自适应光学系统的计算机模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着天文观测和研究水平的提高,天文学家对于观测仪器的要求也在不断提高。地面光学望远镜作为天文研究的主要仪器发挥着越来越重要的作用。但是靠近地面的大气层给地面望远镜的观测带来了很大的困难。为了克服大气对于地面望远镜观测的制约,将望远镜安装在观测条件比较好的台址,并且使用一些新的仪器和方法来减小大气的影响是国内外天文仪器工作者的普遍的做法。在本文中我主要研究了为了改正大气色散而设计的大气色散改正器和为了减少大气湍流对于观测影响的自适应光学系统。其中有关自适应光学系统的模拟主要是由张思炯老师指导的;苏定强老师除了指导我进行了大气色散改正器光学设计之外,也指导我对自适应光学中的波前探测和系统设计进行了研究,并且和我就自适应光学,主动光学和光学系统优化之间的关系进行了深入的探讨,大大加深了我对于这几个方面的认识。
     大气色散改正器是一种通过光学仪器产生色散来改正大气色散的一种光学仪器。对于常规的望远镜,这种改正器一般情况下由一套透棱镜系统组成,在工作时,通过旋转来产生不同的色散以补偿不同天顶距下的大气色散。但是,对于我国的LAMOST望远镜,由于其焦面很大,因此,这样的设计会导致原料获取和加工的困难。我们设计了拼接式的大气色散改正器,这种拼接式的改正器产生的色散与其距离焦面的距离大小有关,通过改变它们之间的距离从而补偿不同天顶距下天体产生的色散。我们讨论了这种拼接式结构对于最后的像质的影响。虽然拼接式的改正器会残留0.4角秒的残余像差,但是却校正了3.35角秒的大气色散,满足我们的设计要求。
     自适应光学系统是一种通过使用波前探测器实时探测大气湍流对于光波波前相位的作用并且使用波前校正机构进行波前校正的光学系统。这种系统主要包括波前探测机构,波前校正机构和控制器这三个部分。由于系统的每一个部分结构复杂,参数众多,同时系统的最终性能与每个部分的性能关系复杂。因此,这样的系统的设计需要建立模型进行计算机的模拟以减少设计成本和设计时间。本文对于大气湍流,自适应光学系统中的变形镜,Shack-Hartmann波前探测器和控制器等建立了计算机模型,并且.对于在实验室的系统进行小规模实验中的演示模型的建立方法进行了讨论。利用蒙特卡洛模型,我们分别模拟了我国2.16米望远镜的经典自适应光学系统和南极昆仑暗宇宙巡天望远镜(KDUST)的地面层自适应光学系统。经过模拟,我们给出了这些系统的详细的参数,对于系统工作的基本性能和控制要求有了基本的了解。
As the capacity of the astronomical observation increases, the demand of high-quality observation instruments is growing. The ground-based telescope as the workhorse for the observations plays a more and more important role, but the near-ground atmosphere limits the observation ability severely. I studied the atmospheric dispersion corrector and adaptive optics system in this thesis. Most of my research about the adaptive optics system is directed by professor Sijiong Zhang. Professor Dingqiang Su directs me in the study of the wavefront sensing and the system design of the adaptive optics. He also discusses the relations between the adaptive optics, the active optics and the opti-mization of the optical system with me. These discussions deepen my understanding of these subjects.
     The atmospheric dispersion corrector is used to correct the dispersion brought by the atmosphere. For the ordinary telescope, the atmospheric dispersion corrector is made of a pair of lens-prisms. The lens-prism will rotate to generate different dispersion to compensate the atmospheric dispersion. But this classical design is not suitable for the LAMOST which has a big focal plane.We designed a segmented atmospheric dispersion corrector. The segmented atmospheric dispersion corrector will correct the dispersion of3.35arcsec with0.4arcsec residual aberration.
     The adaptive optics system uses a wavefront sensor to test the wavefront error and a deformable mirror to compensate the error simultaneously. This system includes three parts:the wavefront sensor, the deformable mirror and the control computer. Because each part is complicated and the system performance has complex relation with each part, the simulation is necessary to evaluate the system's performance. We analyzed the operating principle of the whole system and set the numerical model of it including:the atmospheric turbulence, the deformable mirror, the Shack-Hartmann wavefront sensor and the control computer. We simulate the classical adaptive optics system for the2.16m telescope and the ground layer adaptive optics system for the Antarctic KDUST with Monte Carlo model. From the results of these simulations, we have the detailed pa-rameters of these systems and the performance of them.
引文
[1]苏定强,王亚男,1974.天文光学系统像差的自动校正.天文学报15,51-60.
    [2]Airy, G.,1869. Note on atmospheric chromatic dispersion as affecting telescopic observations, and on the mode of correcting it. Mon. Not. R. Astron. Soc 29, 333.
