基于压缩感知的信号频谱测量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压缩感知理论利用信号稀疏性直接采样压缩后的信号,具有信号采样速率低、数据存储压力小等优点,在模拟信号采集、雷达和通信系统频谱测量、多输入多输出系统设计以及变换域采样系统设计等领域具有广泛的应用前景。将压缩感知理论应用于频谱测量过程中,不但可以降低采样速率、提高频谱测量精确度,而且能够简化采样器结构,利于实际应用。本论文对压缩感知频谱测量中的信号建模、频谱测量算法设计以及采样硬件实现等问题进行了系统研究,取得的研究结果如下:
     针对多谐波稀疏信号模型开展了频谱感知方法研究。构造了信号重排函数和平坦滤波函数,使用这两种函数将多谐波稀疏信号转化为多频带稀疏信号,采用降采样压缩感知方法配合两点测频法重构原始频谱,构造了基于信号重排滤波的频谱感知方法PFSCS。与其他频谱感知方法相比,该方法既可以减少采样数量,又能够降低频谱感知计算复杂度,适合应用于窄带信号频谱测量过程中。
     针对多频带稀疏信号模型开展了频谱感知方法研究。采用小波边缘检测函数检测活动频带位置,构造了自适应离散椭球序列变换基进行原始频谱重构,建立了两级自适应多频带稀疏信号频谱感知方法TAMS2。实验结果表明,该方法不但降低了频谱感知计算复杂度,而且具有更好的抗噪声鲁棒性,适合应用于高噪声环境下的多频带信号频谱测量过程中。
     研究了压缩感知采样值的量化问题,分析了压缩感知量化原理及动态范围。针对1-bit CS框架,设计了标志位压缩感知重构算法SCSR-L2以及快速精确的两级信号重构算法FATS,分别具有信号重构精确度高以及信号重构速度快的特点。研究了“测量压缩”和“量化压缩”两种量化体制,分别针对低噪声环境和高噪声环境可以获得最佳的信号重构效果。
     研究了压缩感知理论的硬件实现方法。基于随机解调架构,设计并搭建了电路级和系统级的AIC采样方案。相比于传统ADC,该硬件具有采样速率低、抗噪声鲁棒性高、信号重构精确度高的特点,为目前频谱测量硬件设计所面临的来自可靠性和低采样率方面的压力,提供了有效的解决方案。
By directly sampling compressed signals that are sparse in an appropriate basis, Com-pressive Sensing (CS) could tremendously reduce the sampling rate and data storage. Just for its superiority, CS has worked its way into a wide application foreground, including signal acquisition in analog domain, spectrum measurement in radar and communication systems, sampling system design in transform domain, multiple input and output system design, and so on. Applying CS to the spectral measurement process can not only reduce sampled rate, increase spectrum measurement accuracy, but also simplify the sampling structure. This the-sis presents in detail the application of CS theory in spectrum measurement, the algorithm design of spectrum measurement and the realization of sampling hardware. Main research works are as follows:
     The spectrum measurement method of multi-tone sparse signal is researched. I propose a new algorithm called permuted&filtered spectrum compressive sensing (PFSCS). It firstly turns multi-tone sparse signals into multi-band sparse signals by the signal permute function and the flat filter function, then the original spectrum is reconstructed using the sub-sampling CS method and the two samples recovery method. This algorithm not only reduces the sampling rate but also improves the efficiency of spectrum measurement, make it suitable for the spectrum measurement in narrow band signals.
     I probe into the spectrum measurement of multi-band sparse signals. I propose a new algorithm named two-stage adaptive multi-band spectrum sensing (TAMS2). It firstly detects the position of active bands using wavelet edge detection function, then reconstructs the original spectrum using adaptive discrete prolate spheroidal sequences(ADPSS) basis. This scheme has several advantages over the classical approaches. First, this algorithm enable us to reduce the computational complexity. Second, it takes advantage of the ADPSS properties to improve the noise robustness. Experimental results show that it has high performance for multi-band signal spectrum measurement with high noise.
