筛板式喷淋塔脱硫脱硝性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喷淋塔是石灰石-石膏湿法烟气脱硫装置的主要设备之一,对喷淋塔内部结构的优化研究一直是研究者们的感兴趣的课题。本文建立装有多孔筛板的内径148mm喷淋塔实验台,并进行了相关的研究。
     装入多孔筛板,喷淋塔内部流场及塔内气液两相接触的方式完全改变,因此有必要对筛板进行气液流动特性研究。采用空气.水作为介质,对孔径范围6~30mm,开孔率范围16~48%的筛板气液两相流动触状态进行了测试,详细考察了空塔压降、湿塔压降、持液量和泡沫层高度随空塔速度、喷淋量、筛板孔径、筛板开孔率、筛板安装位置、筛板厚度等的影响,并分析了不同孔径、开孔率下的起泡点与液泛出现的规律。
     在筛板式喷淋塔实验台上进行了脱硫性能测试,讨论了筛板上气液流动情况和筛板设计参数(如筛板孔径、筛板开孔率、筛板安装位置、筛板厚度等)对脱硫效率的影响。实验发现,脱硫率效率的高低和筛板上气液两相的流动情况密切相关。只有在气液两相处于气液接触良好的湍流强度较大的泡沫振动状态或相对较厚的均匀鼓泡区,才能保证SO_2充分被吸收;当筛板上出现泡沫层高度过小,甚至筛板上无泡沫层,或是塔内烟气速度过大,出现液泛的情况,塔内泡沫层的均匀性严重受到破坏,在这两种情况下,脱硫效果比较差。通过实验研究,发现当固定开孔率为36%时,孔径为12mm的筛板拥有最高的脱硫效率;当固定孔径为15mm时,开孔率为36%的筛板拥有最高的脱硫效率。通过对筛板式喷淋塔与无筛板的喷淋塔进行对比,在筛板工作状态良好的情况下,筛板式喷淋塔比无筛板的喷淋塔效率高出2~6%(绝对值)。在速度较高的同等条件下,甚至高出15%。
     在装有双层多孔筛板的喷淋塔实验台上,采用NaClO_2作为添加剂,CaCO_3浆液作为吸收液,进行了协同脱硫脱硝实验,讨论了浆液pH值、入口NO、SO_2浓度、L/G以及添加剂加入量对NO、SO_2脱除效率的影响。通过对比实验发现,单独脱硝实验中,脱硝效率只有6%;协同脱硫脱硝实验中脱硫效率和脱硝效率分别为97.5~100%和40.8~60.5%。
Optimization of Spray scrubber, which is one of the essential equipment of the The limestone/gypsum wet flue gas desulfurization(WFGD) process in thermal power plants, seized great concern of the researchers in the past decades. Among all the methods of optimization, installing a sieve tray in the spray scrubber is of the most economical and promising. In order to find out the characteristic of the sieve tray in the scrubber, a spray scrubber test stand with diameter of 148mm for limestone/gypsum wet flue-gas desulfurization with sieve tray was established.
     An experiment was performed to study the contacting mechanism in the vapor-liquid two-phase flow on the sieve tray, which is far from the same as the conventional spray scrubber. Air-water system had been used to study the nature of the two-phase mixture produced on the sieve tray with diameters from 6mm to 30mm and the free area from 16% to 48%. The Influence of the superficial velocities, liquid rates, hole sizes, free area, the locations and thickness of the tray on the dry pressure drop, spray pressure drop, liquid hold-up, froth height was discussed. The principles of the bubbling start-point under different hole sizes and free area were also showed in this article.
     Next, the desulfurization performance test was performed on the same scrubber. The major parameters which would influence the desulfurization efficiency were discussed, as the pH value, L/G ratio, superficial velocity, hole sizes, free area, the location and thickness of the tray. It was found that only when the vapor-liquid two-phase flow is in the vibration and thick froath regime, in which the two-phase flow is contacting sufficiently, the SO_2 removal efficiency will be high, otherwise in the regime that the foath is low or the flooding point appeared. Also it was found that when the free area of the tray is 36%, with great hole sizes, comes high desulfurization efficiency. And when the hole diameter is 12mm, the highest desulfurization efficiency comes when the free area is about 36%. In the test, the desulfurization efficiencies in the scrubber with sieve tray and the one without tray were compared. Commonly, the scrubber with sieve tray has a higher of 2 to 6 percent desulfurization efficiency (absolute values), when under the higher speed, the predominance would be 15 percent. As a consequence, the tray could bring high desulfurization efficiency in the scrubber.
     Third, the study used NaClO_2/CaCO_3 as the additive/absorbent to determine the extent of NO removal in a wet scrubber with dual sieve tray. The operating variables included pH value, NO and SO_2 concentrations, L/G ratio and NaClO_2/(NO+SO_2) molar ratio. The results indicated that, in the individual denitrification experiment the maimum NO removal efficiency is only 6%, The results of the simutaneous desulfurizatoin and denitrification experiments show that the maximum NO removal efficiencies ranged from 40.8~60.5% and the SO_2 removal efficiency were 97.5~100%.
引文
[1]中华人民共和国国家统计局.中国统计年鉴(2001-2007)[M].北京:中国统计出版 社.2001-2007
    