    [3]Andersen, D.R., Stoesz, J., Morris, S., Lloyd-Hart, M., Crampton, D., But-terley, T., Ellerbroek, B., Jolissaint, L., Milton, N.M., Myers, R., Szeto, K., Tokovinin, A., Veran, J.P., Wilson, R.,2006. Performance Modeling of a Wide-Field Ground-Layer Adaptive Optics System. PASP 118,1574-1590.
    [4]Arribas, S., Mediavilla, E., Garcfa-Lorenzo, B., del Burgo, C., Fuensalida, J.J., 1999. Differential atmospheric refraction in integral-field spectroscopy:Effects and correction. Atmospheric refraction in IFS. Astron. Astrophys.136,189-192.
    [5]Assemat, F., Wilson, R., Gendron, E.,2006. Method for simulating infinitely long and non stationary phase screens with optimized memory storage. Opt. Express 14,988-999.
    [6]Babcock, H.W.,1990. Adaptive optics revisited. Science 249,253-257.
    [7]Basden, A., Butterley, T., Myers, R., Wilson, R.,2006. The Durham ELT adaptive optics simulation platform. ArXiv Astrophysics e-prints
    [8]Beckers, J.M.,1993. Adaptive optics for astronomy-Principles, performance, and applications. Annu. Rev. Astron. Astrophys.31,13-62.
    [9]Belen'kii, M.S., Karis, S.J., Brown, H, J.M., Fugate, R.Q.,1997. Experimental study of the effect of non-Kolmogorov stratospheric turbulence on star image motion [3126-12], in:Tyson, R.K., Fugate, R.Q. (Eds.), Proc. SPIE, p.113.
    [10]Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F., Succi, S., 1993. Extended self-similarity in turbulent flows. Phys. Rev. B 48,29.
    [11]Berkefeld, T., Soltau, D., von der Luehe, O.,2002. Multiconjugate adaptive optics at the Vacuum Tower Telescope, Tenerife, in:Kohnle, A., Gonglewski, J.D., Schmugge, T.J. (Eds.), Proc. SPIE, pp.119-127.
    [12]Bifano, T.G., Perreault, J.A., Bierden, P.A., Dimas, C.E.,2002. Micromachined deformable mirrors for adaptive optics, in:Gonglewski, J.D., Vorontsov, M.A. Gruneisen, M.T., Restaino, S.R., Tyson, R.K. (Eds.), Proc. SPIE, pp.10-13.
    [13]Bonner, C.S., Ashley, M.C.B., Cui, X., Feng, L., Gong, X., Lawrence, J.S., Luong-van, D.M., Shang, Z., Storey, J.W.V., Wang, L., Yang, H., Yang, J., Zhou, X., Zhu, Z.,2010. Thickness of the Atmospheric Boundary Layer Above Dome A, Antarctica, during 2009. PASP 122,1122-1131.
    [14]Burrows, C.J., Holtzman, J.A., Faber, S.M., Bely, P.Y., Hasan, H., Lynds, C.R., Schroeder, D.,1991. The imaging performance of the Hubble Space Telescope. Astrophys. J. Lett.369, L21-L25.
    [15]Cai, R., Wu, Q., Shi, W., Sun, H., Wu, Y., Wang, Z.,2011. Ccd performance model and noise control, in:Image Analysis and Signal Processing (IASP),2011 International Conference on, IEEE. pp.389-394.
    [16]Carasso, A.,2001. Direct blind deconvolution. SIAM J. Numer. Anal.61,1980-2007.
    [17]Carbillet, M., Verinaud, C., Guarracino, M., Fini, L., Lardiere, O., Le Roux, B., Puglisi, A.T., Femenia, B., Riccardi, A., Anconelli, B., Correia, S., Bertero, M., Boccacci, P.,2004. CAOS:a numerical simulation tool for astronomical adap-tive optics (and beyond), in:Bonaccini Calia, D., Ellerbroek, B.L., Ragazzoni, R. (Eds.), Proc. SPIE, pp.637-648.
    [18]Carlberg, R.G., Morris, S.L., Yee, H.K.C., Ellingson, E.,1997. Redshift Evo-lution of Galaxy Cluster Densities. Astrophys. J. Lett.479, L19.
    [19]Cenedese, A., Romano, G.P., di Felice, F.,1991. Experimental testing of Tay-lor's hypothesis by L.D.A. in highly turbulent flow. Exp. Fluids 11,351-358.
    [20]Chebbo, M., Le Roux, B.,2010. Toward an optimal control for wide field of view AO on ELT, in:Adaptative Optics for Extremely Large Telescopes.
    [21]Chen, X.Y., Zhu, N.H.,2006. The design of software simulation based on pyra-mid wavefront sensor. Progress in Astronomy 24,362-372.
    [22]Clayton, D.D.,1983. Principles of stellar evolution and nucleosynthesis.
    [23]Cortes, A., Neichel, B., Guesalaga, A., Osborn, J., Rigaut, F., Guzman, D.,2012. New results on a cn2 profiler for gems 1236,84475T-84475T-12.
