高速光通信中的若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着各种高带宽高速率需求业务的不断涌现,如4G高速移动通信业务,高清视频、实时游戏、远程医疗、视频会议、电子商务、物联网等,对光纤通信系统的带宽和容量提出了更高的需求。提高光通信系统传输容量的方法主要有:提高单波道的速率,增加更多的波长数目,提高频谱效率等。这些方法可以通过光时分复用(OTDM)技术、波分复用(WDM)技术、光正交频分(OFDM)技术、高阶调制格式等方案来实现。本论文的研究内容主要集中在OTDM系统中超短脉冲光源产生技术和解复用技术,160GBaud差分正交移相键控(DQPSK) OTDM信号传输,频率梳的产生以及基于频率梳产生高速信号等方面。主要成果和创新点包括以下几个方面:
     1、论文中建立了简单有效的电吸收调制器(EAM)行波电极模型,实验验证了单个EAM和级联EAM产生脉冲的方案。单个EAM可以得到5ps的脉冲,级联EAM产生的脉冲更窄但是信噪比(SNR)恶化。为了得到高质量的窄脉冲,提出了三种超短脉冲光源产生方案。首先,对利用铌酸锂强度调制器级联两个相位调制器产生超短脉冲的方案进行了理论分析和实验验证。在此基础上提出了利用EAM级联两个相位调制器,和利用双平行调制器(DPMZM)级联两个相位调制器产生超短脉冲的方案。上述三种方案均可产生重复频率为40GHz,半高全宽(FWHM)约为2ps,时间抖动低于100fs,消光比(ER)大于20dB,信噪比高于25dB的超短脉冲。通过DQPSK信号背靠背调制、解调,实验验证了其相位稳定性。对这三种方案进行比较和分析得到,基于铌酸锂马赫-曾德尔调制器(MZM)的方案产生的脉冲基座较大,消光比(ER)低,但损耗小:基于EAM方案差损较大、信噪比低但消光比高;双平行调制器方案较好,信噪比和消光比都很高,但是必须有偏压控制才能保证其长期稳定工作。
     2、论文提出了分别利用EAM、DPMZM、偏振调制器将160GBaud的DQPSK信号解复用到40GBaud的方案。首先通过利用自级联EAM产生2.7ps的窗口,将160GBaud DQPSK信号解复用到40GBaud,4路复用/解复用的功率代价均低于2dB。其次,详细分析了DPMZM产生窗口的特性,并将产生的5.7ps的窗口利用到160GBaud DQPSK系统中,实现了支路信号的零误码解复用,功率代价仅为0.2dB。然后,提出了利用偏振调制器将160GBaud DQPSK信号解复用到40GBaud的方案,实验得到解复用的窗口宽度为5.4ps,ER大于15dB,SNR超过28dB。解复用带来的功率代价小于1.8dB。最后分析了上述三种方案的优劣。
     3、将超短脉冲光源和解复用模块应用到高速传输系统中,研究了信号传输的性能。完成了40GBaud信号到160GBaud的光复用器的制作和400km G.657光纤传输链路的设计。系统采用DQPSK调制格式,支路速率为40GBaud,总传输速率达到320Gb/s,经过400km传输后,I路灵敏度代价在2.5dB左右,Q路灵敏度代价在3dB左右。提出了一种脉宽可变的载波抑制归零码(CSRZ)信号的产生技术,并研究了不同宽度的CSRZ-DQPSK传输性能。利用一个DPMZM产生了40GHz脉冲宽度分别为7.8ps、12ps、15.5ps的信号,将其调制、传输320km后得到零误码。发现当脉冲宽度为12ps时,产生的CSRZ-DQPSK信号传输性能最好,I路和Q路灵敏度功率代价分别为2.6dB和2.7dB。
     4、提出了级联DPMZM产生平坦频率梳和基于频率梳产生高速信号的方案。研究了利用级联DPMZM产生25根谱线,幅度变化低于0.75dB,边摸抑制比约为20dB的超平坦频率梳,其频率间隔和波长均可灵活改变。在产生稳定的频率梳基础上研究利用可编程光学处理器产生高质量的毫米波和太赫兹波。可获得范围从40GHz到440GHz变化的信号,并分析了产生的毫米波和太赫兹波信号的频谱特性。同样利用可编程光学处理器对频率梳进行处理,产生了2~8倍40GHz脉冲信号而且脉冲宽度维持在1.9ps,信噪比超过26dB。最后提出了利用一个DPMZM被40GHz的正弦信号驱动产生了160GHz的脉冲信号的方案,并进行了仿真分析和实验验证。产生的160GHz脉冲FWHM为3.3ps,SNR为28.5dB。
With the quick development of high speed and larger capacity busesiness, such as4G mobile communication, high-definition video, real-time games, telemedicine, Internet of Things, and so on, they propose great demand for high-speed backbone network. There are several ways to increase the capacity of optical communication system, such as:to increase the single-channel rate, add more wavelengths, improve the spectrum efficiency, and manufacture new types of fiber etc. These methods can be achieved through optical time optical time division multiplexing(OTDM), wavelength division multiplexing(WDM), orthogonal frequency division multiplexing and using high order modulation format. The content of this thesis is mainly focused on the high speed ultra-short optical pulse generation; demultiplexion technique;160GBaud differential quadrature phase shift keying (DQPSK) OTDM signal transmission; the generation of frequency comb and high speed signals.The main achievements and innovations are summarized as follows:
     1. A traveling wave electrode model of electro-absorption modulator (EAM) is proposed. Then, pulse generation based on a single EAM or cascaded EAMs are experimentally demonstrated. It is found that pulses with full width at half maximum (FWHM) of5ps can be generated using one EAM while3ps can be achived through cascaded EAMs, but the signal-noise ratio (SNR) is degraded seriously. To this end, three different generation methods are proposed to obtain short pulses with high quality. Firstly, based on the modulation function of the lithium niobate modulator, Mach-Zehnder modulator(MZM) and two phase modulators (PM) are used to generate ultra-short pulses. On this basis, using an EAM or a dual parallel MZM (DPMZM) cascaded with two PMs to generate ultra-short pulses is proposed and experimentally demonstrated. The generated40GHz ultra-short pulses are all with FWHM of~2ps, time jitter less than100fs, the extinction ratio (ER) larger than20dB and SNR larger than25dB. The phase stability is verified through DQPSK modulation and demodulation. At last, the advantanges and disavantages of the proposed methods are analyzed.