    [2]江泽民.对中国能源问题的思考.上海交通大学学报.,2008,42(3):345-359
    
    [3]中华人民共和国国家统计局.中国统计年鉴(2007)[M].北京:中国统计出版社.2007
    
    [4]BP Statistical Review of World Energy.2005,6
    
    [5]中共中央关于制定国民经济和社会发展第十一个五年规划的建议.2005,10
    
    [6]周一工.循环流化床锅炉在中国的发展与问题.节能与环保,2005,10:5-7
    
    [7]2002年中国环境状况公报.
    
    [8]2006年中国环境状况公报.
    
    [9]马凯.落实节约资源基本国策,建设节约型社会.中国节能服务导刊,2006(8),1:30- 64
    
    [10]国务院.国家中长期科学和技术发展规划纲要2006-2020年.2006,2
    
    [11]朱法华.电力工业发展与环境保护Electric Power Industry Development and Environmental Protection.电力环境保护,2006,10,22(5)
    
    [12]薛健 循环悬浮式半干法烟气脱硫工艺中石灰活性及干式消化性能的研究.浙江大 学硕士学位论文.2006:62
    
    [13]王志轩.日本烟气脱硫设备指南的内容及对我国的启示.电力环境保护,2003(3): 8-14
    
    [14]曾庭华,杨华,马斌,王力.湿法烟气脱硫系统的安全性及优化.中国电力出版 社,2004,1,第一版
    
    [15] Mitsuru Takeshita. Air Pollution Control Costs for Coal-Fired Power Stations. 1995, 1: 13-36
    
    [16]贾绍义,柴诚敬.化工传质与分离过程.化学工业出版社2001年1月第1版:233
    
    [17]方云进,肖文德,戴干策.大孔径筛板的研究评述石油化工,2000(29)
    
    [18] Fane A G,Sawistowki H. Inst Chem Eng Symp Series[C]. London: Hodgson and SonLimited. 1969 (32) :1:8-1:18
    
    [19] Porter K E ,Wong P F Y. Inst Chem Eng Symp Series [C] . London: Hodgson and SonLimited,1969 (32) :2:22-2:33
    
    [20]Porter K E ,Safekourdi A ,Lockett M J . [J ]. Trans Inst Chem Eng,1977, 55: 190-195
    
    [21]Fane A G,Lindsey J K,Sawistowski H. [J ]. Indian Chem Eng, 1973 ,15 (4): 37-42
    
    [22] Raper J A , Hai N T , Pinczewski W V , et al. Inst Chem Eng Symp Series[C]. London:The Chameleon Press Limited, 1979.56:2.2/57-2.2/74
    
    [23]Zuiderweg F J ,Hofhuis P AM , Kuzniar J. [J ]. Chem Eng Res Des,1984 ,62 :39-47
    [24]Eduljee, H. E., Brit. Cjem. Eng. 1960. (5):330
    
    [25]M.J.Lockett, S. Banik. Weeping from sieve tray. Ind. Eng. Precess. DEv. 1986.(25):561-569
    
