基于PD方法的空间相机位相信息反演技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间相机在军事侦察、气象观测、海洋探测、资源调查与环境监测、天文、测绘、灾害预测等诸多领域发挥着不可替代的重要作用,是国家安全、科学研究不可或缺的重要手段。然而发射过程中的振动、冲击和在轨运行时复杂的空间环境可能造成空间相机成像质量的下降。如何控制力、热因素造成的波前畸变是保证空间相机在轨成像质量的重要问题。目前采取的一些热控、调焦措施,结构复杂,却达不到理想效果。
     为了能够提高空间相机的在轨成像质量,论文研究了基于PD方法的波前位相信息反演技术。通过相机所采集的图像解算光学系统的波前像差,构建相机在轨成像时的退化函数,为图像复原提供可靠的依据,同时也可以进行离焦检测,指导相机在轨调焦。论文的主要内容包括以下四部分:
     1、对PD方法的评价函数进行改进,对PD方法解算光学系统波前像差进行了初步模拟仿真。
     在PD方法理论推导的基础上,增加了Tikhonov正则项,改善了PD方法对于噪声的适应性;针对波前RMS值分别为0.1671λ、0.2931λ和0.3304λ三种情况,选择遗传算法作为优化方法,模拟仿真了利用PD方法解算光学系统波前像差,计算精度均优于λ/100(RMS)。
     2、分析PD方法的适应性,应用PD方法的计算结果进行图像复原。
     深入分析PD方法计算精度与系统波前像差、波前离焦量取值的关系,PD方法的噪声适应性,离焦量误差及目标物体对比度对PD方法计算残差的影响,得到了PD方法在工程实际中的适用范围;根据PD方法的解算结果构建系统退化函数,对图像进行复原操作,并引入结构相似度方法来评价复原图像和原始图像的相似程度。
     3、利用波长采样和单色光假设等思想,将PD方法的应用领域拓展为宽光谱照明。
     针对单色光下的PD方法进行理论改进,采用波长采样的方法,使之拓展为适应宽光谱照明的PD方法,分析了宽光谱照明下PD方法的波长采样策略;模拟分析了不同波长采样情况下PD方法的解算精度和复原图像与原始图像的相似程度;针对光谱宽度不太宽的情形,提出了单色光假设,模拟分析了单色光假设时,不同光谱宽度情况下PD方法的解算精度和复原图像与原始图像的相似程度。
     4、针对单色光条件下的PD方法和宽光谱下的PD方法进行实验验证。
     基于之前的模拟分析,进行如下三个实验:○1利用PD方法检测离轴三反光学系统的波前误差,与干涉检验的结果相比,PD方法检测结果的相对偏差仅为0.37%,根据PD方法检测结果复原的图像质量有了明显提高;○2利用数码相机验证宽光谱照明下的PD方法,对不同的分辨率板进行成像实验,PD方法解算结果的重复性较好,所得系统波前像差约为0.2λ(RMS);○3利用光学系统外场成像实验验证宽光谱下的PD方法,解算得到光学系统波像差约为λ/13(RMS),计算的探测器理想位置与外场成像时确定的焦面位置基本一致。
     本论文的研究工作围绕着基于PD方法的空间相机位相信息反演技术,完成了PD方法评价函数的改进、PD方法的适应性分析、将PD方法的应用领域拓展为宽光谱照明,模拟仿真了波长采样和单色光假设时PD方法解算光学系统波前像差,最后利用利用离轴三反光学系统的波前检测验证了单色光条件下的PD方法,利用数码相机成像实验和空间相机外场成像实验验证宽光谱照明下的PD方法,充分验证了PD方法在单色光照明和宽光谱照明条件下解算光学系统波前位相信息的可行性。
It is important to maintain the high quality of space-borne cameras in orbit,because the environments of space are very risky and the image quality may bedegraded because of force and heat reasons. Traditional thermal and misfocus controltechnology are very complex with large source reqiremnts and limited effect.
