-C4H10 systems, Fluid Phsae Equilib., 1999, 163: 165-173
    [47] Iwai Y, Mori Y, Arai Y, Monte Carlo simulation for solubilities of polycyclic aromatic hydrocarbons in supercritical carbon dioxide Lennard-Jones potentials for supercritical carbon dioxide + polycyclic aromatic hydrocarbon systems from benzene to graphite, Fluid Phase Equilibria, 2000, 167: 33-40
    [48] Higashi H, Oda T, Iwai Y, et al, Calculation of diffusion coefficients for carbon dioxide + solute system near the critical conditions by non-equilibrium molecular dynamics simulation, Fluid Phase Equilibria, 2004, 219: 55-66
    [49] 周健,陆小华,王延儒等,有机物在超临界CO2中无限稀释扩散系数的分子动力学模拟,化工学报,1999,50(4):491-499
    [50] 陆小华,王俊,朱宇等,分子动力学模拟研究流体微观结构和扩散性质,南京工业大学学报,2002,24(1):7-11
    [51] de Leeuw S W, Perram J W, Smith E R, Simulation of electrostatic systems in periodic boundary conditions, Lattice sums and dielectric constants, Proc. R. Soc. London A, 1980, 373: 27~56
    [52] Eastwood J W, Hockney R W, Lawrence D, P3M3DP-the three dimensional periodic particle-particle/particle-mesh program, Comp. Phys. Commun. 1980, 19: 215~261
    [53] 高执棣,郭国霖,统计热力学导论,北京:北京大学出版社,2004,251
    [54] Anderson H C, Molecular dynamics simulation at constant pressure and/or temperature, J. Chem. Phys., 1980, 72: 2384~2393
    [55] Nose S A, Unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys., 1984, 81: 511~519
    [56] Nose S, A Molecular dynamics method for simulations in the canonical ensemble, Mol. Phys., 1984, 52: 255-268
    [57] Evans D J, Computer "experiment" for nonlinear thermodynamics of couete flow, J. Chem. Phys., 1983, 78: 3297~3302
    [58] Hefelfinger G S, van Vanswol F, Difusion in Lennard-Jones fluids using dual control volume grand canonical molecular dynamics simulation (DCV-GCMD), J. Chem. Phys., 1994, 100: 7548~7552
    [59] Kofke D E, Direct evaluation of phase coexistence by molecular dimulation via integration along the saturation line, J. Chem. Phys., 1993, 98: 4149~4162
    [60] Palmer B J, Lo C M, Molecular dynamics implementation of the Gibbs ensemble calculation, J. Chem. Phys., 1994, 101: 10899~10907
    [61] Cummings P T, Evans D, Nonequilibrium molecular dynamics approaches to transport properties and non-Newtonian fluid rheology, Ind. Eng. Chem. Res., 1992, 31: 1237~1252
    [62] Hoffmann K H, Schreiber M, Computational Physics, Berlin Herdelberg: Spring-Verlag, 1996, 268~328
    [63] Hoover W G, Computation Statistical Mechanics, New York: Elsenieer, 1991
    [64] Hoover W G, Ganonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A., 1985, 31: 1695~1702
    [65] Parrinello M, Rahman A, Polymprphic transitions in single crystals: A new molecular dynamics method, J. Applied. Phys., 1981, 52(12): 7182~7190
    [66] Verlet L, Computer Experiments on classical fluids: thermodynamical properties of Lennard-Jones molecules, Phys. Rev., 1967, 159: 98~103
    [67] Swope W C, Anderson H C, Berens P H, et al, Computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters, J. Chem. Phys., 1982, 76: 637-649
    [68] Hockney R W, The Potential Calculation and Some Applications, Method.Comput. Phys., 1970, 9: 136~211
    [69] Gear C W, Numerical Integration of Ordinary Diferential Equations. Prentice-Hall, Englewood Clifs: New Jersey, 1971
    [70] 张力红, 张军, 分子动力学模拟方法及其误差分析,青岛大学学报,2003,16(2):24~28
    [71] 李萌萌,对微通道内气体流动的分子动力学模拟,硕士毕业论文,西安电子科技大学,2005
    [72] 杨玲,废水处理新技术——超临界水研究进展,工业水处理,2005,3:6-8
    [73] Akiya N, Savage P E, Roles of water for chemical reactions in high-temperature water, Chem. Rev., 2002, 102: 2725~2750
    [74] 孙杰,杨再鹏,刘正,超临界水氧化技术发展现状及展望,化工环保,2005,25(1):33-36
    [75] Berendsen H J C, Postma J P M, van Gunsteren W F, et al, Interaction models for water in relation to protein hydration, Intermolecular Forces. Riedel, Dordrecht, 1981, 331-342
    [76] Berendsen H J C, Grigeira J R, Straatsma T P, The missing term in effective pair potentials, J. Phys. Chem., 1987, 91: 6269-6271
    [77] Jorgensen W L, Chandrasekhar J, Madura J D, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys., 1983, 79(2): 926-935
    [78] Jorgensen W L, Madura J D, Temperature and size dependence for Monte Carlo simulation of TIP4P water, Mol. Phys., 1985, 56: 1381-1392
    [79] Mahoney M W, and Jorgensen W L, A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions, J. Chem. Phys., 2000, 112(20): 8910-8922