    [26]Lemieux E.J., Scotti. L.J. Chem. Eng. Prog,1969. (65):52
    [27] Rayn. Finch, Matthew Van Winkle. A statistical correlation of the efficiency of perforated trays. I & EC Process Design and Development.l964.(3):106-116
    [28] Fang Yunjin, He Liangming. Droplet size distribution on the large-holed compound sieve tray in the spray regime. Chinese J. Chem. Eng., 200513 (2):173-177
    [29] L.Steiner, V.Standart. Studies on distillation. XV. Liquid holdup on plates without downcomcrs. Collection Czechoslov. Commun, 1967. (32): 89-100
    [30] F.J. Montes, M.A. Galan, R.L. Cerro. Mass transfer from oscillating bubbles in bioreactors. Chemical Engineering Science, 1999. (54):3127-3136
    [31] Mariano Martin, Francisco J. Montes, Miguel A. Galan. Mass transfer on a single sieve plate column operated with periodic cycling. Chemical Engineering Journal, 2007.(128):21-32
    
    [32]Azbel D. S. Chim. Promyslennost.1962.11: 895
    [33] L.Steiner, V.Kolar. Hydrodynamics of plate columns. I Structure of two-phase gas-liquid system on the plate. Collection Czechoslov. Commun. 1968. (22): 2207-2216
    [34] Cervenka, V. Kolar. The structure and height of the gaseous-liquid mixture on sieve plates without downcomers. The Chemical Engineering Journal. 1973.(7):45-49
    [35] V. Kolar. Hydrodynamics of plate columns. III. Collection Czechoslov. Commun. 1970 (35):3779-3801
    [36] Ehsan Shoukry Vaclav Kolar. On the hydrodynamics of sieve plates without downcomers.II. A model of plate operation and the phenomenon of multiplicity of steady state.Chemical Engineering Journal. 1974.(8):41-51
    [37] V.Kolar. Hydrodynamics of plate columns. IV.Interfacial area and the mass transfer coefficient in the gas-liquid mixture on sieve plates of separation columns; Theoretical study. Collection Czechoslov. Chem. Commun. 1970(35)
    [38]Solomacha G. P., Planovskij A. N. Chim. Teclinol. Topl. Masel, 1962. (10)
    [39] Planovskij. A. N., Matrosov V.J., Cechov O.S., Solomacha G. P. Chim. Technol. Topl.Masel, 1958(3)
    
    [40] Solomacha G. P., Chim. Promyslennost, 1964. (10):749
    [41] M.J.Lockett, R. D. Kirkpatrick, M. S. Uddin. Froth regime point efficiency for gas-film controlled mass transfer on a two-dimensional sieve tray. Trans IChemE, 1979.(57)
    [42]Thorogood, R.M., Br Chem. Eng, 1963, 8, Part I, No.3, 164; Part II, No.5, 328
    
    [43]周滢,朱菊香,俞晓梅.筛板塔中单孔鼓泡气泡团的研究.浙江工业大学学报, 2002.30(2)
    
    [44]#12
    
    [45]洪大章,蒋述曾,张桂昭,周肇义.非均匀开孔率穿流塔板板效率的研究.化学工程, 1978.3
    
    [46]赵哲山.非均匀开孔率穿流塔板传质过程的研究.化学工业与工程,1995.12(4)
    
    [47] Emig, G, Wohlfahrt, K, Hoffmann, U. Absorption with simultaneous complex reactions inboth phases, demonstrated by the modelling and calculation of a countercurrent flowcolumn for the production of nitric acid. Computers and Chemical Engineering1979.(3):143-150.
    
    [48] Bernhard Hiipen, EugenyY. Kenig. Rigorousmodelling of NOx absorption in tray andpacked columns. Chemical Engineering Science, 2005,(60): 6462-6471
    
    [49] Greve, A., Bode, J., 1994. Absorption von NOx in einer Salpetersaure-Kolonne. ChemieIngenieur Technik 66, 220-223
    
    [50] Joshi, J.B., Mahajani, V.V., Juvekar, V.A., 1985. Absorption of NOx gases. ChemicalEngineering Communications 33, 1-92
    
    [51] Kenig, E.Y., Kucka, L., Gorak, A., 2003. Rigorous modelling of reactive absorptionprocesses. Chemical Engineering and Technology 6: 631-646
    