     The quantization method of compressive sensing measurements is researched. I ana- lyze the quantization principle and dynamic range in detail at the beginning. Based on1-bit framework, i develop two efficient signal reconstruction algorithms, respectively named sign compressive sensing reconstruction algorithm (SCSR-l2) and fast&accurate two-stage algorithm (FATS). The superiorities of these schemes are high detection accuracy and fast reconstruction speed respectively. In addition, i analyze two distinct compressive sensing quantization regimes called' Measurement Compression (MC) regime' and 'Quantization Compression (QC) regime'. Experimental results show that i can obtain perfect reconstruc-tion accuracy by using MC for low noise signal detection and using QC for high noise signal detection.
     On the basis of the above philosophy, i extend further to the hardware design of CS. I design the analog-to-information converter (AIC) at circuit level and system level based on random demodulation. Compared with the traditional ADC, this AIC is a new sampling system with unprecedented low sampling rate, high noise robustness and high signal recon-struction accuracy. This scheme provides an effective solution for easing the pressure to design a reliability and low sampling rate hardware design in the spectrum measurement.
引文
[1]Chambers B, Tennant A. A smart radar absorber based on the phase-switched screen. IEEE Transactions on Antennas and Propagation,2005,53(1):394-403.
    [2]Tennant A, Chambers B. Adaptive radar absorbing structure with PIN diode controlled active frequency selective surface. Smart Materials & Structures,2004,13(1):122-125.
    [3]Whittaker E. On functions which are represented by the expansion of interpolation theory. Proc. Royal Soc. Edinburgh, Sec. A,1915,35:181-194.
    [4]Nyquist H. Certain topics in telegraph transmission theory. Trans. AIEE,1928, 47:617-644.
    [5]Shannon C E. Communication in the presence of noise. Proc. Institute of Radio Engineers,1949,37(1):10-21.
    [6]Frigo M, Johnson S G. The Design and Implementation of FFTW3. Proceedings of the IEEE,2005,93(2):216-231.
    [7]Johnson S G, Frigo M. Implementing FFTs in Practice, in:Burrus C S, editor, Proceedings of Fast Fourier Transforms, chapter 11. Connexions, Rice University, Houston TX, September,2008.
    [8]Frigo M. A fast Fourier transform compiler. in:Proceedings of Proc.1999 ACM SIGPLAN Conf. on Programming Language Design and Implementation. ACM, May, 1999,169-180.
    [9]Frigo M, Johnson S G. FFTW:An adaptive software architecture for the FFT. in: Proceedings of Proc.1998 IEEE Intl. Conf. Acoustics Speech and Signal Processing. IEEE,1998,1381-1384.
    [10]Frigo M, Johnson S G. The Fastest Fourier Transform in the West. Technical Report MIT-LCS-TR-728, Massachusetts Institute of Technology, September,1997.
    [11]Frigo M, Leiserson C E, Prokop H, et al. Cache-oblivious algorithms. in:Proceedings of Proc.40th Ann. Symp. on Foundations of Comp. Sci. (FOCS). IEEE,1999,285-297.
    [12]Johnson S G, Frigo M. A modified split-radix FFT with fewer arithmetic operations. IEEE Transactions on Signal Processing,2007,55(1):111-119.
    [13]Analog Devices. AD6641:250 MHz Bandwidth DPD Observation Receiver, Rev.0 ed.,04,2011.
    [14]栗苹,赵国庆,杨小牛,et al.信息对抗技术.清华大学出版社,2008.
    [15]Landau H J. Necessary density conditions for sampling and interpolation of certain entire functions. Acta Math,1967,117:37-52.
    [16]Donoho D L, Huo X. Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory,2001,47(7):2845-2862.
    [17]Candes E, Romberg J, Tao T. Robust uncertainty principles:Exact signal reconstruc-tion from highly incomplete frequency information. IEEE Transactions on Informa-tion Theory,2006,52(2):489-509.
    [18]Donoho D L. Compressed sensing. IEEE Transactions on Information Theory,2006, 52(4):617-652.
