提高液晶自适应光学系统校正速度的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液晶自适应光学技术作为一种自适应光学新技术越来越受到人们的重视。一方面,液晶波前校正器拥有数百万的驱动单元,可以对畸变波前实现高精度的校正;另一方面,液晶波前校正器使用了二元光学衍射的原理产生光学波前,因此只要产生一个波长的调制量,便可实现数十个波长的校正深度。加之采用开环控制方式,液晶波前校正器所固有的偏振依赖问题可以得到有效解决。因此,开环液晶自适应光学系统非常有潜力应用于大口径望远镜。
     液晶自适应光学系统虽然优势巨大,但是缺点同样非常突出,目前最主要的一个问题是校正速度慢,带宽只有十几赫兹。带宽低的问题严重制约着液晶自适应光学技术在大口径望远镜上的应用。
     针对校正频率较低的问题,对波前探测器进行了优化设计,使得哈特曼波前探测器在保证探测精度的情况下探测频率从500Hz提高到909Hz,相当于系统的带宽从13Hz提高到19Hz。更进一步,通过采用并行的时序控制和优化的校正比例因子,又使系统的带宽从19Hz提高到23Hz。
     通过对湍流波面运动趋势的研究,发现湍流波面在9ms(湍流频率55Hz)内具有很强的相关性,因此提出湍流波前的相关模式预测。利用预测程序得到的校正效果可以比没有预测的提高10%。
     通过利用预测残差,对相关模式预测算法进行改进,使得预测系数可以跟随湍流频率的变化而自适应的发生改变,由此校正效果可比没有预测的进一步提高到23%,使带宽从22Hz提高到30Hz。最后,利用湍流波面的空间相关性构建了自适应斜率预测算法。经过其预测以后,校正效果可比直接校正提高26%,相当于带宽从直接校正的25Hz提高到36Hz。利用这套具有湍流预测功能的开环液晶自适应光学系统对天体目标进行了现场自适应校正,所得图像的分辨率达到1.8倍的衍射极限,获得了良好的成像效果。
     以上所开展的研究工作是对液晶自适应光学系统实用化有益的探索研究,将对液晶自适应系统在天文学上的应用起到一定的推动作用。
Liquid Crystal Adaptive Optics have drawn more and more attention fromscientists and engineers as a new adaptive optics technology. On one hand, liquidcrystal wavefront corrector can achieve high wavefront distortion correction accuracywith millions of driving units. On the other hand, liquid crystal wavefront correctorcan gain a correction range of tens of wavelengths with a modulation depth of onlyone wavelength, by means of generating wavefront with binary optics diffraction. Theresponsing speed can be improved significantly as the modulation depth reduced.Moreover, with open-loop control mode, the intrinsic polarization dependenceproblem can be solved effectively. Hence, open-loop liquid crystal adaptive opticssystems (LCAOS) has a great potential to be applied to large aperture telescopes.
     Currently, the main problem of the open-loop LCAOS is that the correctionspeed is not enough, which limits the application of the LCAOS on large telescopes.
     For the problem of low correction frequency, the detecting frequency ofHartmann wavefront sensor is improved. With these renovations, the detectingfrequency increases from500Hz to909Hz. The system bandwidth is accordinglyincreased from13Hz to19Hz. By utilizing of a parallel sequential control and anoptimized proportional correction factor, the system bandwidth is further increasedfrom19Hz to23Hz.
     Through the research of the evolution of the atmospheric turbulence, we foundthat the correlation between adjacent turbulence wavefront within9ms (turbulencefrequency is55Hz) is strong. Based on this, a correlative modal predictive (CMP)algorithm is developed to further solve the problem of large time delay. Using theCMP to predict the real55Hz atmospheric turbulence, the result shows animprovement of10%compared to direct correction.
     By improving the CMP so that the predictive coefficients can adaptively fit to theturbulence, an adaptive modal predictive (AMP) algorithm is developed. Thecorrection result showed that it could improve23%compared to the direct correctionor the bandwidth is increased from22Hz to30Hz. Finally, the spatial correlation isintroduced to the AMP. It shows that the correction result could improve26%compared to the direct correction, or the bandwidth is increased from25Hz to36Hz.The resolution of the system reaches1.8times of the diffraction limit. Fine imagingresults were acquired in field adaptive correction of celestial objects.