     2.160GBaud DQPSK signal to40GBaud de-multiplexing using EAM or DPMZM or polarization modulator are proposed and experimentally demonstrated. Firstly,2.7ps optical window is generated through self-cascaded EAM, and then it is used in160GBaud DQPSK signal to40GBaud de-multiplexing system. The measured demultiplexing power penalty is less than2dB. Second, the characteristics of the optical switch generated from the DPMZM are analyzed in detail. Then, the generated5.7ps window is used in160GBaud DQPSK system, and error free performance is achieved with only0.2dB power penalty. Thirdly, a polarization modulator is used to generate the optical switch with FWHM of5.4ps, ER larger than15dB and SNR exceeds28dB. The demultiplexing power penalty is less than1.8dB. The three approaches have their own strengths and weaknesses, which lead to different application scenarios.
     3. We have built up the high speed transmission platform and investigate the different signals transmission performance.The generated40GHz ultra-short pulse after DQPSK modulation is multiplexed to160GBaud and error free performance is achieved after410km G.657fiber transmission. Then, DPMZMs are used to generate pulse width tunable CSRZ-DQPSK signals. Error free performance is achieved after320km transmission for different width puses.The results show that12ps signal achieves the best performace.
     4. Ultra-flat phase and frequency locked frequency comb is generated using two cascaded DPMZMs. Based on frequency comb and programmable optical processor, high frequency-purity and low phase noise millimeter wave or terahertz wave signals with frequency from40GHz to as high as440GHz are successfully generated. Also,2,3,4,5,6,7,8times of the40GHz pulses are generated based on programmable optical processor and frequency comb.The generated pulses are with almost the constant pulse width of1.9ps, good ER and improved SNR over26dB.Finally,160GHz50%CSRZ signal generation only using a DPMZM driven by a40GHz sinusoidal signal is proposed and experimentally demonstrated.
引文
[1]张成良,光通信发展的几个关键技术,电信网技术,2004年7月第7期:5-8。
    [2]顾蜿仪,李国瑞,光纤通信系统(修定版),北京:北京邮电大学出版社,2006。
    [3]曹淑敏,三网融合合作共赢,中国数字电视产业高峰论坛,2010年8月。
    [4]马俊,“需求正劲100G快速来临”,中兴通讯-《通信产业报》,2012-07-30。
    [5]100G中国总动员三大运营商开启商用测试-3G在中国-通信人家园《网络(http://www.txrjy.com)》。
    [6]吕雅利,林金桐,未来全光网中OTDM技术不容忽视,《电信技术》,2001.05.10。
    [7]杜建,OTDM系统中超短光脉冲的产生与测量研究,《吉林大学硕士论文》,2004-06-01。
    [8]T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nolle, R. Ludwig, and C. Schubert, "Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection," in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America,2011), PDPA9.
    [9]M. Nakazawa, T. Yamamoto, and K. R. Tamura, "1.28 Tbit/s-70 km OTDM transmission using third and fourth order simultaneous dispersion compensation with a phase modulator," Electron. Lett.36(24),2027-2029, (2000).
    [10]T. Hirano, P. Guan, T. Hirooka, and M. Nakazawa, "640-Gb/s/channel single polarization DPSK transmission over 525 km with ultrafast time-domain optical Fourier transformation," IEEE Photon. Technol. Lett.22(14),1042-1044 (2010).
    [11]P. Guan, H. C. Hansen Mulvad, Y. Tomiyama, T. Hirano, T. Hirooka, and M. Nakazawa, "Single-channel 1.28 Tbit/s-525 km DQPSK transmission using ultrafast time-domain optical Fourier transformation and nonlinear optical loop mirror," IEICE Trans. Comm E 94-B,430-436 (2011).
    [12]H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, "Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission," Electron. Lett.42(3),178-179 (2006).
    [13]C. Schmidt-Langhorst, R. Ludwig, D.-D. Gross, L. Molle, M. Seimetz, R. Freund, and C. Schubert, "Generation and coherent time-division demultiplexing of up to 5.1 Tb/s single-channel 8-PSK and 16-QAM signals," in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America,2009), PDPC6.
    [14]H.C. H. Mulvad, M. Galili, Leif K. Oxenl(?)we, etc., "Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel", OPTICS EXPRESS, Vol.18, No.2, pp:1438-1443,2010.
    [15]A. H. Gnauck et al., "25.6 Tb/s C+L-band Transmission of Polarization-Multiplexed RZ-DQPSK Signals," Proc. OFC 2007, Anaheim, CA, paper no. PDP19.