    [19]Donoho D L, Elad M. Optimally sparse representation in general (non-orthogonal) dictionaries via l1 minimization. Proc. Nat. Aca. Sci.,2003,100:2197-2202.
    [20]Elad M, Bruckstein A M. A generalized uncertainty principle and sparse representa-tion in pairs of bases. IEEE Transactions on Information Theory,2002,48(9):2558-2567.
    [21]Gribonval R, Nielsen M. Sparse representations in unions of bases. IEEE Transactions on Information Theory,2003,49(12):3320-3325.
    [22]Tropp J A. Greed is good:Algorithmic results for sparse approximation. IEEE Trans-actions on Information Theory,2004,50(10):2231-2242.
    [23]Donoho D L, Elad M, Temlyakov V. Stable recovery of sparse overcomplete repre-sentations in the presence of noise. IEEE Transactions on Information Theory,2006, 52(1):6-18.
    [24]Tropp J A. Just relax:convex programming methods for identifying sparse signals in noise. IEEE Transactions on Information Theory,2006,52(3):1030-1051.
    [25]Tropp J, Laska J, Duarte M, et al. Beyond Nyquist:Efficient sampling of sparse bandlimited signals. IEEE Transactions on Information Theory,2010,56(1):520-544.
    [26]Bresler Y, Feng P. Spectrum-blind minimum-rate sampling and reconstruction of 2D multiband signals. in:Proceedings of IEEE International Conference on Image Processing,1996.
    [27]Feng P. Universal spectrum blind minimum rate sampling and reconstruction of multi-band signals:[PhD Dissertation]. University of Illinois at Urbana Champaign,1997.
    [28]Feng P, Bresler Y. Spectrum-blind minimum-rate sampling and reconstruction of multiband signals, in:Proceedings of IEEE International Conference on Acoustic, Speech, and Signal Processing (ICASSP), May,1996.
    [29]Mishali M, Eldar Y. Blind multi-band signal reconstruction:compressed sensing for analog signals. IEEE Transactions on Signal Processing,2009,57(3):993-1009.
    [30]Venkataramani R, Bresler Y. Further results on spectrum blind sampling of 2D sig-nals, in:Proceedings of IEEE International Conference on Image Processing (ICIP), October,1998.
    [31]Eldar Y, Mishali M. Robust recovery of signals from a structured union of subspaces. IEEE Transactions on Information Theory,2009,55(11):5302-5316.
    [32]Eldar Y, Kuppinger P, Bolcskei H. Block-sparse signals:uncertainty relations and efficient recovery. IEEE Transactions on Signal Processing,2010,58(6):3042-3054.
    [33]Mishali M, Eldar Y C. From theory to practice:Sub-Nyquist sampling of sparse wideband analog signals. IEEE Journal Selected Topics on Signal Processing,2010, 4(2):375-391.
    [34]Boufounos P. Reconstruction of sparse signals from distorted randomized measure-ments. in:Proceedings of IEEE International Conference on Acoustic, Speech, and Signal Processing (ICASSP), March,2010,3998-4001.
    [35]Boufounos P, Baraniuk R.1-bit compressive sensing, in:Proceedings of 42nd Annual Conference on Information Sciences and Systems (CISS), March,2008,16-21.
    [36]Boufounos P. Greedy sparse signal reconstruction from sign measurements. in:Pro-ceedings of 43rd Asilomar Conference on Signals Systems and Computers, Cam-bridge, USA, November,2009,1305-1309.
    [37]Kirolos S, Laska J, Wakin M, et al. Analog to information conversion using random demodulation. in:Proceedings of IEEE Dallas/CAS Workshop on Design, Applica-tions, Integration and Software,2006,71-74.
    [38]Laska J, Kirolos S, Duarte M, et al. Theory and implementation of an analog-to-information converter using random demodulation. in:Proceedings of IEEE Interna-tional Symposium on Circuits and Systems (ISCAS),2007,1959-1962.
    [39]Tropp J, Wakin M, Duarte M, et al. Random filters for compressive sampling and re-construction. in:Proceedings of IEEE International Conference on Acoustic, Speech, and Signal Processing (ICASSP),2006.