     The work is a tentative research on the practicability of open-loop liquid crystaladaptive optics systems, and will have a significant influence on the astronomicalapplication of liquid crystal adaptive optics.
引文
[1]张逸新,迟泽英.光波在大气中的传播与成像[M].北京:国防工业出版社,1997.
    [2] Tyson R K. Principles of Adaptive Optics[M]. Third ed. New York: CRCPress,2011.
    [3] Fried D L. Statistics of a Geometric Representation of Wavefront Distortion[J].J. Opt. Soc. Am.,1965.55(11):1427.
    [4] Fried D L. Time-delay-induced mean-square error in adaptive optics[J]. J. Opt.Soc. Am. A,1990.7(7):1224-1225.
    [5] Mu Q, Cao Z, Li D. Open-loop correction of horizontal turbulence: systemdesign and result[J]. Appl. Opt.,2008.47(23):4297-4301.
    [6] Roddier F. Adaptive optics in astronomy[M]. Cambridge: Cambridgeuniversity press,1999.
    [7] Greenwood D P, Fried D L. Power spectra requirements forwave-front-compensative systems[J]. J. Opt. Soc. Am.,1976.66(3):193-206.
    [8] Greenwood D P. Bandwidth specification for adaptive optics systems[J]. J. Opt.Soc. Am.,1977.67(3):390-393.
    [9] Babcock H W. The possibility of compensating astronomical seeing[J]. Publ.Astron. Soc. Pac.,1953.65:229-236.
    [10] Hardy J W, Lefebvre J E, Koliopoulos C L. Real-time atmosphericcompensation[J]. J. Opt. Soc. Am.,1977.67:360-369.
    [11] Rousset G, Fontanella J C, Kern P. First Diffraction-Limited AstronomicalImages with Adaptive Optics[J]. Astronomy and Astrophysics,1990.230(2):L29-L32.
    [12] Rigaut F, Rousset G, Kern P. Adaptive Optics on a3.6-M Telescope: Resultsand Performance[J]. Astronomy and Astrophysics,1991.250(1):280-290.
    [13] Beuzit J L, Demailly L, Gendron E. Adaptive optics on a3.6-meter telescope-The ADONIS system[J]. Experimental Astronomy,1997.7(4):285-292.
    [14] Shelton C, Baliunas S. Second generation adaptive optics: Plans for the MountWilson100-inch telescope[J]. Optical Astronomy from the Earth and Moon,1994.55:68-76.
    [15] Fugate R Q, Ellerbroek B, Higgins C. Two generations of laser-guide-staradaptive-optics experiments at the Starfire Optical Range[J]. JOSA A,1994.11(1):310-324.
    [16][Anon]. Adaptive optics for the Keck telescope[J]. Optics and LaserTechnology,1996.28(6): R7-R7.
    [17] Bonaccini D, Prieto E, Corporon P. Performance of the ESO AO system,ADONIS, at the La Silla3.6-m telescope.1997. San Diego, CA, USA: SPIE.
    [18] Lai O, Veran J P, Rigaut F. CFHT Adaptive Optics: First results at thetelescope[J]. Optical Telescopes of Today and Tomorrow: Following in theDirection of Tycho Brahe,1997.2871:859-870.
    [19] Schwarzschild B. Adaptive optics at the new8-meter Gemini Telescope.[J].Physics Today,1999.52(9):23-23.
    [20] Barnaby D, Spillar E, Christou J C. Measurements of binary stars with thestarfire optical range adaptive optics systems[J]. Astronomical Journal,2000.119(1):378-389.
    [21] Kasper M, Looze D, Hippler S. ALFA: Adaptive Optics for the Calar AltoObservatory Optics, Control Systems, and Performance[J]. ExperimentalAstronomy,2000.10(1):49-73.
    [22] Benn C R. Adaptive optics at the WHT[J]. New Astronomy Reviews,2001.45(1-2):59-62.