    [24]Cui, X.,2008. Preparing first light of LAMOST, in:Proc. SPIE, pp.701204-701204-7.
    [25]Cui, X., Su, D., Li, G., Yao, Z., Zhang, Z., Li, Y., Zhang, Y., Wang, Y., Xu, X., Wang, H.,2004. Experiment system of LAMOST active optics, in:Oschmann, Jr., J.M. (Ed.), Proc. SPIE, pp.974-985.
    [26]Cui, X., Su, D.q., Wang, Y.n.,2000. Progress in the LAMOST optical system, in:Dierickx, P. (Ed.), Proc. SPIE, pp.347-354.
    [27]Cui, X.Q., Zhao, Y.H., Chu, Y.Q., Li, G.P., Li, Q., Zhang, L.P., Su, H.J., Yao, Z.Q., Wang, Y.N., Xing, X.Z., Li, X.N., Zhu, Y.T., Wang, G., Gu, B.Z., Luo, A.L., Xu, X.Q., Zhang, Z.C., Liu, G.R., Zhang, H.T., Yang, D.H., Cao, S.Y., Chen, H.Y., Chen, J.J., Chen, K.X., Chen, Y., Chu, J.R., Feng, L., Gong, X.F., Hou, Y.H., Hu, H.Z., Hu, N.S., Hu, Z.W., Jia, L., Jiang, F.H., Jiang, X., Jiang, Z.B., Jin, G., Li, A.H., Li, Y., Li, Y.P., Liu, G.Q., Liu, Z.G., Lu, W.Z., Mao, YD., Men, L., Qi, Y.J., Qi, Z.X., Shi, H.M., Tang, Z.H., Tao, Q.S., Wang, D.Q., Wang, D., Wang, G.M., Wang, H., Wang, J.N., Wang, J., Wang, J.L., Wang, J.P., Wang, L., Wang, S.Q., Wang, Y., Wang, Y.F., Xu, L.Z., Xu, Y., Yang, S.H., Yu, Y, Yuan, H., Yuan, X.Y., Zhai, C., Zhang, J., Zhang, Y.X., Zhang, Y., Zhao, M., Zhou, F., Zhou, G.H., Zhu, J., Zou, S.C.,2012. The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). Res. Astron. Astrophy.12, 1197-1242.
    [28]Dahm, W.J.A., Southerland, K.B.,1997. Experimental assessment of Taylor's hypothesis and its applicability to dissipation estimates in turbulent flows. Phys. Fluids 9,2101-2107.
    [29]Dainty, C. (Ed.),2008. Adaptive Optics for Industry and Medicine.
    [30]Dainty, J.C.,1981. Speckle interferometry in astronomy, in:Johnson, H.L Allen, C. (Eds.), Recent Advances in Observational Astronomy, pp.95-109.
    [31]Davies, R., Kasper, M.,2012. Adaptive Optics for Astronomy. Annu. Rev. Astron. Astrophys.50,305-351.
    [32]Dodelson, S.,2003. Modern cosmology.
    [33]Ealey, M.A., Wellman, J.,1989. Fundamentals of deformable mirror design and analysis, in:Vukobratovich, D. (Ed.), Proc. SPIE, pp.66-84.
    [34]Ellerbroek, B.L.,2009. A linear model for shack-hartmann sensors, in:Adaptive Optics:Methods, Analysis and Applications, Optical Society of America.
    [35]Elmegreen, B.G.,1999. Formation and Loss of Hierarchical Structure in Two-dimensional Magnetohydrodynamic Simulations of Wave-driven Turbulence in Interstellar Clouds. Astrophys. J.527,266-284.
    [36]Epps, H.W., Angel, J.R.P., Anderson, E.,1984. Advanced wide-field broad-passband refracting field correctors for large telescopes, in:Ulrich, M.H., Kjaer, K. (Eds.), IAU Colloq.79:Very Large Telescopes, their Instrumentation and Programs, pp.519-547.
    [37]Fan, Z., Huang, Y.F., Li, J.Z., Zhou, X., Ma, J., Wu, H., Zhang, T.M., Zhao, Y.H.,2011. Spectroscopic study of globular clusters in the halo of M31 with the Xinglong 2.16 m telescope. Res. Astron. Astrophys.11,1298-1310.
    [38]Filippenko, A.V.,1982. The importance of atmospheric differential refraction in spectrophotometry. PASP 94,715-721.
    [39]Foias, C., Manley, O., Rosa, R., Temam, R.,2001. Navicr-stokes equations and turbulence.
    [40]Frieman, J.A., Turner, M.S., Huterer, D.,2008. Dark Energy and the Accelerat-ing Universe. Annu. Rev. Astron. Astrophys.46,385-432.
    [41]Frisch, U.,1996. Turbulence.