    [40]Romberg J. Compressive sensing by random convolution. SLAM Journal on Imaging Sciences,2009,2(4):1098-1128.
    [41]Slavinsky J, Laska J, Davenport M, et al. The compressive multiplexer for multi-band signal acquistion. in:Proceedings of IEEE International Conference on Acoustic, Speech, and Signal Processing (ICASSP),2011.
    [42]Mishali M, Eldar Y C. Xampling:Analog data compression, in:Proceedings of Data compression conference (DCC),2010,366-375.
    [43]Chen Y, Mishali M, Eldar Y C, et al. Modulated wideband converter with non-ideal lowpass filters, in:Proceedings of IEEE International Conference on Acoustic, Speech, and Signal Processing (ICASSP),2010,3630-3633.
    [44]Mishali M, Elron A, Eldar Y C. Sub-Nyquist processing with the modulated wideband converter, in:Proceedings of IEEE International Conference on Acoustic, Speech, and Signal Processing (ICASSP),2010,3626-3629.
    [45]Donoho D L, Elad M. Maximal sparsity representation via minimization. Proceedings of National Academy of Sciences,2003,100(3):2197-2202.
    [46]Strohmer T, Heath R W. Grassmannian frames with applications to coding and com-munication. Applied and Computational Harmonic Analysis,2003,14(3):257-275.
    [47]Candes E. The restricted isometry property and its implications for compressed sens-ing. Compte Rendus de l'Academie des Sciences,2008,346:589-592.
    [48]Candes E, Romberg J, Tao T. Robust uncertainty principles:Exact signal reconstruc-tion from highly incomplete frequency information. IEEE Transactions on Informa-tion Theory,2006,52(2):489-509.
    [49]Donoho D L, Elad M. Maximal sparsity representation via minimization. Proceedings of National Academy of Sciences,2003,100:2197-2202.
    [50]Efron B, Hastie T, Johnstone I, et al. Least angle regression. Annals of Statistics, 2004,32:407-499.
    [51]Chen S, Billing S A, Lue W. Orthogonal least squares methods and their application to nonlinear system identification, nternational Journal of Control,1989,50(5):1873-1896.
    [52]Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuit:Recursive function approximation with applications to wavelet decomposition, in:Proceedings of Proc.27th Asilomar Conference on Signals, Systems and Computers, A. Singh, ed. IEEE Comput. Soc. Press,1993.
    [53]Tropp J A, Gilbert A C. Signal Recovery From Random Measurements Via Orthog-onal Matching Pursuit. IEEE Transactions on Information Theory,2007,53(12): 4655-4666.
    [54]Tropp J A. Just relax:Convex programming methods for identifying sparse Just relax: Convex programming methods for identifying sparse signals. IEEE Transactions on Information Theory,2006,51(3):1030-1051.
    [55]Davenport M A, Wakin M B. Analysis of orthogonal matching pursuit using the restricted isometry property. IEEE Transactions on Information Theory,2010,56(9): 4395-4401.
    [56]Neira L R, Xu Z. Adaptive non-uniform B-spline dictionaries on a compact interval. Signal Processing,2010,1:90-102.
    [57]Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruc-tion. IEEE Transactions on Information Theory,2009,55(5):2230-2249.
    [58]Donoho D L, Drori I, Tsaig Y, et al. Sparse solution of underde-termined linear equa-tions by stagewise orthogonal matching pursuit. Technical report, Stanford Statistics Department,2006.
    [59]Needell D, Tropp J A. CoSaMP:Iterative signal recovery from incom-plete and inaccurate samples. Applied and Computational Harmonic Analysis,2008,26(3): 301-321.
    [60]Blumensath T, Davies M E. Iterative hard thresholding for compressed sensing. Ap-plied and Computational Harmonic Analysis,2009,27(3):264-274.
    [61]Foucart S. Sparse recovery algorithms:sufficient conditions in terms of restricted isometry constants. Approximation Theory ⅩⅢ:San Antonio 2010, Springer Pro-ceedings in Mathematics,2010,13:65-77.