    [23] Wildi F, Brusa G, Lloyd-Hart M. First light of the6.5-m MMT adaptive opticssystem[J]. Astronomical Adaptive Optics Systems and Applications,2003.5169:17-25.
    [24] Carbillet M, Correia S, Boccacci P. Performance of the restoration ofinterferometric images from the Large Binocular Telescope-the effects ofangular coverage and partial adaptive optics correction[J]. Interferometry forOptical Astronomy Ii, Pts1and2,2003.4838:444-455.
    [25] LeBouquin J B, Rousselet-Perraut K, Kern P. First observations with an H-bandintegrated optics beam combiner at the VLTI[J]. Astronomy&Astrophysics,2004.424(2):719-726.
    [26] Takami H, Takato N, Hayano Y. Performance of Subaru Cassegrain AdaptiveOptics system[J]. Publications of the Astronomical Society of Japan,2004.56(1):225-234.
    [27] Christou J C, Drummond J D. Measurements of binary stars, including twonew discoveries, with the lick observatory adaptive optics system[J].Astronomical Journal,2006.131(6):3100-3108.
    [28] Lopez J A, Bringas V, Cuevas S. FRIDA: The first instrument for the adaptiveoptics system of GTC[J]. First Light Science with the GTC,2007.29:18-20.
    [29] Thomas-Osip J, Bustos E, Goodwin M. Two campaigns to compare threeturbulence profiling techniques at Las Campanas Observatory[J].Ground-Based and Airborne Instrumentation for Astronomy Ii, Pts1-4,2008.7014: I145.
    [30] van Dam M A, Bouchez A H, Le Mignant D. The W. M. Keck Observatorylaser guide star adaptive optics system: Performancecharacterization[J].Publications of the Astronomical Society of the Pacific,2006.118(840):310-318.
    [31] Flicker R C, Rigaut F J. Hokupa'a anisoplanatism and Mauna Kea turbulencecharacterization[J]. Publications of the Astronomical Society of the Pacific,2002.114(799):1006-1015.
    [32] Takami H, Takato N, Otsubo M. Adaptive optics system for Cassegrain focusof Subaru8.2m telescope[J]. Proc. SPIE,1998.3353:500-507.
    [33] Gendron E, Coustenis A, Drossart P. VLT/NACO adaptive optics imaging ofTitan[J]. Astronomy&Astrophysics,2004.417(1): L21.
    [34] Szeto K, Roberts S, Anthony A. Design of a convex and camera mirror supportsystem for Altair, the Gemini-North adaptive optics system[J]. Optical and IrTelescope Instrumentation and Detectors, Pts1and2,2000.4008:942-949.
    [35] Lloyd-Hart M, Angel R, Green R. Multi-laser-guided adaptive optics for theLarge Binocular Telescope[J]. Astronomical Adaptative Optics Systems andApplications III,2007.6691: O6910-O6910.
    [36] MacMynowski D G, Thompson P M, Sirota M J. Analysis of TMT PrimaryMirror Control-Structure Interaction[J]. Modelling, Systems Engineering, andProject Management for Astronomy Iii,2008.7017: U335-U346.
    [37] Dekany R, Nelson J E, Bauman B. Design considerations for CELT adaptiveoptics[J]. Optical Design, Materials, Fabrication, and Maintenance,2000.4003:212-225.
    [38] Dierickx P, Delabre B, Noethe L. OWL optical design, active optics and errorbudget[J]. Optical Design, Materials, Fabrication, and Maintenance,2000.4003:203-209.
    [39] Whorton M, Angeli G. Modern control for the secondary mirror of a GiantSegmented Mirror Telescope[J]. Future Giant Telescopes,2003.4840:140-150.
    [40] Ardeberg A, Andersen T. Euro50: A European50m Adaptive Optics ExtremelyLarge Telescope[J]. Many Scales in the Universe,2006:261-294.
    [41] http://www.astro.lu.se/~torben/euro50/
    [42] http://www.eso.org/sci/facilities/eelt/owl/OWL_design.html
    [43] http://www.adaptiveoptics.org/News_1207_2.html.