    [16]Jianjun Yu, Ze Dong, Hung-Chang Chien, Zhensheng Jia, Xinying Li, Nan Chi, "WDM Transmission of 108.4-Gbaud PDM-QPSK Signals (40×433.6-Gb/s) over 2800-km SMF-28 with EDFA only", ECOC2012, Mo.2. C.2.
    [17]A. Sano, T. Kobayashi, S. Yamanaka, A. Matsuura, H. Kawakami, Y. Miyamoto, K. Ishihara, and H. Masuda,102.3-Tb/s (224x548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone, in Proc. OFC 2012, Mar.2012, Paper PDP5C.
    [18]P. Andrekson, "Metrology of Complex Optical Modulation Formats," in Proceeding OFC/NFOEC, Los Angeles, CA,2011,OWN1.
    [19]M. Seimetz, "High-Order Modulation for Optical Fiber Transmission", Springer Series in Optical Sciences, Vol.143 (2009)
    [20]Griffin, R.A., "Optical differential quadrature phase-shift key(oDQPSK) for high capacity optical transmission", p367-368, Mar 2002, OFC
    [21]Makovejs, S.,Millar, D.S.,Mikhailov, V, Gavioli, G,Killey, R.I., Savory, S.J.,Bayvel, P, "Novel Method of Generating QAM-16 Signals at 21.3 Gbaud and Transmission Over 480 km", Photonics Technology Letters, IEEE, Volume:22, Issue:1, Page(s):36-38,2010.
    [22]M. El-Darawy, T. Pfau, Ch. Wordehoff, R. Noe, "Performance of Modified Decision-Directed Polarization Control/Demultiplex Algorithm in Coherent QAM Receiver", Proc. OFC/NFOEC 2010, March 21-25,2010, JThA9, San Diego, CA, USA.
    [23]M. Mlejnek, "Balanced differential phase-shift keying detector performance:An analytical study," Opt. Lett., vol.31, no.15, pp.2266-2268, Aug.2006.
    [24]徐坤,周光涛,伍剑,林金桐,基于LiNbO3光波导调制器的高速光码型调制技术的比较,北京邮电大学学报,vol.27(4),pp:50-54,2004。
    [25]A. Gnauck and P.Winzer, "Optical phase-shift-keyed transmission," J.Lightw. Technol., vol.23, no.1, pp.115-130, Jan.2005.
    [26]Y. Han and G. Li, "Theoretical sensitivity of direct-detection multilevel modulation formats for high spectral efficiency optical communications," IEEE J. Sel. Top. Quantum Electron., vol.12, no.4, pp.571-580,2006.
    [27]Masahiro Daikoku, Noboru Yoshikane, and Itsuro Morita, "Performance comparison of modulation formats for 40 Gbit/s DWDM transmission systems,"OFC2005, OFN2.
    [28]Milivojevic.B., et al., "1.6 b/s/Hz 160Gb/s 230-km RZ-DQPSK polarization multiplex transmission with tunable dispersion compensation", IEEE Photonics Technol. Lett., vol.17, (2), pp.495-497,2005.
    [29]C. Wree, J. Leibrich, and W. Rosenkranz, "RZ-DQPSK format with high spectral efficiency and high robustness toward fiber nonlinearities," in Proc. Eur. Conf. Optical Communications (ECOC), Copenhagen, Denmark,2002, Paper 9.6.6.
    [30]A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, and T. Li, "High-capacity optical transmission systems," J. Lightwave Technol.26(9),1032-1045 (2008).
    [31]Y. Tang and W. Shieh, "Coherent Optical OFDM Transmission Up to 1 Tb/s per Channel," Journal of Lightwave Technology, vol.27, pp.3511-3517, Aug 15 2009.
    [32]Arthur Lowery and Jean Armstrong, "Orthogonal-frequency-division multiplex-ing for dispersion compensation of long-haul optical systems," Opt. Express, vol. 14, pp.2079-2084,2006.
    [33]J. Yu, Z. Dong, and N. Chi, "1.96-Tb/s (21x 100 Gb/s) optical OFDM superchannel generation and transmission over 3200-km SMF-28 with EDFA-only," IEEE Photon. Technol. Lett., vol.23, no.15, pp.1061-1063, Aug. 2011.
    [34]D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, T. Wang, "101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation", in Proc. OFC2011, Mar.2011, Paper PDPB5.
    [35]J. Armstrong, "OFDM for Optical Communications," Journal of Lightwave Technology, vol.27, pp.189-204, Jan-Feb 2009.
    [36]R. P. Giddings, E. Hugues-Salas, B. Charbonnier, and J. M. Tang, "Experimental Demonstration of Real-Time Optical OFDM Transmission at 11.25 Gb/s Over 500-m MMFs Employing Directly Modulated DFB Lasers," IEEE Photonics Technology Letters, vol.23, pp.51-53, Jan 12011.
    [37]胡登科,池灏,章献民,光正交频分复用技术的原理、应用与发展,《光通信技术》,2009-09-15。
    [38]王亚民,任小玲,光载OFDM通信系统研究,《光通信技术》,2010-10-15。
    [39]W. Shieh and C. Athaudage, "Coherent optical orthogonal frequency division multiplexing," Electronics Letters, vol.42, pp.587-589,2006.
    [40]Liu Xiang, F. Buchali, and R. W. Tkach, "Improving the Nonlinear Tolerance of Polarization-Division-Multiplexed CO-OFDM in Long-Haul Fiber Transmission," Lightwave Technology, Journal of, vol.27, pp.3632-3640,2009.