     In order to improve the image quality of space camera in orbit, a phase retrievalmethod based on phase diversity (PD) is proposed to be applied to space opticalsystem in this dissertation. The wavefront aberration of optical system can be solvedby the images gained by space cameras, and the degraded function of space cameracan be reconstructed. At the same time, the misfocus can be tested and the imsfocus ofspace camera can be adjusted. There are mainly four contents in this dissertation:
     1. The improvement of merit function of traditional PD method, and thesimulation of solving wavefront aberration of optical system by PD method.
     On the basis of traditional theory of PD method, the Tikhonov regularizationfunction is increased, and the noise adaptability of PD method is improved. Thegenetic algorithm is selected, and solving wavefront aberration of optical system byPD method is simulated. The result shows that when the RMS of wavefront aberrationare0.1671λ,0.2931λ and0.3304λ, the presicion of calculation are all less than λ/100(RMS).
     2. The adaptability analysis of traditional PD method, and the image restrorationbased on the calculation result by PD method.
     The relationships between the calculation precision and wavefront aberration ofsystem, wavefront defocus are analyzed. Also, the noise adaptability of PD method isanalyzed, and the effect of the defocus error and the contrast of target on thecalculation residual error of PD method are also analyzed. Furthermore, the imagesare restored according to the degraded function reconstructed by the calculation resultof PD method, and the structure similarity is introduced to evaluate the similarity ofrestored images and initial images.
     3. According to the wavelength sampling and monochromatic light assumption,expanding the traditional PD method to broadband illumination condition.
     In order to expand the traditional PD method to broadband illumination condition,the traditional theory of PD method is improved by wavelength sampling method. Thestrategy of wavelength sampling is analyzed. Also, the calculation precision and thesimilarity of restored image and initial image are analyzed when the wavelengthsamplings are different. Furthermore, when the width of spectrum is small, themonochromatic light assumption is proposed. The calculation precision and thesimilarity of restored image and initial image are simulated when the widths ofspectrum are different.
     4. The experimental validation of traditional PD method and PD broadbandillumination.
     Based on the former simulation and analysis, the following three experiments arecarried out: Firstly, the wavefront error of an off-axis three-mirror anastigmaticsystem is tested by traditional PD method. Compared to the interferometric testingresult, the relative deviation of PD result is only0.37%, and the quality of imagerestored by calculation result of PD method is obviously improved; Secondly, the PDwith broadband illumination is verified by digital camera. When different resolutionboards are selected, the results solved by PD method have good repeatability, and thewavefront aberration is about0.2λ (RMS); At last, the PD with broadbandillumination is verified by outfield imaging experiment of optical system. The wavefront aberration of optical system solved by PD method is about λ/13(RMS), theideal position of detector calculated by PD and the detector position confirmed inexperiment are basically the same.
     In this dissertation the phase retrieval in space-borne camera based on phasediversity is presented, including the improvement of merit function in traditional PDmethod, the adaptability analysis of traditional PD method, expanding the PD methodto broadband illumination, the simulation of PD method when the wavelengthsampling and the monochromatic light assumption is introduced respectively.Furthermore, the traditional PD method is verified by the wavefront testing of TMAoptical system, and the PD with broadband illumination are verified by the digitalcamera imaging experiment and the outfield imaging experiment of space camera. Itcan be concluded that it is feasible for PD method to solve the wavefront error ofoptical system when there is monochromatic light illumination or broadband spectrumillumination.
引文
[1]姜景山.空间科学与应用[M].北京:科学出版社,2000.
    [2] T. Cronje, H. burger, J. Du Plessis, et al. Multi Sensor Satellite Imagers forCommercial Remote Sensing [J]. SPIE,2005,5978:205-208.
    [3]史光辉.卫星对地观测高分辨率光学系统和设计问题[J].光学精密工程,1999,7(1):16-24.
    [4] M. Olivieri, S. Pieri, A. Romoli. Analysis of defocusing thermal effects inopticalsvstemsf [J]. SPIE,1996,2774:283-292.
    [5] C. R. Baugher, amachandran N. An Overview of the Space Shuttle AccelerationoEnvironment [J]. SPIE,1994,2220:90:101.