    [44] Li C, Xia M, Li D. High-resolution retinal imaging through open-loop adaptiveoptics[J]. J. Biomed. Opt.,2010.15(4):046009-6.
    [45] Hirabayashi K, Yamamoto T, Yamaguchi M. Free space opticalinterconnections with liquid crystal microprism arrays[J]. Applied Optics,1995.34:2571-2580.
    [46] Brooks M R, Goda M E. Atmospheric simulation using a liquid crystalwavefront-controlling device. in Advanced Wavefront Control: Methods,Devices, and Applications II.2004. Denver, CO, USA: SPIE.
    [47] Hu L, Xuan L, Cao Z. A liquid crystal atmospheric turbulence simulator[J]. Opt.Express,2006.14(25):11911-11918.
    [48] Hu L, Xuan L, Li D. Wavefront correction based on a reflective liquid crystalwavefront sensor[J]. Journal of Optics A: Pure and Applied Optics,2009.11(1):015511.
    [49] Tabiryan N V, Nersisyan S R. Large angle beam sterring using all optical liquidcrystal spatial light modulator[J]. Applied Physics Letters,2004.84:5145-5147.
    [50] Cao Z, Xuan L, Hu L. Investigation of optical testing with a phase-only liquidcrystal spatial light modulator[J]. Opt. Express,2005.13(4):1059-1065.
    [51] Ewing T K, Folks W R. Liquid crystal on silicon infrared scene projectors[J].Technologies for Synthetic Environments: Hardware-in-the-Loop Testing X,2005.5785:36-45.
    [52] Hossack W, Theofanidou E, Crain J. High speed holographic optical tweezersusing a ferroelectric liquid crystal microdisplay[J]. Optics Express,2003.11:2053-2059.
    [53] Krueger S, Wernicke G, Gruber H. Liquid crystal display as dynamicdiffractive element[J]. Proc SPIE,2001.4294:84-91.
    [54] Scolari L, Alkeskjold T T, Riishede J. Continuously tunable devices based onelectrical control of dual frequency liquid crystal filled photonic bandgapfibers[J]. Optics Express,2005.13:7483-7496.
    [55] I. N. Kompanets, Zarubezh. Radioelektron. No.4,46(1977).
    [56] Vasil A A, Naumov A F, Shmal V I. Wavefront correction by liquid-crystaldevices[J]. Sov. J. Quantum Electron.,1986.16:471-474.
    [57] Dou R, Giles M. Closed-loop adaptive-optics system with a liquid-crystaltelevision as a phase retarder[J]. Opt. Lett.,1995.20(14):1583-1585.
    [58] Cai D M, Ling N, Jiang W H. Performance of liquid crystal spatial lightmodulator (LC-SLM) as a wave-front corrector for atmospheric turbulencecompensation-art. no.64570P[J]. Proc. SPIE,2007.6457: P4570-P4570.
    [59]蔡冬梅,凌宁,姜文汉.纯相位液晶空间光调制器拟合泽尼克像差性能分析[J].物理学报,2008.57(002):897-903.
    [60]蔡冬梅,姚军,姜文汉.液晶空间光调制器用于波前校正的性能[J].光学学报,2009.29(002):285-291.
    [61]蔡冬梅, Hwang Eng S,凌宁.反射型LCOS显示板用于人眼波前像差校正的研究[J].光电子.激光,2008.19(007):992-995.
    [62] Cao Z, Mu Q, Hu L. Preliminary use of nematic liquid crystal adaptive opticswith a2.16-meter reflecting telescope[J]. Opt. Express,2009.17(4):2530-2537.
    [63] Gruneisen M, Dymale R, Rotgé J. Wavelength-dependent characteristics of atelescope system with diffractive wavefront compensation[J]. Opt. Eng.,2005.44:068002.
    [64] Gruneisen M, Dymale R, Garvin M. Wavelength-dependent characteristics ofmodulo Nλ0optical wavefront control[J]. Appl. Opt.,2006.45(17):4075-4083.
    [65]曹召良.液晶自适应光学系统应用研究, in长春光机所2008,中国科学院研究生院:长春光机所.
    [66] Tyler G A. Bandwidth considerations for tracking through turbulence[J]. J. Opt.Soc. Am. A,1994.11(1):358-367.