    [41]X. Liu, Q. Yang, S. Chandrasekhar, and W. Shieh, "Transmission of 44-Gb/s Coherent Optical OFDM Signal with Trellis-Coded 32-QAM Subcarrier Modulation," 2010 Conference on Optical Fiber Communication Ofc Collocated National Fiber Optic Engineers Conference Ofc-Nfoec, p.OMR3,2010.
    [42]B. J. Puttnam, J. D. Mendinueta, J. Sakaguchi, "105Tb/s Transmission System Using Low-cost, MHz Linewidth DFB Lasers Enabled by Self-Homodyne Coherent Detection and a 19-Core Fiber", OFC2013, OW11.1.
    [43]M. Koshiba, K. Saitoh, and Y Kokubun, "Heterogeneous multi-core fibers: proposal and design principle," IEICE Electron. Express 6(2), pp:98-103 (2009).
    [44]K. Imamura, K. Imamura, Y. Tsuchida, K. Mukasa, R. Sugizaki, K. Saitoh, and M. Koshiba, " Investigation on multi-core fibers with large Aeff and low micro bending loss" Opt. Express,19, pp:10595-10603,2011.
    [45]K. Saitoh et al,. "Multi-core hole-assisted fibers for high core density space division multiplexing," OECC2010,7C2-1 (2010).
    [46]J. M. Fini, B. Zhu, T. F. Taunay, and M. F. Yan, "Statistics of crosstalk in bent multicore fibers," Opt. Express, vol.18(14),15122-15129,2010.
    [47]T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, "Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber," Opt. Express vol.19, no.17, pp:16576-16592,2011.
    [48]K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh and M. Koshiba, "Reduction of Crosstalk by Trench-Assisted Multi-Core Fiber", OFC 2011, Paper OWJ4.
    [49]T. Hayashi, T. Sasaki, and E. Sasaoka, "Microbending-induced crosstalk increase in heterogeneous multi-core fiber," in Eur. Conf. Opt. Commun. (ECOC), paper Mo.1.LeCervin.3,2011.
    [50]N. Bai, E. Ip, Y.K. Huang. etc.,"Mode-division multiplexed transmission within-line few-mode fiber amplifier", Optics Express, Vol.20, No.3, pp.2668-2680, 2012.
    [51]Hans-Georg Weber, Reinhold Ludwig, Sebastian Ferber, Carsten Schmidt-Langhorst, Marcel Kroh, Vincent Marembert, Christof Boerner, and Colja Schubert, "Ultrahigh-Speed OTDM-Transmission Technology", Jounal of Lightwave Technology, vol.24, No.12, December 2006.
    [52]R. Ludwig, S. Diez, A. Ehrhardt, L. Kueller, W. Pieper, and H. G Weber,"A tunable femtosecond modelocked semiconductor laser for applications in OTDM-systems," IEICE Trans. Electron., vol. E81-C, no.2, pp.140-145,1998.
    [53]H. Yokoyama, "Highly reliable mode-locked semiconductor lasers," IEICE Trans. Electr., vol. E85-C, no.1, pp.27-36,2002.
    [54]S. Arahira and Y. Ogawa, "40 GHz actively mode-locked distributed Bragg reflector laser diode module with an impedance-matching circuit for efficient RF signal injection," Jpn. J. Appl. Phys., vol.43, no.4B, pp.1960-1964,2004.
    [55]H. Heidrich, B. Huettl, R. Kaiser, M. Kroh, C. Schubert, and G. Jacumeit, "Optical 40 GHz pulse source module based on a monolithically integrated mode locked DBR laser," presented at the SPIE Asia-Pacific Optical Commun. Conf. (APOC), Shanghai, China,2005,6020-79. Session 12b.
    [56]K. Tamura, H. A. Haus, and E. P. Ippen, "Self-starting additive pulse mode-locked erbium fibre ring laser," Electron. Lett., vol.28, no.4, pp.2226-2228, Nov. 1992.
    [57]M. Nakazawa, E. Yoshida, and Y. Kimura, "Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium fibre laser,"Electron. Lett., vol.30, no.19, pp.1603-1604, Sep.1994.
    [58]S. C. Zeller, L. Krainer, G J. Spuhler, R. Weingarten, K. J. Paschotta, and U. Keller, "Passively mode-locked 40-GHz Er:Yb:glass laser," Appl. Phys. B, Photophys. Laser Chem., vol.76, no.7, pp.787-788,2003.
    [59]M. D. Pelusi, Y. Matsui, and A. Suzuki, "Femtosecond optical pulse generation from an electro-absorption modulator with repetition rateand wavelength tuning," in Proc. ECOC, Nice, France,1999, vol. Ⅱ, pp.26-27.
    [60]S. Chandrasekhar, X. Liu, B. Zhu, et al. Transmission of a 1.2-Tb/s 24-Carrier No-Guard-Interval Coherent OFDM Superchannel over 7200-km of Ultra-Large-Area Fiber. ECOC,PD2.6,2010.
    [61]B. Zhu, X. Liu, S. Chandrasekhar, et al. "Ultra-Long-Haul Transmission of 1.2-Tb/s Multicarrier No-Guard-Interval CO-OFDM Superchannel Using Ultra-Large-Area Fiber," IEEE Photon.Technol. Lett., vol 22,2010.