    [6]赵鹏,卢锷,王家骐.空间光学仪器光、机、热一体化总体设计[J].光学精密工程,1996,4(6):17-21.
    [7] S. Weinswing, R. Hookman. Optical analysis of thermal induced structuraldistortions[J]. SPIE,1991,1527:118-125.
    [8]杨怿,陈时锦,张伟.空间光学遥感器光机热集成分析技术综述[J].光学技术,2005,31(6):913-920.
    [9]闵桂荣,郭舜.航天器热控制[M].北京:科学出版社,1998.
    [10] Y. Zhiquan, P. Kevin. Temperature control of electrohydrodynamic micro heatpipes [J]. Experimental thermal and fluid science,2003(27):867-875.
    [11] Jer, nison, L. G. Gregoris. A Self Imaging Technique for Focusing An IRTelescope [J]. SPIE,1990,1309:245-256.
    [12] Kavier Roca. New autofocusing algorithm for cytological tissue in a microscopyenvironment [J]. Society of Photo-Optical Instrumention Engineers,1998(137):631-641.
    [13] Murali Subbarao, Jenn-kwei Tyan. The Optimal Focus Measure for PassiveAutofucosing and Depth-from-Focus [J]. SPIE,1995,2598,89-99.
    [14] G. Reynoldsa, M. Hammonda, L. A. Binnsa. Camera correlation focus: animage-based focusing technique [J]. SPIE,2005,5752:1032-1041.
    [15]王永宪,王兵,任建岳.空间遥感器调焦机构组件动态特性分析[J].光学技术,2009,(02):235-238.
    [16]安源,齐迎春.空间相机直线调焦机构的设计[J].光学精密工程,2009,17(03):609-614.
    [17]韩昌元.空间光学的发展与波前传感技术[J].中国光学与应用光学,2008,1(1):13-24.
    [18]许晓军,陆启生,刘泽金.剪切干涉仪与哈特曼波前传感器的波前复原比较[J].强激光与粒子束,2000,12(3):269-272.
    [19]冯胜,吴健,郑春燕.径向剪切干涉仪[J].红外与激光工程,2008,37:188-192.
    [20]何丽萍,王英俭,范承玉.利用剪切干涉仪测量激光大气传输相位畸变[J].量子电子学报,2001,18:92-96.
    [21]刘若凡,沈锋.曲率波前传感器波前重构算法的研究[J].光电工程,2005,32(10):6-9.
    [22]沈洪斌,孙玉杰,张雏,等.曲率波前传感器探测高斯光束时的信号误差[J].应用光学,2009,30(3):427-431.
    [23]沈洪斌,张雏,沈学举,等.自适应光学系统中的波前曲率传感技术[J].光机电信息,2008(7):36-42.
    [24]陈欣扬,朱能鸿.基于四棱锥传感器的波前检测仿真设计[J].天文学进展,2006,24(4):362-372.
    [25]朱能鸿,陈欣扬,周丹,等.利用四棱锥传感器检测光学拼接镜的法向光程差[J].传感技术学报,2009,22(3):433-437.
    [26]苑克娥,朱文越,饶瑞中,等.基于Shack-Hartmann波前传感器的湍流大气光闪烁测量[J].红外与激光工程,2007,36(0):436-439.
    [27]胡新奇,俞信,赵达尊.目标图像结构和噪声对相关哈特曼—夏克波前传感精度的影响[J].光学学报,2007,27(8):1414-1418.
    [28]饶长辉,张学军,姜文汉.太阳米粒结构相关哈特曼—夏克波前传感模拟研究[J].光学学报,2002,22(3):285-289.
    [29]胡新奇,俞信,赵达尊.相关哈特曼—夏克波前传感器波前重构新方法[J].光学技术,2007,33(5):710-713.
    [30] R. G. Paxman, B. J. Thelen, R. J. Murphy, et al. Phase-Diverse Adaptive Opticsfor Future Telescopes [J]. SPIE,2007,6711:671103.