    [52] de Paiva, J.L., Kachan, G.C., 2004. Absorption of nitrogen oxides in aqueous solutions ina structured packing pilot column. Chemical Engineering and Processing 43, 941-948
    
    [53] Shadid, F.T., Handley, D. A. bsorption of nitrogen oxides using a baffle tray. ChemicalEngineering Research & Design, v 67, n 2, Mar, 1989, p185-192
    
    [54]史季芬,叶咏恒,周亚夫,等.[J].化学工程,1980,(5):39-44
    
    [55]Lemieux.[J].Chem Eng Process,1969,65(3):52-58
    
    [56]清华大学化学工程系.[J].化学工程,1972,(4-5):85-108
    
    [57]于鸿寿.[J].化学工程,1973,(5):49-8
    
    [58]杜冬云,王军,方云进,肖文德,陆晓华.复合塔板的流体力学特性(Ⅰ)孔径和开孔率对 塔板流体力学特性的影响,化工学报,2002.53(7)
    
    [59]杜冬云,王军,方云进,肖文德,陆晓华.复合塔板的流体力学特性(Ⅱ)操作变量和液 体物性对塔板流体力学特性的影响.化工学报,2002.53(7)
    
    [60] S.A.Dudek, W.F.Cohara, J.A. Rogers. Computational Fluid Dynamics (CFD) Model for Predicting Two-Phase Flow in a Flue-Gas-Desulfurization Wet Scrubber. Presented to:EPRI-DOE-EPA Combined Utility Air Pollutant Control Symposium.August 16-20, 1999, Atlanta, Georgia, U.S.A.
    
    [61] G.B.Watson, W.F.Gohara, L.J.Chaney. Advanced, Low-Pressure-Drop, Tower Inlet??Design. Presented to: EPRI-DOE-EPA Combined Utility Air Pollutant Control Symposium August 16-20, 1999. Atlanta, Georgia, U.S.A.
    
    [62]杨贤平,赵长遂,陈晓平,朱皑强,丁克强,薛云波.液体分布环对喷淋塔中烟气流 场影响的数值模拟.南京工程学院(自然科学版),2007.5(1)
    
    [63]肖国俊.湿法脱硫喷淋塔烟气入口角度优化数值模拟.电站辅机.2007.1
    
    [64] Strock.T. Gohara.W. Experimental Approach and Techniques for the Scrubber Fluid Mechanics [J]. Chemical Engineering Science, 1994, 49(24A): 4667-4679
    
    [65] W.F. Gohara, T.W. Strock, W.H. Hall. New Perspective of Wet Scrubber Fluid Mechanics in an Advanced Tower Design EPRI-DOE-EPA Combined Utility Air Pollutant Control Symposium. Washington D.C. August 25-29, 1997
    
    [66] S. A. Dudek, J. A. Rogers,W. F. Gohara. Computational Fluid Dynamics (CFD) Model for Predicting Two-Phase Flow in a Flue-Gas-Desulfurization Wet Scrubber. EPR I-DOE-EPA Combined Utility Air Pollutant Control Symposium. 1999.
    
    [67] A.A. Silva, P.J. Williams, J. Balbo. WFGD Case Study-Maximizing SO_2 Removal by Retrofit with Dual Tray Technology. EPRI-DOE-EPA-AWMA Combined Power Plant Air Pollutant Control Mega Symposium Baltimore, Maryland, U.S.A., 2006(8) 28-31
    
    [68]李仁刚,管一明,周启宏,孙大伟,孙祥志.烟气脱硫喷淋塔流体力学特性研究.电 力环境保护,2001.17(4)
    
    [69]过小玲,金保升,孙志翱.筛板式烟气脱硫喷淋塔空塔冷态流场数值模拟.江苏环境 科技.第19卷第5期,2006(10)
    
    [70]过小玲,金保升,沈丹.装有多孔板的脱硫喷淋塔流场数值模拟研究.锅炉技术, 2007,38(6)
    
    [71] S. Feeney, WR Gohara, RW Telesz. Beyond 2000: Wet FGD in the Next Century. ASME International Joint Power Conference, Minneapolis, Minnesota, U. S. A. 1995
    