    [62]Wipf D, Rao B D. An empirical bayesian strategy for solving the simultaneous sparse approximation problem. IEEE Transactions on Signal Processing,2007,55(7):3704-3716.
    [63]Ji S, Xue Y, Carin L. Bayesian compressive sensing. IEEE Transactions on Signal Processing,2008,56(6):2346-2356.
    [64]Babacan S, Molina R, Katsaggelos A. Bayesian Compressive Sensing using Laplace Priors. IEEE Transactions on Image Processing,2010,19(1):53-64.
    [65]Donoho D, Maleki A, Montanari A. Message-passing algorithms for compressed sensing. Proceedings of National Academy of Sciences,2009,106(45):18914-18919.
    [66]Donoho D L, Maleki A, Montanari A. Message passing algorithms for compressed sensing:Ⅰ. motivation and construction. Proceedings of Information Theory Work-shop,2010,1:1-5.
    [67]Lustig M, Donoho D L, Pauly J. Sparse MRI:The application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine,2007,58(6):1182-1195.
    [68]Duarte M, Davenport M, Baraniuk R. Single-pixel imaging via compressive sampling. IEEE Signal Processing Magazine,2008,25(2):83-91.
    [69]Fergus R, Torralba A, Freeman W T. Random lens imaging. Technical report, MIT, 2006.
    [70]Tang W, Ma J, Herrmann F J. Optimized compressed sensing for curvelet-based seis-mic data reconstruction. Preprint,2009.
    [71]Prony R. Essai experimental et analytique sur les lois de la Dilatabilite des fluides elastiques et sur celles de la Force expansive de la vapeur de l'eau et de la vapeur de l'alkool, a differentes temperatures. J. de l'Ecole Polytechnique, Floreal et Prairial Ⅲ,1795,1(2):24-76.
    [72]Duarte M, Baraniuk R. Spectral compressive sensing. Applied and Computational Harmonic Analysis,2012.
    [73]Plan Y, Vershynin R. One-bit compressed sensing by linear programming. Commu-nications on Pure and Applied Mathematics,2013,2:130-134.
    [74]Plan Y, Vershynin R. Robust 1-bit Compressed Sensing and Sparse Logistic Regres-sion:A Convex Programming Approach. IEEE Transactions on Information Theory, 2013,59(1):482-494.
    [75]Barzilai J, Borwein J. Two-point step size gradient methods. IMA Journal of Numer-ical Analysis,1988,8(1):141-148.
    [76]Gupta A, Nowak R, Recht B. Sample Complexity for lbit Compressed Sensing and Sparse Classification. in:Proceedings of International Symposium on Information Theory (ISIT),2010,104-108.
    [77]Laska J, Wen Z, Yin W, et al. Trust, But Verify:Fast and Accurate Signal Recovery From 1-Bit Compressive Measurements. IEEE Transactions on Signal Processing, 2011,59(11):5289-5301.
    [78]Jacques L, Laska J N, Boufounos P T, et al. Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors. Preprint,2012.
    [79]Yan M, Yang Y, Osher S. Robust 1-bit Compressive Sensing Using Adaptive Outlier Pursuit. IEEE Transactions on Signal Processing,2012,60(7):3868-3875.
    [80]Kamilov U, Bourquard A, Amini A, et al. One-Bit Measurements with Adaptive Thresholds. IEEE Signal Processing Letters,2012,19(10):607-610.
    [81]Mohaved A, Panahi A, Durisi G. A robust RFPI-based 1-bit compressive sensing reconstruction algorithm. in:Proceedings of IEEE Information Theory Workshop (ITW),2012.
    [82]Bourquard A, Aguet F, Unser M. Optical Imaging Using Binary Sensors. Optics Express,2010,18(5):4876-4888.
    [83]Blumensath T. Compressed Sensing with Nonlinear Observations. Preprint,2010.
    [84]Blumensath T. Accelerated Iterative Hard Threshoding. Signal Processing,2011, 9(2):752-756.
    [85]Bajwa W, Haupt J, Raz G, et al. Toeplitz-structured compressed sensing matrices, in: Proceedings of IEEE Workshop on Statistics Signal Processing,2007.