    [42]Fusco, T., Conan, J.M., Rousset, G., Mugnier, L.M., Michau, V.,2001. Optimal wave-front reconstruction strategies for multiconjugate adaptive optics. J. Opt. Soc. Am. A 18,2527-2538.
    [43]Gehrz, R.D., Becklin, E.E., de Pater, I., Lester, D.F., Roellig, T.L., Woodward, C.E.,2009. A new window on the cosmos:The Stratospheric Observatory for Infrared Astronomy (SOFIA). Adv. Space. Res.44,413-432.
    [44]Goodman, J.W.,1985. Statistical optics.
    [45]Goodman, J.W.,2005. Introduction to Fourier optics.
    [46]Gould, H., Tobochnik, J.,1988. An introduction to computer simulation meth-ods.
    [47]Gourlay, J., Love, G.D., Birch, P.M., Sharples, R.M., Purvis, A.,1997. A real-time closed-loop liquid crystal adaptive optics system:first results. Opt. Com-mun.137,17-21.
    [48]Green, R.M.,1985. Spherical astronomy.
    [49]Gubler, J., Tytler, D.,1998. Differential Atmospheric Refraction and Limita-tions on the Relative Astrometric Accuracy of Large Telescopes. PASP 110, 738-746.
    [50]Hardy, J.W.,1991. Adaptive optics-A progress review, in:Ealey, M.A. (Ed.), Proc. SPIE, pp.2-17.
    [51]Hardy, J.W.,1998. Adaptive Optics for Astronomical Telescopes.
    [52]Hegde, S., Kaltenegger, L.,2013. Colors of Extreme Exo-Earth Environments. Astrobiology 13,47-56.
    [53]Hippler, S., Hormuth, F., Brandner, W., Butler, D.J., Henning, T., Egner, S., 2006. The MPIA multipurpose laboratory atmospheric turbulence simulator MAPS, in:Proc. SPIE.
    [54]Hornbeck, L.J.,1990. Deformable-mirror spatial light modulators, in:Efron, U. (Ed.), Proc. SPIE, pp.86-102.
    [55]Hu, L., Xuan, L., Cao, Z., Mu, Q., Li, D., Liu, Y.,2006. A liquid crystal atmospheric turbulence simulator. Opt. Express 14,11911-11918.
    [56]Hu, L., Xuan, L., Liu, Y., Cao, Z., Li, D., Mu, Q.,2004. Phase-only liquid crystal spatial light modulator for wavefront correction with high precision. Opt. Express 12,6403.
    [57]Huang, L., Rao, C., Jiang, W.,2008. Modified Gaussian influence function of deformable mirror actuators. Opt. Commun.16,108.
    [58]Hubin, N., Arsenault, R., Conzelmann, R., Delabre, B., Le Louarn, M., Stroe-bele, S., Stuik, R.,2005. Ground Layer Adaptive Optics. CR. PHYS.6,1099-1109.
    [59]Jackson, J.D.,1998. Classical Electrodynamics,3rd Edition.
    [60]Jia, P., Zhang, S.,2012. Simulation and fabrication of the atmospheric turbu-lence phase screen based on a fractal model. Res. Astron. Astrophy.12,584-590.
    [61]Jia, P., Zhang, S.,2013. Performance modeling of the adaptive optics system on the 2.16 m telescope. Sci. China Ser. G 56,658-662.
    [62]Jiang, Z., Gong, S., Dai, Y.,2005. Monte-Carlo analysis of centroid detected accuracy for wavefront sensor. Opt. Laser Technol.37,541-546.
    [63]Kasper, M., Looze, D.P., Hippler, S., Herbst, T., Glindemann, A., Ott, T., Wirth, A.,2000. ALFA:Adaptive Optics for the Calar Alto Observatory Optics, Con-trol Systems, and Performance. Exp. Astron.10,49-73.
    [64]Kippenhahn, R., Weigert, A.,1994. Stellar Structure and Evolution.
    [65]Kolb, J., Marchetti, E., Tisserand, S., Franza, F., Delabre, B., Gonte, F, Brast, R., Jacob, S., Reversat, F.,2004. MAPS:a turbulence simulator for MCAO, in:Bonaccini Calia, D., Ellerbroek, B.L., Ragazzoni, R. (Eds.), Proc.SPIE, pp. 794-804.
    [66]Kong, X., Cheng, F.Z., Weiss, A., Charlot, S.,2002. Spectroscopic study of blue compact galaxies.Ⅱ. Spectral analysis and correlations. Astron. Astrophys.396, 503-512.
    [67]Lane, R.G., Glindemann, A., Dainty, J.C.,1992. Simulation of a Kolmogorov phase screen. Wave Random Media 2,209-224.
    [68]Lascaux, F., Masciadri, E., Hagelin, S.,2011. Mesoscale optical turbulence simulations above Dome C, Dome A and South Pole. MNRAS 411,693-704.
    [69]Law, N.M., Mackay, C.D., Baldwin, J.E.,2006. Lucky imaging:high angular resolution imaging in the visible from the ground. Astron. Astrophys.446,739-745.