    [62]G Gavioli, E. Torrengo, G Bosco, et al. "Investigation of the Impact of Ultra-Narrow Carrier Spacing on the Transmission of a 10-Carrier 1Tb/s Superchannel," OFC. OThD3,2010.
    [63]J. Capmany and D. Novak, "Microwave photonics combines two worlds," Nat. Photonics 1,319-330,2007.
    [64]V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, "Comb-based radiofrequency photonic filters with rapid tunability and high selectivity" Nature Photonics 6(3),186-194,2012.
    [65]Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, "Optical arbitrary waveform processing of more than 100 spectral comb lines," Nat. Photon.1,463 2007.
    [66]P. J. Delfyett, I. Ozdur, N. Hoghoohi, J. Davila-Rodriguez, M. Akbulet, S. Bhooplapur "Advanced Ultrafast Technologies based on Optical Frequency Combs" J. of Selected Topics in Quantum Electronics,18(1). pp.258-274,2012.
    [67]M. Sanghadasa, P. R. Ashley, G. A. Lindsay, M et al, "Backscatter Compensation in IFOG Based Inertial Measurement Units With Polymer Phase Modulators," J. Lightwave Technol., vol.27, no.6, pp806-813,2009.
    [68]B.R. Walton, H.S. Margolis, V. Tsatourian et al, "Transportable optical frequency comb based on a mode-locked fibre laser," Optoelectronics, vol.2, no.5, pp182-187,2008.
    [69]L. Deng, M. Beltran, X. Pang, X et al, "Fiber Wireless Transmission of 8.3-Gb/s/ch QPSK-OFDM Signals in 75-110-GHz Band," IEEE Photonics Technol. Lett., vol.24, no.5, pp383-385,2012.
    [70]T. Healy, C. Gunning and A. Ellis. "Multi-wavelength source using low drive-voltage amplitude modulators for optical communications," Optics Express. 15,2007.
    [71]T. Sakamoto, T. Kawanishi and M. Izutsu, "19x10-GHz Electro-Optic Ultra-Flat Frequency Comb Generation Only Using Single Conventional Mach-Zehnder Modulator," CLEO 2006, CMAA5.
    [72]T. Yamamoto, T. Komukai, K. Suzuki, et al, "Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating," Electronics Lett., vol.43, no.19,2007.
    [73]J. Zhang, J. Yu, L. Tao, Y. Fang, YG Wang, YF. Shao, and N. Chi, "Generation of Coherent and Frequency-Lock Optical Subcarriers by Cascading Phase Modulators Driven by Sinusoidal Sources", J. Lightwave Technol.,Vol.30, NO.24, DECEMBER 15,2012.
    [74]C. He, S. Pan, R. Guo, Y. Zhao, and M. Pan, "Ultraflat optical frequency comb generated based on cascaded polarization modulators", Opt. Lett.37,3834,2012.
    [75]Jianping Li, Xuan Li, Xiaoguang Zhang, Feng Tian, and Lixia Xi. "Analysis of the stability and optimizing operation of the single-side-band modulator based on recirculating frequency shifter used for the T-bit/s optical communication transmission," Optics Express, vol.18, No.17, pp.17597-17609,2010.
    [76]F. Tian, X.Zhang, J. Li, and L. Xi, "Generation of 50 Stable Frequency-Locked Optical Carriers for T-bit/s Multi-Carrier Optical Transmission Using a Re-circulating Frequency Shifter", J. Lightwave Technol., Vol.29, No.8, pp:1085~ 1091,2011.
    [77]M. Heck, and J. Bowers, "Integrated Fourier-Domain Mode-Locked Lasers: Analysis of a Novel Coherent Comb Laser," IEEE J. Sel. Top. Quantum Electron., vol.18, no.1, pp201-209,2012.
    [78]W. Lee, H. Izadpanah, R. Menendez, et al, "Synchronized Mode-Locked Semiconductor Lasers and Applications in Coherent Communications," J. Lightwave Technol., vol.26, no.8, pp908-921,2008.
    [79]T. Healy, C. Gunning and A. Ellis. "Multi-wavelength source using low drive-voltage amplitude modulators for optical communications," Optics Express. 15,2007.
    [80]M. A. Mirza and G Stewart, "Multiwavelength operation of erbiumdoped fiber lasers by period filtering and phase modulation," J. Lightw. Technol., vol.27, no. 8, pp.1034-1044, Apr.2009.
    [81]Junwen Zhang, Nan Chi, Jianjun Yu, Jiangbo Zhu, Yufeng Shao, Bo Huang, Li Tao, "Generation of 113 Coherent and Frequency-lock Multicarriers Using Cascaded Phase Modulators and EDFALoop for Tb/s Optical Communication", ECOC, We.10.P1.07,2011.
    [82]Jianjun Yu, Ze Dong, Hung-Chang Chien, Yufeng Shao, and Nan Chi, "7-Tb/s (7 X 1.284 Tb/s/ch) Signal Transmission Over 320 km Using PDM-64QAM Modulation", IEEE Photonics Technology Letters, Vol.24, No.4, February 15, 2012
    [83]S. Kawanishi, "Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing," IEEE J. Quantum Electron, vol. 34, no.11, pp.2064-2079, Nov.1998.
    [84]M. Saruwatari, "All-optical signal processing for Tera bit/s optical transmission," IEEE J. Sel. Topics Quantum Electron., vol.6, no.6, pp.1363-1374, Nov./Dec. 2000.