    [86]Candes E J, Plan Y. A probabilistic and RIPless theory of compressed sensing. IEEE Transactions on Information Theory,2010,57(11):7235-7254.
    [87]Candes E, Romberg J. Sparsity and incoherence in compressive sampling. Inverse Problems,2007,23(3):969-985.
    [88]Lexa M A, Davies M E, Thompson J S. Reconciling Compressive Sampling Sys-tems for Spectrally Sparse Continuous-Time Signals. IEEE Transactions on Signal Processing,2012,60(1):155-171.
    [89]Yu Z, Hoyos S, Sadler B. Mixed-signal parallel compressed sensing and reception for cognitive radio. in:Proceedings of IEEE International Conference on Acoustic, Speech, and Signal Processing (ICASSP),2008,3861-3864.
    [90]Harms A, Bajwa W, Calderbank R. Beating Nyquist through correlations:A con-strained random demodulator for sampling of sparse bandlimited signals. in:Pro-ceedings of IEEE International Conference on Acoustic, Speech, and Signal Process-ing (ICASSP),2011,5968-5971.
    [91]Sun B, Chen Q, Xu X, et al. Permuted&Filtered Spectrum Compressive Sensing. IEEE Signal Processing Letters,2013, accepted.
    [92]A.Gilbert, S.Guha, P.Indyk, et al. Near-optimal sparse fourier representations via sampling. in:Proceedings of 34th Annual ACM Symposium on Theory of Comput-ing,2002,152-161.
    [93]Hassanieh H, Indyk P, Katabi D, et al. Simple and practical algorithm for sparse fourier transform. in:Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms,2012,1183-1194.
    [94]H.Hassanieh, P.Indyk, D.Katabi, et al. Nearly Optimal Sparse Fourier Transform, in:Proceedings of the 44th Symposium on Theory of Computing Conference,2012, 563-578.
    [95]Landau H, Pollak H. Prolate spheroidal wave functions, Fourier analysis, and uncer-tainty. Ⅱ. Bell System Technical Journal,1961,40(1):65-84.
    [96]Landau H, Pollak H. Prolate spheroidal wave functions, Fourier analysis, and uncer-tainty. III. Bell System Technical Journal,1962,41(4):1295-1336.
    [97]Slepian D. Prolate spheroidal wave functions, Fourier analysis, and uncertainty. IV. Bell System Technical Journal,1964,43(6):3009-3058.
    [98]Slepian D. Prolate spheroidal wave functions, Fourier analysis, and uncertainty. V-The discrete case. Bell System Technical Journal,1978,57(5):1371-1430.
    [99]Slepian D. On bandwidth. Proceedings IEEE,1976,64(3):292-300.
    [100]Slepian D, Pollak H. Prolate spheroidal wave functions, Fourier analysis, and uncer-tainty. I. Bell System Technical Journal,1961,40(1):43-64.
    [101]Slepian D. Some comments on Fourier analysis, uncertainty, and modeling. SIAM Review,1983,25(3):379-393.
    [102]Davenport M A, Wakin M B. Compressive sensing of analog signals using Discrete Prolate Spheroidal Sequences. Applied and Computational Harmonic Analysis,2012, 33:438-472.
    [103]TIAN Z, GIANNAKIS G. A wavelet approach to wideband spectrum sensing for cognitive radios, in:Proceedings of 1st International Conference on Cognitive Radio Oriented Wireless Networks and Communications, Mykonos Island, Greece,2006, 1-5.
    [104]Tian Z, Giannakis G. Compressed sensing for wideband cognitive radios, in:Proceed-ings of IEEE International Conference on Acoustic, Speech, and Signal Processing (ICASSP),2007,1357-1362.
    [105]Yamada T, Lee D, Toshinaga H, et al.1-bit Compressed Sensing with Edge Detection for Compressed Radio Wave Data Transfer. in:Proceedings of 18th Asia-Pacific Conference on Comunications (APCC2012),2012,133-140.