    [70]Lawrence, J.S., Ashley, M.C.B., Tokovinin, A., Travouillon, T.,2004. Excep-tional astronomical seeing conditions above Dome C in Antarctica. Nature 431, 278-281.
    [71]Le Louarn, M., Verinaud, C., Korkiakoski, V., Fedrigo, E.,2004. Parallel simu-lation tools for AO on ELTs, in:Bonaccini Calia, D., Ellerbroek, B.L., Ragaz-zoni, R. (Eds.), Proc. SPIE, pp.705-712.
    [72]Le Roux, B., Conan, J.M., Kulcsar, C., Raynaud, H.F., Mugnier, L.M., Fusco, T., 2003. Optimal control law for multiconjugate adaptive optics, in:Wizinowich, P.L., Bonaccini, D. (Eds.), Proc. SPIE, pp.878-889.
    [73]Learner, R.,1981. Astronomy through the telescope.
    [74]Lee, J.H., Uhm, T.K., Lee, W.S., Youn, S.K.,2003. First Order Analysis of thin plate deformable mirrors, in:Wizinowich, P.L., Bonaccini, D. (Eds.), Proc. SPIE, pp.757-764.
    [75]Lemaitre, G.R.,2009. Astronomical Optics and Elasticity Theory.
    [76]Lemaitre, G.R.,2013. Optical design and active optics methods in astronomy. Optical Review 20,103-117.
    [77]Liang, M., Su, D.,1988. Lens-Prism Corrections for Prime and Cassegrain Foci of a Paraboloid Primary Telescope, in:Ulrich, M.H. (Ed.), European Southern Observatory Conference and Workshop Proceedings, p.237.
    [78]Lloyd-Hart, M., Brusa, G., Wildi, F.P., Miller, D.L., Fisher, D.L., Riccardi, A., 2003. Lessons learned from the first adaptive secondary mirror, in:Tyson, R.K., Lloyd-Hart, M. (Eds.), Proc. SPIE, pp.79-89.
    [79]Longair, M.S..S..,2006. The cosmic century:a history of astrophysics and cosmology. Cambridge University Press.
    [80]Love, G.D.,1997. Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator. Appl. Opt.36,1517-1524.
    [81]Lue, J.T.,2007. Physical properties of nanomaterials. Encyclopedia of Nanoscience and Nanotechnology, American scientific publishers.
    [82]Ma, J., Liu, Y., Xu, C, Rong, H., Li, B., Chu, J.,2012. Low-cost unimorph deformable mirror with high actuator count for astronomical adaptive optics 844707-844707-6.
    [83]Mandelbrot, B.,1967. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science 156,636-638.
    [84]Mandelbrot, B.B.,1975. Stochastic Models for the Earth's Relief, the Shape and the Fractal Dimension of the Coastlines, and the Number-Area Rule for Islands. Proc. Natl. Acad. Sci.72,3825-3828.
    [85]Mast, T.S., Nelson, J.E.,1982. Figure control for a fully segmented telescope mirror. Appl. Opt.21,2631-2641.
    [86]McGlamery, B.L.,1976. Computer simulation studies of compensation of tur-bulence degraded images, in:Urbach, J.C. (Ed.), Proc. SPIE, pp.225-233.
    [87]Mcguire, P.C., Lloyd-Hart, M., Angel, J.R.P., Angeli, G.Z., Johnson, R.L., Fitz-Patrick, B.C., Davison, W.B., Sarlot, R.J., Bresloff, C.J., Hughes, J.M., Miller, S.M., Schaller, S., Wildi, F.P., Kenworthy, M.A., Cordova, R.M., Radcmach-er, M.J., Rascon, M.H., Burge, J.H., Stamper, B.L., Zhao, C., Salinari, P., del Vecchio, C., Riccardi, A., Brusa, G., Biasi, R., Andrighettoni, M., Gallieni, D., Franchini, C., Sandler, D.G., Barrett, T.K.,1999. Full-system laboratory test-ing of the F/15 deformable secondary mirror for the new MMT adaptive optics system, in:Tyson, R.K., Fugate, R.Q. (Eds.), Proc. SPIE, pp.28-37.
    [88]McKechnie, T.S.,1992. Atmospheric turbulence and the resolution limits of large ground-based telescopes. J. Opt. Soc. Am. A 9,1937-1954.
    [89]Meinel, A.B., Meinel, M.P., Woolf, N.J.,1983. Multiple aperture telescope diffraction images, in:Shannon, R.R., Wyant, J.C. (Eds.), Applied Optics and Optical Engineering. Vol.9, pp.149-201.
    [90]Mi, J., Antonia, R.,1994. Some checks of taylor's hypothesis in a slightly heated turbulent circular jet. Exp. Therm. Fluid Sci.8,328-335.
    [91]Moin, P.,2009. Revisiting Taylor's hypothesis. J. Fluid Mech.640,1.