    [72]叶春珍,高翔,骆仲泱,孔华,倪明江,岑可法.无溢流筛板塔烟气脱硫的实验研究. 动力工程,1999.19(6)
    
    [73]何萍.喷淋塔和鼓泡塔式湿法脱硫的工艺比较,江西电力,2004.30(5)
    
    [74]颜俭,惠润堂,杨爱勇.湿法烟气脱硫系统的吸收塔设备.电力环境保护,2006.22 (5)
    
    [75]庄沪丰,杨晨.135WM机组湿法烟气脱硫实践.浙江电力,2004(4)
    
    [76]SOUD H N. Developments in FGD[M]. London: IEA Coal Research, CCC/ 29, 2000
    
    [77] TAKESHITA M, SOUD H. FGD performance and experience on coal-fired plants [M].London: IEA Coal Research, IEACA/58, 1993
    
    [78] SADA E, KUMAZAWA H, BUTTMA. Single gas absorption with reaction in a slurrycontaining fine particle [J]. Chem Eng Sci, 1977, 32:1 165
    
    [79]沈俊,傅立敏,黎妹红等.CFD软件及其在汽车领域的应用[J].汽车研究与开发,??2000,43:26-27
    
    [80]Kolar V. Hydrodynamics of plate columns. II.Chem.Eng.Sci.,1985(24):1285
    
    [81] Ralph H. Weiland. Hydraulic Stability of Dualflow Trays Prepared for Presentation atAIChE Spring National Meeting, Houston, TX Wednesday, April 25, 2001 New Frontiersin High Capacity Tray Technology
    
    [82]张素香,袁忠泽,孙铁.板式空冷器入口箱液体分布器结构分析.辽宁石油化工大学 学报,2006,6
    
    [83] L. Steiner and G. Standart. Studies on distillation. XVI. Pressure drop across plates without downcomers. Collection Czechoslov. Chem. Commun. 1967 (32)
    
    [84]战树麟.筛板塔的泡沫层密度、清液层高度和塔板压力降.大庆石油学院学报, 1985,4(28)
    
    [85]邓傅芸,虞文良等.穿流筛板塔冷模实验的研究.合肥工业大学学报,1983,3
    
    [86]金涌,沈静珠.穿流式浮板塔的流体力学和传质过程的实验.化工学报,1980,1
    
    [87]钟达邦,田阵勇.无溢流“∧”型和“∨”型两种角钢塔板流体力学性能的探讨.化 学工程,1987,1
    
    [88] Electric Utility Engineer's FGD Manual Volume I-FGD Process Design 《Austin: RadianInternational LLC》 Radian International LLC 1996,1.3.11 -13
    
    [89] Phillips, J.L., et al. Results of High SO_2 Removal Testing at New York State Electric andGas Corporation's Kintigh Station. Presented at the EPRI/EPA/DOE 1995 SO_2 ControlSymposium, Miami, Florida, March 1995
    
    [90] Chu Hsin, Chien T W. Removal of SO_2 and No from Flue Gas by Wet Scrubbing Usingan Aqueous NaClO_2 Solution[J]. Journal of Hazardous Materials, 2000, 80: 43-57
    
    [91] Teramoto M, Ikeda M, Teranishi H. Absorption Rates of NO in Mixed Aqueous Solutionof NaClO_2 and Naoh[J]. Kagaku Kogaku Ronbunshu, 1976, 2(5): 637-640
    
    [92] Sada E, Kumazawa H, Kudo I, et al. Absorption of NO in Aqueous Mixed Solution ofNaClO_2 and NaOH [J]. Chem.Eng.Sci., 1978, 33(3): 315-318
    
    [93] Sada E, Kumazawa H, Yamanake H, et al. Kinetics of Absorption of Sulfur Dioxide andNitric Oxide in Aqueous Mixed Solutions of Sodium Chlorite and Sodium Hydroxide[J].Chem.Eng.Jpn, 1978, 11(2):276-282
    
    [94] Sada E, Kumazwa H, Kudo I, et al. Absorption of Lean NO in Aqueous Solutions ofNaClO_2 and NaOH [J].Industrial & Engineering Chemistry Process Design andDevelopment, 1979, (18):275-278
    