    [80] Fried J R, Sadat-Akhavi M, Mark J E, Molecular simulation of gas permeability: poly (2, 6-dimethyl-1-1, 4-phenylene oxide), J. Memb. Sci., 1998, 149: 115-126
    [81] Rigby D, Fluid density predictions using the COMPASS force field, Fluid Phase Equilib., 2004, 217: 77-87
    [82] Sun H, The COMPASS force field: parameterization and validation for phosphazenes, Comput. Theor. Polym. Sci., 1998, 8 (1/2): 229-246
    [83] 天津大学无机化学教研室,无机化学,北京:高等教育出版社,2000,208
    [84] Zelsmann H R, Temperature-dependence of the optical-constants for liquid H2O and D2O in the far IR region, J. Mol. Stru., 1995, 350: 95-114
    [85] Karasawa N, Goddard W A, Acceleration of convergence for lattice sums, J. Phys. Chem., 1989, 93: 7320-7327
    [86] Kryrucki K, Green C D, Sawyer D W, Pressure and temperature dependence of self-diffusion in water, Faraday Discuss Chem. Soc., 1978, 66: 199-208
    [87] Yoshida K, Wakai C, Matubayasi N, et al, A new high-temperature multinuclear- magnetic-resonance probe and the self-diffusion of light and heavy water in sub- and supercritical conditions, J. Chem. Phys., 2005, 123: (NO. 164506) 1-10
    [88] Lamb W J, Honda T, Jonas J, Self-diffusion in compressed supercritical water, J. Chem. Phys., 1981, 74: 6875-6880
    [89] Frenkel&Smit 著,汪文川等译,分子模拟—从算法到应用,北京:化学工业出版社,2004, 75-77
    [90] Martí J, Analysis of the hydrogen bonding and vibrational spectra of supercritical model water by molecular dynamics simulations, J. Chem. Phys., 1999, 110: 6876- 6886
    [91] Yoshii N, Yoshie H, Miura S, et al., A molecular dynamics study of sub- and supercritical water using a polarizable potential model, J. Chem. Phys., 1998, 109: 4873-4884
    [92] Brock E E, Savage P E, Barker J R, A reduced mechanism for methanol oxidation in supercritical water, Chem. Eng. Sci., 1998, 53(5): 857-867
    [93] Savage P E, Organic chemical reactions in supercritical water, Chem. Rev., 1999, 99: 603-622
    [94] Savage P E, Rovira J, Stylski N, et al, Oxidation kinetics for methane/methanol mixtures in supercritical water, J. Supercrit. Fluids, 2000, 17: 155-170
    [95] Roberts C B, Zhang J, Brennecke J F, et al, Laser flash photolysis investigations of diffusion-controled reactions in supercritical fluid, J. Phys. Chem., 1993, 97: 5618-5623
    [96] Svishchev I M, Plugatyr A, Supercritical water oxidation of o-dichlorobenzene: degration studies and simulation insights, J. Superct. Fluids, 2006, 37: 94-101
    [97] Elllot A J, McCracken D R, Buxton G V, et al, Estimation of rate constants for near-diffusion-controlled reactions in water at high temperatures, J. Chem. Soc., Faraday Trans., 1990, 86(9): 1539-1547
    [98] Cussler E L 著,王宇新,姜忠义译,扩散-流体系统中的传质,北京:化学工业出版社,2002,267
    [99] Ashton L, Buxton G V, Stuart C R, Temperature dependence of the rate of the reaction of OH with some aromatic compounds in aqueous solutin. Evidence for the formation of a π-complex intermediate, J. Chem. Soc. Faraday Trans., 1995, 91: 1631-1633
    [100] Raner K D, Lusztyk J, Ingold K U, Ultraviolet/Visible spectra of halogen molecule/arene and halogen atom/arene π-molecular complexes, J. Phys. Chem., 1989, 93: 564-570
    [101] 童景山,流体的热物理性质,北京:中国石化出版社,1996,317
    [102] Weast R C, Lide D R, Astle M J, et al, CRC handbook of chemistry and physics, Florida: CRC Press, 1990
    [103] Niesner R, Heintz A, Diffusion coefficients of aromatics in aqueous solution, J. Chem. Eng. Data, 2000, 45: 1121-1124
    [104] Michael D, Benjamin I, Molecular dynamics simulation of the water/nitrobenzene interface, J. Electroanal. Chem., 1998, 450: 335-345
    [105] 高保娇,溶解度参数及其应用,山西化工,1998,2:18-20
    [106] 郑英峨,内聚能密度法预测C9-DMP体系的汽-液平衡,高校化学工程学报,1991,5(1):38-42
    [107] 李焕文,尹洁安,梁志雄等,巴比妥在乙醇-水混合溶剂中的溶解度研究,广东药学院学报,1995,11(2):71-73
    [108] 陈丽,含超临界 CO<,2>的二元系统高压相平衡和临界曲线,博士学位论文,天津大学,2003
    [109] 卢焕章等,石油化工基础数据手册, 北京:化学工业出版社,1992
    [110] 朱虎刚,田宜灵,陈丽等,超临界CO2+CH3OH及C2H5OH二元系的气液平衡,高等学校化学学报,2002,23(8):1588-1591
    [111] 田宜灵,韩铭,陈丽等,高压下CO2-乙醇二元系统的气液平衡,物理化学学报,2001,17(2):155-160
    [112] González-Rodríguez J, Pérez-Juan P M, Luque de Castro M D, Use of superheated liquids for the extraction of non-volatile compounds from wood: liquid chromatography studies, J. Chromatogr. A, 2004, 1038: 3-9
    [113] 刘孝碧,曲敬序,李栋等,玉米秸在亚/超临界乙醇-水中液化的初步研究,农业工程学报,2006,22(5):130-134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700