    [92]Moore, B., Ghigna, S., Governato, F., Lake, G., Quinn, T., Stadel, J., Tozzi, P., 1999. Dark Matter Substructure within Galactic Halos. Astrophys. J. Lett.524, L19-L22.
    [93]Morris, T.J., Myers, R.M.,2006. Wide-field Adaptive Optics correction using a single rotating laser guide star. MNRAS 370,1783-1789.
    [94]Mu, Q., Cao, Z., Hu, L., Liu, Y., Peng, Z., Yao, L., Xuan, L.,2012. Open loop adaptive optics testbed on 2.16 meter telescope with liquid crystal corrector. Opt. Commun.285,896-899.
    [95]Munshi, D., Valageas, P., van Waerbeke, L., Heavens, A.,2008. Cosmology with weak lensing surveys. Phys. Rep.462,67-121.
    [96]Neal, D.R., Copland, J., Neal, D.A.,2002. Shack-Hartmann wavefront sensor precision and accuracy, in:Duparre, A., Singh, B. (Eds.), Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pp.148-160.
    [97]Nelson, J.,1980. The university of California ten meter telescope project-the segmented design, in:Optical and Infrared Telescopes for the 1990's, p.11.
    [98]Noll, R.J.,1976. Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am. A 66,207-211.
    [99]Ohanian, H., Ruffini, R.,1994. Gravitation and spacetime.
    [100]Orosz, J.A., Kuulkers, E.,1999. The optical light curves of Cygnus X-2 (V1341 Cyg) and the mass of its neutron star. Mon. Not. R. Astron. Soc.305,132-142. arXiv:astro-ph/9901177.
    [101]Padoan, P., Jones, B.J.T., Nordlund, A.P.,1997. Supersonic Turbulence in the Interstellar Medium:Stellar Extinction Determinations as Probes of the Structure and Dynamics of Dark Clouds. Astrophys. J.474,730. arXiv: astro-ph/9603061.
    [102]Papoulis, A., Pillai, S.U.,2002. Probability, Random Variables, and Stochastic Processes, Fourth Edition. McGraw-Hill Higher Education.
    [103]Petit, C., Conan, J.M., Kulcsar, C., Raynaud, H.F.,2009. Linear quadratic Gaus-sian control for adaptive optics and multiconjugate adaptive optics:experimental and numerical analysis. J. Opt. Soc. Am. A 26,1307.
    [104]Petit, C., Fusco, T., Charton, J., Mouillet, D., Rabou, P., Buey, T., Rousset, G., Sauvage, J.F., Baudoz, P., Gigan, P., Kasper, M., Fedrigo, E., Hubin, N., Feautrier, P., Beuzit, J.L., Puget, P.,2008. The SPHERE XAO system:design and performance, in:Proc. SPIE.
    [105]Pietronero, L., Erzan, A., Evertsz, C.,1988. Theory of fractal growth. Phys. Rev. Lett.61,861-864.
    [106]Piprek, J.,2005. Optoelectronic Devices:Advanced Simulation and Analysis.
    [107]Poyneer, L.A., Macintosh, B.A., Veran, J.P.,2007. Fourier transform wavefront control with adaptive prediction of the atmosphere. J. Opt. Soc. Am. A 24,2645.
    [108]Primot, J.,2003. Theoretical description of Shack-Hartmann wave-front sensor. Opt. Commun.222,81-92.
    [109]Prinn, R.G., Lewis, J.S.,1975. Phosphine on Jupiter and implications for the Great Red SPOT. Science 190,274-276.
    [110]Rao, C., Zhu, L., Rao, X., Guan, C., Chen, D., Lin, J., Liu, Z.,2010.37-element solar adaptive optics for 26-cm solar fine structure telescope at yunnan astronomical observatory. Chin. Opt. Lett.8,966-968.
    [111]Reeves, A.P., Myers, R.M., Morris, T.J., Basden, A.G., Bharmal, N.A., Rolt, S., Bramall, D.G., Dipper, N.A., Younger, E.J.,2012. Dragon:a wide-field multipurpose real time adaptive optics test bench,84474Y-84474Y-9.
    [112]Richardson, L.J., Deming, D., Horning, K., Seager, S., Harrington, J.,2007. A spectrum of an extrasolar planet. Nature 445,892-895. arXi v:ast ro-ph/ 0702507.
    [113]Roddier, F.,1981. The effects of atmospheric turbulence in optical astrono-my. Progress in optics. Volume 19. Amsterdam, North-Holland Publishing Co., 1981, p.281-376.19,281-376.
    [114]Roddier, R, Cowie, L., Graves, J.E., Songaila, A., McKenna, D.,1990. Seeing at Mauna Kea-A joint UH-UN-NOAO-CFHT study, in:Barr, L.D. (Ed.), Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pp.485-491.