    [67]刘超,孔宁宁,胡立发.液晶自适应光学系统中控制矩阵的精确测量[J].光学精密工程,2009.17(12):2899-2905.
    [68] Boyer C, Michau V, Rousset G. Adaptive optics: interaction matrixmeasurements and real time control algorithms for the Come-On project[J].Proc. SPIE,1990.1542:46-61.
    [69] Dayton D, Browne S, Gonglewski J. Characterization and control of amultielement dual-frequency liquid-crystal device for high-speed adaptiveoptical wave-front correction[J]. Appl. Opt.,2001.40(15):2345-55.
    [70]刘超,胡立发,穆全全.校正水平湍流波面的自适应光学系统带宽需求分析[J].光学精密工程,2010.18(10):2200-2206.
    [71] Roddier N. Atmospheric wavefront simulation using Zernike polynomials[J].Opt. Eng.,1990.29:1174-1180.
    [72] Liu C, Hu L, Mu Q. Open-loop control of liquid-crystal spatial lightmodulators for vertical atmospheric turbulence wavefront correction[J]. Appl.Opt.,2011.50(1):82-89.
    [73] Miller D, Thibos L, Hong X. Requirements for segmented correctors fordiffraction-limited performance in the human eye[J]. Opt. Express,2005.13(1):275-289.
    [74] Roddier F, Roddier C. Wavefront reconstruction using iterative Fouriertransforms[J]. Appl. Opt.,1991.30(11):1325-1327.
    [75] Thomas S. Optimized centroid computing in a Shack-Hartmann sensor.2004.
    [76] Ettedgui-Atad E, Catalan G, Harris J. Hartmann wavefront sensing with anartificial neural network processor.1994.
    [77] Wheeler D J, Schmidt J D. Correlation-based Shack-Hartmann wavefront slopesensing in strong turbulence. IEEE.
    [78] Thomas S, Fusco T, Tokovinin A. Comparison of centroid computationalgorithms in a Shack–Hartmann sensor[J]. Monthly Notices of the RoyalAstronomical Society,2006.371(1):323-336.
    [79] Irwan R, Lane R. Analysis of optimal centroid estimation applied toShack-Hartmann sensing[J]. Applied Optics,1999.38(32):6737-6743.
    [80] F. Roddier, Adaptive optics in astronomy (Cambridge university press,Cambridge,1999).p99.
    [81] Noll R J. Zernike polynomials and atmospheric turbulence[J]. J. Opt. Soc. Am.,1976.66(3):207-211.
    [82] Conan J-M, Rousset G, Madec P-Y. Wave-front temporal spectra inhigh-resolution imaging through turbulence[J]. J. Opt. Soc. Am. A,1995.12(7):1559-1570.
    [83] Rao C H, Jiang W H, Ling N. Spatial and temporal characterization of phasefluctuations in non-Kolmogorov atmospheric turbulence[J]. Journal of ModernOptics,2000.47(6):1111-1126.
    [84] Kibblewhite E, Chun M. Design of tip-tilt and adaptive optics servos usingmeasured angle-of-arrival and phase power spectra[J]. Proc. SPIE,1998.3353:522-530.
    [85] McGaughey D, JM Aitken G. Temporal analysis of stellar wave-front-tiltdata[J]. Journal of the Optical Society of America A,1997.14(8):1967-1974.
    [86]饶长辉.非Kolmogorov湍流情况下低阶校正自适应光学系统的性能研究,2000,中国科学院光电技术研究所.
    [87] Schwartz C, Baum G, Ribak E N. Turbulence-Degraded Wave-Fronts as FractalSurfaces[J]. J. Opt. Soc. Am. A,1994.11(1):444-451.
    [88] Aitken G J, McGaughey D. Predictability of atmospherically-distorted stellarwavefronts. in Proceedings of Topical Meeting on Adaptive Optics.1995.European Southern Observatory, Garching, Germany: European SouthernObservatory, Garching, Germany.
    [89] Paschall R, Anderson D. Linear quadratic Gaussian control of a deformablemirror adaptive optics system with time-delayed measurements[J]. Appl. Opt.,1993.32(31):6347-6358.