    [106]Laska J N. Regime Change:Sampling Rate vs Bit-Depth in Compressive Sensing: [PhD Dissertation]. Rice University,2011.
    [107]Le B, Rondeau T W, Reed J H, et al. Analog-to-digital converters. IEEE Signal Processing Magazine,2005,22(11):121-130.
    [108]Gray G, Zeoli G. Quantization and saturation noise due to analog-to-digital conver-sion. IEEE Transactions on Aerospace and Electronic Systems,1971,7(l):222-223.
    [109]Du K L, Swamy M N S. Wireless Communication Systems. Cambridge University Press,2010.
    [110]Laska J, Boufounos P, Davenport M, et al. Democracy in action:Quantization, sat-uration, and compressive sensing. Applied and Computational Harmonic Analysis, 2011,31(3):429-443.
    [111]Jacques L, Hammond D, Fadili M. Dequantizing compressed sensing:When over-sampling and non-gaussian contraints combine. IEEE Transactions on Information Theory,2011,57(1):559-571.
    [112]Dai W, Pham H, Milenkovic O. Distortion-rate functions for quantized compressive sensing, in:Proceedings of IEEE Information Theory Workshop on Networking and Information Theory,2009,171-175.
    [113]Zymnis A, Boyd S, Cand'es E. Compressed sensing with quantized measurements. EEE Signal Processing Letters,2010,17(2):149-152.
    [114]Sun J, Goyal V. Quantization for compressed sensing reconstruction, in:Proceedings of Sampling Theory and Applications (SampTA), May,2009.
    [115]Kamilov U, Goyal V, Rangan S. Generalized approximate message passing estima-tion from quantized samples, in:Proceedings of 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP),2011, 365-368.
    [116]Kamilov U, Goyal V, Rangan S. Optimal quantization for compressive sensing under message passing reconstruction, in:Proceedings of IEEE International Symposium on Information Theory Proceedings (ISIT),2011,459-463.
    [117]Lyons R. Understanding digital signal processing. Upper Saddle River,2004.
    [118]Yin W, Osher S, Goldfarb D, et al. Bregman iterative algorithms for l1-minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences,2008, 1(1):143-168.
    [119]M.A.T.Figueiredo, R.D.Nowak, S.J.Wright. Gradient projection for sparse recon-struction:Application to compressed sensing and other inverse problems. IEEE Jour-nal Selected Topics on Signal Processing,2007, 1(4):586-597.
    [120]Berg E, Friedlander M. Probing the Pareto frontier for basis pursuit solutions. SIAM Journal on Scientific Computing,2008,31(2):890-912.
    [121]Candes E, Tao T. "The Dantzig selector:Statistical estimation when p is much larger than n. Annals of Statistics,2007,35(6):2313-2351.
    [122]Laska J, Davenport M, Baraniuk R. Exact signal recovery from sparsely corrupted measurements through the Pursuit of Justice, in:Proceedings of Asilomar Conference on Signals Systems and Computers,2009,1556-1560.
    [123]Osher S, Mao Y, Dong B, et al. Fast linearized Bregman iterations for compressive sensing and sparse denoising. Communications in Mathematical Sciences,2010,8(1): 93-111.
    [124]孙彪,江建军.标志位频谱感知方法研究.物理学报,2011,60(11):110701.
    [125]Thao N, Vetterli M. Reduction of the mse in.R-times oversampled A/D conversion O(1/12) to O(1/R2). IEEE Transactions on Signal Processing,2004,42(1):200-203.
    [126]Goyal V K, Vetterli M, Thao N. Quantized overcomplete expansions in Rn:Analysis, synthesis, and algorithms. IEEE Transactions on Information Theory,1998,44(1): 16-31.
    [127]Sun B, Chen Q, Xu X, et al. A Fast and Accurate Two-Stage Algorithm for 1-bit Compressive Sensing. IEICE Transactions on Information and Systems,2013,96(1): 120-123.
    [128]Hestenes M R, Stiefel E. Methods of Conjugate Gradients for Solving Linear Systems. Journal of Research of the National Bureau of Standards,1952,49(6).-409-436.