    [115]Roddier, F., Northcott, M., Graves, J.E.,1991. A simple low-order adaptive optics system for near-infrared applications. PASP 103,131-149.
    [116]Roxburgh, I.W.,1978. Convection and stellar structure. Astron. Astrophys.65, 281-285.
    [117]Sandler, D.G., Barrett, T.K., Palmer, D.A., Fugate, R.Q., Wild, W.J.,1991. Use of a neural network to control an adaptive optics system for an astronomical telescope. Nature 351,300-302.
    [118]Saunders, W., Lawrence, J.S., Storey, J.W.V., Ashley, M.C.B., Kato, S., Minnis, P., Winker, D.M., Liu, G., Kulesa, C.,2009. Where Is the Best Site on Earth? Domes A, B, C, and F, and Ridges A and B. PASP 121,976-992.0905.4156.
    [119]Schmidt, W., Federrath, C., Klessen, R.,2008. Is the Scaling of Supersonic Turbulence Universal? Phys. Rev. Lett.101,194505.0810.1397.
    [120]Schodel, R., Ott, T., Genzel, R., Hofmann, R., Lehnert, M., Eckart, A., Mouawad, N., Alexander, T., Reid, M.J., Lenzen, R., Hartung, M., Lacombe, F., Rouan, D., Gendron, E., Rousset, G., Lagrange, A.M., Brandner, W., Ageorges, N., Lidman, C., Moorwood, A.F.M., Spyromilio, J., Hubin, N., Menten, K.M., 2002. A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way. Nature 419,694-696. arXiv:astro-ph/0210426.
    [121]Schuecker, P., Finoguenov, A., Miniati, F., Bohringer, H., Briel, U.G.,2004. Probing turbulence in the Coma galaxy cluster. Astron. Astrophys.426,387-397. arXiv:astro-ph/0404132.
    [122]Schwartz, C., Baum, G., Ribak, E.N.,1994. Turbulence-degraded wave fronts as fractal surfaces. J. Opt. Soc. Am. A11,444-451.
    [123]Seifert, L., Liesener, J., Tiziani, H.J.,2003. Adaptive Shack-Hartmann sensor, in:Osten, W. (Ed.), Proc. SPIE, pp.250-258.
    [124]Sreenivasan, K.R.,1991. Fractals and multifractals in fluid turbulence. An-nu. Rev. Fluid Mech.23,539-604. http://www.annualreviews.orq/ doi/pdf/10.1146/annurev.f1.23.010191.002543.
    [125]Stone, R.C.,1996. An Accurate Method for Computing Atmospheric Refrac-tion. PAPS 108,1051-1058.
    [126]Su, D.,1986. A new type of field corrector. Astron. Astrophys.156,381-385.
    [127]Su, D., Zhou, B., Yu, X.,1990. Main optical system of China's 2.16m telescope. Sci. Sin. A.33,454-466.
    [128]Su, D.Q., Cao, C., Liang, M.,1986. Some new ideas of the optical system of large telescopes, in:Barr, L.D. (Ed.), Proc. SPIE, pp.498-503.
    [129]Su, D.Q., Cui, X., Wang, Y., Yao, Z.,1998. Large-sky-area multiobject fiber spectroscopic telescope (LAMOST) and its key technology, in:Stepp, L.M. (Ed.), Proc. SPIE, pp.76-90.
    [130]Su, D.Q., Cui, X.Q.,2004. Active Optics in LAMOST. CHJAA 4,1-9.
    [131]Su, D.Q., Jia, P., Liu, G.,2012. Atmospheric dispersion corrector for the Large Sky Area Multi-Object Fibre Spectroscopic Telescope. Mon. Not. R. Astron. Soc.419,3406-3413.1110.5379.
    [132]Su, D.Q., Jiang, S.T., Zou, W.Y., Yang, S.M., Yang, S.Y., Zhang, H.Y., Zhu, Q.C.,1994. Experiment system of thin-mirror active optics, in:Stepp, L.M. (Ed.), Proc. SPIE, pp.609-621.
    [133]Tang, G., Rao, C., Sheng, F., Zhang, X., Jiang, W.,2002. Performance and test results of a 61-element adaptive optics system on the 1.2-m telescope of Yunnan Observatory, in:Jiang, W., Tyson, R.K. (Eds.), Proc. SPIE, pp.13-19.
    [134]Tatarski, V.I., Silverman, R.A., Chako, N.,1961. Wave Propagation in a Turbu-lent Medium. Physics Today 14.
    [135]Tatarskii, V.,1971. The effects of the turbulent atmosphere on wave propagation
    [136]Taylor, G.I.,1935. Statistical Theory of Turbulence. Proc. R. Soc. A 151,421-444.
    [137]Tennekes, H., Lumley, J.,1972. A first course in turbulence.
    [138]Toyoda, T., Yabe, M.,1983. The temperature dependence of the refractive in-dices of fused silica and crystal quartz. J. Phys. D:Appl. Phys.16, L97-L100.