    [85]T. Yamamoto, E. Yoshida, K. R. Tamura, K. Yonenaga, and M. Nakazawa,"640 Gb/s optical TDM transmission over 92 km through a dispersion managed fiber consisting of single-mode fiber and reverse dispersion fiber," IEEE Photon. Technol. Lett., vol.12, no.3, pp.353-355,Mar.2000.
    [86]M. Nakazawa, T. Yamamoto, and K. R. Tamura, "1.28 Tb/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator," Electron. Lett., vol.36, no.24,pp.2027-2029, Nov. 2000.
    [87]M. Nakazawa, E. Yoshida, T. Yamamoto, E. Yamada, and A. Sahara,"TDM single channel 640 Gb/s transmission experiment over 60 km using 400 fs pulse train and walk-off free, dispersion flattened nonlinear optical loop mirror," Electron. Lett., vol.34, no.9, pp.907-908, Apr.1998.
    [88]H. C. H. Mulvad, L.K.Oxenl(?)we, M. Galili, A. T. Clausen, L. Gruner-Nielsen, and P. Jeppesen, "1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing," Electron. Lett., vol.45, no.5, pp.280-281,2009.
    [89]A. Suzuki, X. Wang, Y. Ogawa, and S. Nakamura, "10 x 320 Gb/s (3.2 Tb/s) DWDM/OTDM transmission by semiconductor based devices," presented at the Eur. Conf. Optical Commun. (ECOC), Stockholm,Sweden,2004, Paper Th4.1.7.
    [90]K. Tajima, S. Nakamura, and A. Furukawa, "Hybrid-integrated symmetric Mach-Zehnder all-optical switches and ultrafast signal processing,"IEICE Trans. Electron., vol. E87-C, no.7, pp.1119-1125,2004.
    [91]T. Hirooka, M. Okazaki, T. Hirano, P. Guan,M. Nakazawa, and S. Nakamura, " All-Optical Demultiplexing of 640-Gb/s OTDM-DPSK Signal Using a Semiconductor SMZ Switch", IEEE Photonics Technology Letters, Vol.21, No. 20, OCTOBER 15,2009.
    [92]C. Schubert, S. Diez, J. Berger, R. Ludwig, U. Feiste, H. G Weber,G Toptchiyski, K. Petermann, and V. Krajinovic, "160 Gb/s all-optical demultiplexing using a gain-transparent ultrafast-nonlinear interferometer (GT-UNI)," IEEE Photon. Technol. Lett., vol.13, no.5, pp.475-477, May 2001.
    [93]U. Feiste, R. Ludwig, C. Schubert, J. Berger, C. Schmidt, H. G. Weber, B. Schmauss, A. Munk, B. Buchold, D. Briggmann, F. Kueppers, and F. Rumpf, "160 Gb/s transmission over 116 km field-installed fibre using 160 Gb/s OTDM and 40 Gb/s ETDM," Electron. Lett., vol.37, no.7, pp.443-445, Mar.2001.
    [94]K. Suzuki, K. Iwatsuki, S. Nishi, and M. Saruwatari, "Error-free demultiplexing of 160 Gb/s pulse signal using optical loop mirror including semiconductor laser amplifier," Electron. Lett., vol.30, no.18, pp.1501-1503, Sep.1994.
    [95]王安斌,伍剑,林金桐,“基于电吸收调制器的解复用器窗口特性分析及优化”,《光学学报》,2003-10-17。
    [96]Mark D. Pelusi, "160-Gb/s Optical Time-Division Demultiplexing Using a Mach-Zehnder Modulator in a Fiber Loop", IEEE Photon. Technol. Lett., vol.20, pp.1060-1062, no.12, June 15,2008.
    [1]Hans-Georg Weber, Reinhold Ludwig, Sebastian Ferber, Carsten Schmidt-Langhorst, Marcel Kroh, Vincent Marembert, Christof Boerner, and Colja Schubert, "Ultrahigh-Speed OTDM-Transmission Technology" JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL.24, NO.12, DECEMBER 2006.
    [2]A. O. J. Wiberg, C. S. Bres, B. P. P. Kuo, E. Myslivets, and S. Radic, "Cavity-less 40GHz pulse source tunable over 95 nm," presented at the ECOC 2009, Vienna,. Austria, September 20-24,2009, Paper 5.2.3.
    [3]Ke Wang, Jie Li. "160 Gbit/s OTDM system based on 40 GHz optical pulses generated using simultaneous two-arm modulation of a Mach-Zehnder modulator", In:Proceedings of 35th European Conference on Optical Communication,2009, pp:1-2.
    [4]H. Tanaka, S. Takagi, M. Suzuki and Matsushima, "Optical short Pulse Generation by Double Gate Operation of Tandem Connected Electroapsorption Modulators Driven by Sinusoidal Voltages", Electron.Lett, Vol.29, No.16, pp.1449-1451, 1993.
    [5]F. Devaux, "Tandem of modulators for high on/off pulse generation," Electronics Letters, Vol.33, No.16, pp.1491-1492,1997.
    [6]Kaman, V, Yi-Jen Chiu, Liljeberg, T., Bowers, J. E. Zhang, S.Z., "Integrated tandem electroabsorption modulators for high-speed OTDM applications", MWP 2000. International Topical Meeting on,Page(s):109-112.
    [7]周静涛,“行波电吸收调制器的研究”,中国科学院研究生院,博士学位论文,2007.
    [8]张伟,“ROF用行波电吸收调制器的研究”,中国科学院研究生院,博士学位论文,2009.