    [95]王珲,宋蔷,杨小勇.氮氧化物在湿法烟气脱硫过程中的作用.煤炭转化,2005 (7)
    
    [96] Jin D S, Deshwal B R, Park Y S. Simultaneous removal of SO_2 and NO by wet scrubbing using aqueous chlorine dioxide solution[J] Journal of Hazardous Materials, 2006,135 (3):??412-417
    
    [97] Chien T W. Removal of SO_2 and NO from flue gas by wet scrubbing using an aqueousNaClO_2 solution[J]. Journal of Hazardous Materials, 2000, 80(1-3): 43-57
    
    [98] Chien T W, Chu H, Hsueh H T. Kinetic Study on Absorption of SO_2 and NOx with Acidic NaClO_2 Solutions Using the Spraying Column [J]. Journal of Environmental Engineering, 2003,129(11):967-974
    
    [99] Bal Raj Deshwal, Si Hyun Lee, Jong Hyeon Jung, Byung Hyun Shon, Hyung Keun Lee. Study on the removal of NOx from simulated flue gas using acidic NaClO_2 solution, Journal of Environmental Sciences 20(2008) 33-38
    
    [100] Bal Raj Deshwal, Dong Seop Jin , Si Hyun Lee, Seung Hyun Moon, Jong Hyeon Jung,Hyung Keun Lee , Removal of NO from flue gas by aqueous chlorine-dioxide scrubbingsolution in a lab-scale bubbling reactor. Journal of Hazardous Materials 150 (2008):649-655
    
    [101] Hsu H W, Lee C J, Chou K S, 1998. Absorption of NO by NaClO_2 solution: performancecharacteristics. Chem Eng Comm, 170: 67-81
    
    [102] Brogen C, Karlsson H T, Bjerle I, 1997. Absorption of NO in an alkaline solution ofKMnO_4, Chem Eng Technol, 20: 396-402
    
    [103] Brogen C, Karlsson H T, Bjerle I, 1998. Absorption of NO in an aqueous solution ofNaClO_2. Chem Eng Technol, 21: 61-70
    
    [104] Chu H, Chien T W,Li S Y. Simultaneous absorption of SO_2 and NO from flue gas with KMnO_4/NaOH solutions[J] The Science of the Total Environment, 2001,275(3):127-135
    
    [105]张虎,佟会玲,王晋元,等.用KMnO_4调质钙基吸收剂从燃煤烟气同时脱硫脱硝 [J].化工学报,2007,58(7):1810-1815
    
    [106] Chang S, Littlejohn D, Lynn S, 1983. Effect of metal chelates on wet flue gas scrubbingchemistry. Environ Sci Technol, 17: 649-653
    
    [107] Baveja K K, Subba Rao D, Sarkar M K, 1979. Kinetics of absorption of nitric oxide inhydrogen peroxide solutions, J Chem Eng Japan, 12: 322-325
    
    [108] Yang C L, Shaw H. Aqueous Absorption of NOx Induced by Sodium Chlorite Oxidationin the Presence of Sulfur Dioxide. Environ Prog, 1998, 17: 80-85.
    
    [109] Adewuyi Y G, He X, Shaw H, Lolertpihop W, 1999. Simultaneous absorption andoxidation of NO and SO_2 by aqueous solutions of sodium chlorite, Chem Eng Comm,174:21-51
    
    [110] Lee H K, Deshwal B R, Yoo K S, 2005. Simultaneous removal of SO_2 and NO bysodium chlorite solution in wetted-wall column, Korean J Chem Eng, 22(2): 208-213
    
    [111] Chu P, Rochelle G T, Removal of SO_2 and NOx from stack gas by reaction with calcium??hydroxide solids. JAPCA, 1989, 39 (2):175-179
    
    [112] Chien T W. Removal of SO_2 and NO from flue gas by wet scrubbing using an aqueousNaClO_2 solution [J]. Journal of Hazardous Materials, 2000,80(1-3): 43-57
    
    [113] Littlejohn D, Wang Y, Chang S H, 1993.Oxidation of aqueous sulfite ion by nitrogendioxide. Environ Sci Technol, 27: 2162-2167

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700