    [139]Trinquet, H., Agabi, A., Vernin, J., Azouit, M., Aristidi, E., Fossat, E.,2008. Nighttime Optical Turbulence Vertical Structure above Dome C in Antarctica. PASP 120,203-211.
    [140]Tu, C.Y., Marsch, E.,1995. MHD structures, waves and turbulence in the solar wind:Observations and theories. Space Sci. Rev.73,1-210.
    [141]Tyson, R.K.,1982. Conversion of Zernike aberration coefficients to Seidel and higher-order power-series aberration coefficients. Opt. Lett.7,262-264.
    [142]Vernin, J., Munoz-Tunon, C.,1994. Optical seeing at La Palma Observatory. 2:Intensive site testing campaign at the Nordic Optical Telescope. Astron. Astrophys.284,311-318.
    [143]Vogel, C.R., Yang, Q.,2006. Modeling, simulation, and open-loop control of a continuous facesheet MEMS deformable mirror. J. Opt. Soc. Am. A 23,1074-1081.
    [144]Wang, J.Y., Silva, D.E.,1980. Wave-front interpretation with Zernike polyno-mials. Appl. Opt.19,1510-1518.
    [145]Wang, Y.N., Su, D.Q.,1990. Some new lens-prism correctors for prime focus. Astron. Astrophys.232,589-602.
    [146]Wei, J.Y., Xu, D.W., Cao, L., Zhao, Y.H., Hu, J.Y., Li, Q.B.,1998. Discovery of six bright low-redshift quasars from the RASS sources. Astron. Astrophys.329, 511-513.
    [147]White, R.J., Ghez, A.M.,2001. Observational Constraints on the Formation and Evolution of Binary Stars. Astrophys. J.556,265-295.
    [148]Willstrop, R.V.,1987. Atmospheric dispersion compensator for a wide-field three-mirror telescope. Mon. Not. R. Astron. Soc.225,187-198.
    [149]Wilson, R.N.,2002. Reflecting Telescope Optics Ⅱ:Manufacture, Testing, Alignment, Modern Techniques, volume 2. Springer.
    [150]Wilson, R.N.,2007. Reflecting Telescope Optics I.
    [151]Winsor, R.S., Sivaramakrishnan, A., Makidon, R.B.,1999. Finite element anal-ysis of low-cost membrane deformable mirrors for high-order adaptive optics, in:Roybal, W. (Ed.), Proc. SPIE, pp.160-167.
    [152]Wu, X., Zeng, Z., Ma, C., Weng, N., Xiao, L.,1996. Observations of atmo-spheric turbulence by balloon-borne instrument at xinlong station [j]. Chin. J. Quantum Electron.4.
    [153]Wu, X.B., Bade, N., Beckmann, V.,1999. X-ray luminous radio-quiet high redshift QSOs in the ROSAT All-Sky Survey. Astron. Astrophys.347,63-68.
    [154]Wynne, C.G.,1986. Atmospheric-dispersion correctors at prime focus. The Observatory 106,163-164.
    [155]Wynne, C.G., Worswick, S.P.,1986. Atmospheric dispersion correctors at the Cassegrain focus. Mon. Not. R. Astron. Soc.220,657-670.
    [156]Xu, W.,1997. The diffraction energy distribution of an optical system with two segmented mirrors. Chin. Astron. Astrophys.17,96-102.
    [157]Yang, H., Kulesa, C.A., Walker, C.K., Tothill, N.F.H., Yang, J., Ashley, M.C.B., Cui, X., Feng, L., Lawrence, J.S., Luong-van, D.M., McCaughrean, M.J., S-torey, J.W.V., Wang, L., Zhou, X., Zhu, Z.,2010. Exceptional Terahertz Trans-parency and Stability above Dome A, Antarctica. PASP 122,490-494.
    [158]Yoder, P.R.,1993. Opto-mechanical systems design.
    [159]Yuan, X., Cui, X., Su, D.q., Zhu, Y., Wang, L., Gu, B., Gong, X., Li, X.,2012. Preliminary design of the kunlun dark universe survey telescope (kdust). Pro-ceedings of the International Astronomical Union 8,271-274.
    [160]Yuan, X., Cui, X., Su, D.q., Zhu, Y., Wang, L., Gu, B., Gong, X., Li, X.,2013. Preliminary design of the Kunlun Dark Universe Survey Telescope (KDUST), in:IAU Symposium, pp.271-274.
    [161]Zhan, H., Knox, L., Tyson, J.e.a.,2009. Cosmology with photometric baryon acoustic oscillation measurements, in:Bulletin of the American Astronomical Society, p.367.
    [162]Zhao, G.B., Zhan, H., Wang, L., Fan, Z., Zhang, X.,2011. Probing Dark Energy with the Kunlun Dark Universe Survey Telescope. PASP 123,725-734.
    [163]Zuev, V.E.,1982. Laser beams in the atmosphere. Technical Report.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700