    [129]Notay Y. Flexible conjugate gradients. SIAM Journal on Scientific Computing,2000, 22:1444-1460.
    [130]Golub G H, Ye Q. Inexact Preconditioned Conjugate Gradient Method with Inner-Outer Iteration. SIAM Journal on Scientific Computing,1997,21:1305-1320.
    [131]Cauchy A L. Methode generale pour la resolution des systemes d'equations simul-tanees. Compte Rendu des S' eances de L'Acad'emie des Sciences XXV,1847, 25:536-538.
    [132]Foucart S. Hard thresholding pursuit:an algorithm for compressive sensing. SIAM Journal on Numerical Analysis,2010,49(6):2543-2563.
    [133]Castro E A, Eldar Y C. Noise Folding in Compressed Sensing. IEEE Signal Process-ing Letters,2011,18(8):478-481.
    [134]Candes E J, Davenport M A. How well can we estimate a sparse vector. Applied and Computational Harmonic Analysis,2013,34(2):317-323.
    [135]Cover T, Thomas J. Elements of Information Theory. New York:Wiley-Interscience, 1991.
    [136]Sarvotham S, Baron D, Baraniuk R. Measurements vs. bits:Compressed sensing meets information theory, in:Proceedings of Allerton Conference Communication, Control, and Computing,2006,12-18.
    [137]Pankiewicz P J, Arildsen T, Larsen T. Model-Based Calibration of Filter Imperfections in the Random Demodulator for Compressive Sensing. preprint.
    [138]Laskin E, Voinigescu S P. A 60 mW per lane,4×23-Gb/s 27-1 PRBS Generator. IEEE Journal of Solid-State Circuits,2006,41(10):2198-2208.
    [139]Dickson T O, Laskin E, Khalid I, et al. An 80-Gb/s 231-1 pseudo-random binary se-quence generator in SiGe BiCMOS technology. IEEE Journal of Solid-State Circuits, 2005,40(12):2735-2745.
    [140]Zhou S, Chang M. A CMOS passive mixer with low flicker noise for low-power direct-conversion receiver. IEEE Journal of Solid-State Circuits,2005,40(5):1084-1093.
    [141]Tsai M, Wang H. A 0.3-25-GHz ultra-wideband mixer using commercial 0.18-μm CMOS technology. IEEE Microwave and Wireless Components Letters,2004, 14(11):522-524.
    [142]Analog Devices. AD835:250 MHz Voltage Output 4-Quadrant Multiplier Data Sheet, Rev. D ed.,12,2010.
    [143]Pankiewicz P J, Arildsen T, Larsen T. Sensitivity of the Random Demodulation Framework to Filter Tolerances. in:Proceedings of the European Signal Process-ing Conference (EUSIPCO),2011,534-538.
    [144]Gribonval R, Chardon G, Daudet L. Blind calibration for compressed sensing by convex optimization. in:Proceedings of IEEE International Conference on Acoustic, Speech, and Signal Processing (ICASSP),2012,2713-2716.
    [145]Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing,1998,20:33-61.
    [146]Ragheb T, Laska J, Nejati H, et al. A prototype hardware for random demodulation based compressive analog-to-digital conversion. in:Proceedings of 51st Midwest Symposium on Circuits and Systems (MWSCAS),2008,37-40.
    [147]Becker S R. Practical compressed sensing:modern data acquisition and signal pro-cessing:[PhD Dissertation]. Pasadena, California, U.S.:California Institute of Tech-nology,2011.
    [148]Rosenbaum M, Tsybakov A B. Sparse recovery under matrix uncertainty. The Annals of Statistics,2010,38(5):2620-2651.
    [149]Zhu H, Leus G, Giannakis G B. Sparsity-Cognizant Total Least-Squares for Perturbed Compressive Sampling. IEEE Transactions on Signal Processing,2011,59(5):2002-2016.
    [150]Han X, Zhang H, Meng H. TLS-FOCUSS for sparse recovery with perturbed dic-tionary. in:Proceedings of IEEE International Conference on Acoustic, Speech, and Signal Processing (ICASSP),2011,3952-3955.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700