    [90] Wild W. Predictive optimal estimators for adaptive-optics systems[J]. Opt. Lett.,1996.21(18):1433-1435.
    [91] Dessenne C, Madec P Y, Rousset G. Modal prediction for closed-loop adaptiveoptics[J]. Opt. Lett.,1997.22(20):1535-1537.
    [92] Dessenne C, Madec P-Y, Rousset G. Optimization of a Predictive Controllerfor Closed-Loop Adaptive Optics[J]. Appl. Opt.,1998.37(21):4623-4633.
    [93] Dessenne C, Madec P Y, Rousset G. Sky implementation of modal predictivecontrol in adaptive optics[J]. Opt. Lett.,1999.24(5):339-41.
    [94] Barchers J D. Multigrid Approach to Predictive Wave-Front Reconstruction inAdaptive Optical Systems[J]. Appl. Opt.,2004.43(18):3708-3716.
    [95] Poyneer L, Véran J. Predictive wavefront control for adaptive optics witharbitrary control loop delays[J]. J. Opt. Soc. Am. A,2008.25(7):1486-1496.
    [96] Poyneer L A, Veran J P. Towards feasible and effective predictive wavefrontcontrol for adaptive optics[J]. Adaptive Optics Systems, Pts1-3,2008.7015:E151-E151.
    [97] Johnson L C, Gavel D T, Reinig M. Wind estimation and prediction foradaptive optics control systems[J]. Proc. of SPIE,2008.7015:70153F.
    [98] Vyas A, Roopashree M, Prasad B. Prediction of wavefronts in adaptive opticsto reduce servo lag errors using data mining.2009.
    [99] Johnson L C, Gavel D T, Wiberg D M. Online wind estimation and predictionfor a two-layer frozen-flow atmosphere, Adaptive Optics Systems Ii, B.L.Ellerbroek, et al., Editors.2010.
    [100] Fraanje R, Rice J, Verhaegen M. Fast reconstruction and prediction of frozenflow turbulence based on structured Kalman filtering[J]. J. Opt. Soc. Am. A,2010.27(11): A235-A245.
    [101] Lloyd-Hart M, McGuire P. Spatio-temporal prediction for adaptive opticswavefront reconstructors. in Proceedings of Topical Meeting on AdaptiveOptics, M. Cullum. ed.1995. European Southern Observatory, Garching,Germany.
    [102] McGuire P, Rhoadarmer T, Coy H. Linear zonal atmospheric prediction foradaptive optics[J]. Proc. SPIE,2000.4007:682-691.
    [103] Jorgenson M, Aitken G. Prediction of atmospherically induced wave-frontdegradations[J]. Opt. Lett.,1992.17(7):466-468.
    [104] Jorgenson M B, Aitken G J M. Neural network prediction of turbulenceinduced wavefront degradations with applications to adaptive optics[J]. Proc.SPIE,1992.1706:113-121.
    [105] Montera D, Welsh B, Roggemann M. Prediction of wave-front sensor slopemeasurements with artificial neural networks[J]. Appl. Opt,1997.36:675-681.
    [106] Platt B. History and principles of Shack-Hartmann wavefront sensing[J].Journal of Refractive Surgery,2001.17(5):573-577.
    [107]李华强,宋贺伦,饶长辉.增大夏克-哈特曼波前传感器动态测量范围的方法[J].光学精密工程,2008.16(7):1203-1206.
    [108] Porter, J., et al., Adaptive Optics for Vision Science Principles, Practices,Design, and Applications2006: Wiley-Interscience A John Wiley&Sons, Inc.,Publication. p198.
    [109]张旭东,陆明泉.离散随机信号处理[M].北京:清华大学出版社,2006.
    [110] Hu L, Xuan L, Li D. Real-time liquid-crystal atmosphere turbulence simulatorwith graphic processing unit[J]. Opt Express,2009.17(9):7259-68.
    [111] Liu C, Hu L, Cao Z. Zonal slope prediction for open-loop adaptive optics[J].Opt. Lett.,2011.36(22):4461-4463.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700