    [9]A.O. J. Wiberg, and C. S. Bres, "Pedestal-Free Pulse Source for High Data Rate Optical Time-Division Multiplexing Based on Fiber-Optical Parametric Processes," Quantum Electronics, IEEE Journal of, vol.45, pp.1325-1330,2009.
    [10]周光涛,新型调制码型技术及应用的研究[学位论文],北京:北京邮电大学,2006.
    [11]傅炜,40Gbps光纤传输系统中的调制格式研究[学位论文],西安:西安电子科技大学,2006.
    [12]M. D. Pelusi, "160-Gb/s Optical Time-Division Demultiplexing Using a Mach-Zehnder Modulator in a Fiber Loop," Photonics Technology Letters, IEEE, vol.20,no.12, pp.1060-1062,2008.
    [1]H. C. H. Mulvad, L. K. Oxenl(?)we, M. Galili, A. T. Clausen, L. Gruner-Nielsen, and P. Jeppesen, "1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing," Electron. Lett., vol.45, no.5, pp.280-281,2009.
    [2]H. Ji, M. Galili, H. Hu, M. Pu, L. K. Oxenl(?)we, K. Yvind, J. M. Hvam, and P. Jeppesen "1.28-Tb/s Demultiplexing of an OTDM DPSK Data Signal Using a Silicon Waveguide", Photon. Technol. Lett.,vol.22,no.23,pp:1762-1764,2010.
    [3]L. K. Oxenl(?)we et al., "640 Gbit/s data transmission and clock recovery using an ultra-fast periodically poled lithium niobate device," in Proc. OFC 2008, San Diego, CA, Feb.24-28,2008, Paper PDP22.
    [4]E. Tangdiongga et al., "All-optical demultiplexing of 640 to 40 Gbits/s using filtered chirp of a semiconductor optical amplifier," Opt. Lett.,vol.32, no.7, pp. 835-837,2007.
    [5]K. Igarashi, et al.,"Optoelectronic time-division demultiplexing of 160-Gbit/s optical signal based on phase modulation and spectral filtering," Optics Express, vol.15, pp.845-851,2007.
    [6]H. F. Chou, J. E. Bowers, and D. J. Blumenthal, "Compact 160-Gb/s add-drop multiplexer with a 40-Gb/s base rate using electroabsorption modulators," IEEE Photon. Technol. Lett., vol.16, no.6, pp.1564-1566, Jun.2004.
    [7]Jifang Qiu, Guangtao Zhou, Jian Wu, and Jintong Lin, "8×10 Gb/s OTDM signal demultiplexing by using self-cascaded electro-absorption modulator (EAM) after transmitting over 300 km", IEEE Photonics Technology Letters, vol.18, no.23, Dec.2006, pp.2541-2543.
    [8]Mark D. Pelusi, "160-Gb/s Optical Time-Division Demultiplexing Using a Mach-Zehnder Modulator in a Fiber Loop", IEEE Photon. Technol. Lett., vol.20, pp.1060-1062, no.12, June 15,2008.
    [9]J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour,"40 GHz electro-optic polarization modulator for fiber optic communication systems," Proc. SPIE, vol.5577, pp.133-143,2004.
    [10]S. L. Pan and J. P. Yao, "Optical Clock Recovery Using a Polarization-Modulator-Based Frequency-Doubling Optoelectronic Oscillator" J. Lightw. Technol., vol.27, pp.3531-3539, no.16, August 15,2009.
    [11]Hidemi Tsuchida, "Simultaneous Prescaled Clock Recovery and Serial-to-Parallel Conversion of Data Signals Using a Polarization Modulator-Based Optoelectronic Oscillator," Journal of Lightwave Technology, vol.27, pp. 3777-3782, Sep.2009.
    [1]G. C. Gupta, K. Fukuchi, and T. Ogata, "Highly efficient 1 Tb/s (50 ch 20 Gb/s)-2000 km RZ transmission experiment by suppressing XPM with optimized pulsewidth," in OFC 2000, (Baltimore, Maryland, USA,2000), pp.152-154.
    [2]A. Sano, Y. Miyamoto, T. Kataoka, and K. Hagimoto, "Long-span repeaterless transmission systems with optical amplifiers using pulse width management," J. Lightwave. Technol., vol.16, no.6, pp.977-985, Jun.1998.
    [3]L. S. Yan, S. M. R. M. Nezam, A. B. Sahin, J. E. McGeehan, T. Luo, Q. Yu, and A. E. Willner, "Enhanced robustness of RZ WDM systems using tunable pulsewidth management at the transmitter," in ECOC 2002, Copenhagen, Denmark, Paper 10.6.2.
    [4]Y.Miyamoto, A. Hirano, K.Yonenaga, A.Sano, H.Toba, K.Murata, and O. Mitomi, "320Gbit/s (8x40 Gbit/s) WDM transmission over 367 km with 120 km repeater spacing using carrier suppressed return-to-zero format", Electronics Letters,35, 23, pp.2041-2042,1999.
    [5]Y. Dong, Z. H. Li, J. Y. Mo, Y. X. Wang, C. Lu, T. H. Cheng, "Pulse width-tunable CSRZ signal format with better tolerance to dispersion and nonlinear degradation in optical transmission system", Photonics Technology Letters, Vol.16,No.5,2004.
    [7]X. Zhang, G. T. Zhou, K. Xu, J. Wu, J.T. Lin, "All Optical Pulsewidth-Tunable CSRZ Signal Generation Using LiNbO3 Modulator and Time Delay Interferometer", in Proceedings of Lasers and Electro-Optics Society, Montreal, QC, Canada,2006, pp:565-566.
    [1]J. Wells, "Faster than fiber:The future of multi-Gb/s wireless," IEEE Microw. Mag., vol.10, no.3, pp.104-112, May 2009.
    [2]A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, and T. Nagatsuma, "120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission," IEEE Trans. Microw. Theory Tech., vol.54, no.5, pp.1937-1944, May 2006.
    [3]B. B. Hu and M. C. Nuss, "Imaging with terahertz waves," Opt. Lett., vol.20, no. 16, pp.1716-1718, Aug.15,1995.
    [4]Q. Wu, T. D. Hewitt, and X. C. Zhang, "Two-dimensional electrooptic imaging of THz beams," Appl. Phys. Lett., vol.69, no.8, pp.1026-1028, Aug.19,1996.
    [5]W. L. Chan, J. Deibel, and D. M. Mittleman, "Imaging with terahertz radiation," Rep. Prog. Phys., vol.70, no.8, pp.1325-1379, Aug.2007.
    [6]S. L. Pan and J. P. Yao, "A wavelength-switchable single-longitudinal mode dual-wavelength erbium-doped fiber laser for tunable microwave generation," Opt. Exp., vol.17, no.7, pp.5414-5419, Apr.2009.
    [7]A. M. Weiner, "Femtosecond optical pulse shaping and processing," Prog. Quantum Electron,19,161-237,1995.
    [8]L. Yan, W. Jian, J. Yu, etc. "Generation and performance Investigation of 40GHz phase stable and pulse width-tunable optical time window based on a DPMZM ",Optics Express, Vol.20, Issue 22, pp.24754-24760,2012.
    [9]C. He, S. Pan, R. Guo, Y. Zhao, and M. Pan, "Ultraflat optical frequency comb generated based on cascaded polarization modulators", Opt. Lett.37,3834,2012.
    [10]S. Fukushima, C. F. C. Silva, Y Muramoto, and A. J. Seeds, "Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode," J. Lightw. Technol., vol.21, no.12, pp.3043-3051, Dec.2003.
    [11]M. Musha, A. Ueda, M. Horikoshi, K. Nakagawa, M. Ishiguro, K. Ueda, and H. Ito, "A highly stable mm-wave synthesizer realized by mixing two lasers locked to an optical frequency comb generator," Opt. Commun., vol.240, no.1-3, pp. 201-208, Oct.1,2004.
    [12]H. J. Song, N. Shimizu, T. Furuta, K. Suizu, H. Ito, and T. Nagatsuma, "Broadband-frequency-tunable sub-terahertz wave generation using an optical comb, AWGs, optical switches, and a uni-traveling carrier photodiode for spectroscopic applications," J. Lightw. Technol., vol.26, no.15, pp.2521-2530, Aug.2008.
    [13]G. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Belisle, "Generation and distribution of a wideband continuously tunable millimeter-wave signal with an optical external modulation technique," IEEE Trans. Microw. Theory Tech., vol. 53, no.10, pp.3090-3097, Oct.2005.
    [14]J. Zhang, H. W. Chen, M. H. Chen, T. L.Wang, and S. H. Xie, "A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression," IEEE Photon. Technol. Lett., vol.19, no. 14, pp.1057-1059, Jul.2007.
    [15]C. T. Lin, P. T. Shih, J. Chen, W. Q. Xue, P. C. Peng, and S. Chi, "Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering," IEEE Photon. Technol. Lett., vol.20, no.12, pp.1027-1029, Jun. 2008.
    [16]S. L.Pan, J. P. Yao, "Tunable Subterahertz Wave Generation Based on Photonic Frequency Sextupling Using a Polarization Modulator and a Wavelength-Fixed Notch Filter, " IEEE Trans. Microw. Theory Tech., vol.58, no.7, pp.1967-1975, Jul.2010.
    [17]Rui Wu, V. R. Supradeepa, Christopher M. Long, Daniel E. Leaird, and Andrew M. Weiner, "Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms," Optics Letters, vol.35, no.19, pp.3234-3236,2010.
    [18]C. Yu, Z. Pan, T. Luo, S. Kumar, "160-GHz Pulse Generator Using a 40-GHz Phase Modulator and PM Fiber", OFC/NFOEC 2005, paper OThR5.
    [19]Jose Caraquitena, "Tunable pulse repetition-rate multiplication using phase-only line-by-line pulse shaping," OPTICS LETTERS,6,716-718,2007.
    [20]Z. Jiang, E. L. Daniel and A. M. Weiner, "Line-by-line pulse shaping control for optical arbitrary waveform generation, "OPTICS EXPRESS,25,10431-10439 2005.
    [21]A. P. Miguel and A. M. Miguel, "Repetition-rate multiplication using a single all-pass optical cavity," OPTICS LETTERS,9,962-964,2008.
    [22]Z. Jiang, D. S. Seo, D. E. Leaird, A. M. Weiner, "Spectral line-by-line pulse shaping," OPTICS LETTERS,30,1557-1559 (2005).
    [23]A. O. J. Wiberg, C. S. Bres, B. P. Kuo, J. X. Zhao, N. Alic, S. Radic, "Pedestal-Free Pulse Source for High Data Rate Optical Time-Division Multiplexing Based on Fiber-Optical Parametric Processes," Quantum Electronics, IEEE Journal of, vol.45, no.11, pp.1325-1330, Nov.2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700