    [31] R. A. Gonsalves, R. Childlaw. Wavefront sensing by phase retrieval [J]. SPIE,1979,207:32-39.
    [32] R. A. Gonsalves. Phase retrieval and diversity in adaptive optics [J]. Opt. Eng.,1982,351:56-65.
    [33] R. G. Paxman, Timothy J. Schulz, James R. Fienup. Joint estimation of objectand aberrations by using phase diversity [J]. J. Opt. Soc. Am.,1992,9(7):1072-1085.
    [34] R. G. Paxman, J. R. Fienup. Optical misalignment sensing and imagereconstruction using phase diversity [J]. J. Opt. Soc. Am.,1988,5(6):914-923.
    [35] C. R. Vogel, T. Chan, R. Plemmons. Fast algorithms for phase diversity basedblind deconvolution [J]. SPIE,1998,3353:994-1005.
    [36] B. J. Thelen, R. G. Paxman, D. A. Carrara, et al. Maximum a posterioriestimation of fixed aberration, dynamic aberrations and the object from Phase-diverseSpeckle data [J]. J. Opt. Soc. Am. A.,1999,16:1759-1768.
    [37] David J. Lee, Michael C. Roggemann, Byron M. Welsh, et al. Evaluation ofleast-squares phase-diversity technique for space telescope wave-front sensing [J].Applied Optics,1997,36(35):9186-9197.
    [38] Richard A. Carreras, Greg Tarr, Sergio Restaino, et al. Concurrent computationalof Zernike coefficients used in a Phase Diversity algorithm for optical aberrationcorrection [J], SPIE,2315:363-370.
    [39] Peter M. Johnson, Matthew E. Goda, Victor L. Gamiz. Multiframephase-diversity algorithm for active imaging [J], J. Opt. Soc. Am. A,2007,24(7):1894-1900.
    [40] Sudhakar Prasad. Information-optimized phase diversity speckle imaging [J],Optics Letters,2004,29(6):563-565.
    [41] Mats G. Lofdahl, Goran B. Scharmer, Wang Wei. Calibration of a deformablemirror and Strehl ratio measurements by use of phase diversity [J]. Applied Optics,2000,39(1):94-103.
    [42]李强,沈忙作.基于相位差法的波前检测技术[J].光电工程,2006,33(11):114-119.
    [43]杨磊,刘忠,金振宇,等.离焦量误差对相位差法波前重构的影响[J].天文研究与技术,2009,6(1):43-50.
    [44] Zhang Aihong, Wang Tingting, et al. Algorithm study of phase diverse specklecorrective technique [J], SPIE,6595:65951D
    [45]李斐,饶长辉.高精度相位差波前探测器的数值仿真和实验研究[J].光学学报,2011,31(8):0804001.
    [46]李斐,饶长辉.相位差法波前传感系统自身误差的分析及消除方法[J].强激光与粒子束,2011,23(3):599-605.
    [47]李斐,饶长辉.利用Cramer-Rao理论研究相位差法的最佳离焦量[J].强激光与粒子束,2011,23(6):1492-1496.
    [48]李斐,饶长辉.基于相位差混合处理方法的高分辨力成像技术[J].物理学报,2012,61(2):029502.
    [49]罗群,黄林海,顾乃庭,等.相位差波前检测方法应用于平移误差检测的实验研究[J].物理学报,2012,61(6):069501.
    [50]李强,沈忙作.利用相位差法测量望远镜像差[J].光学学报,2007,27(9):1553-1557.
    [51]李强,沈忙作.基于相位差方法的天文目标高分辨率成像研究[J].天文学报,2007,48(1):113-120.
    [52]王欣,赵达尊.图像噪声对相位变更波前传感的影响研究[J].光学学报,2009,29(8):2142-2146.
    [53]梁士通,杨建峰,薛彬.基于遗传算法的改进相位差法波前误差传感技术研究[J].光学学报,2010,30(4):1015-1019.
    [54] Mats G. Lofdahl, Richard L. Kendrick, Alex Harwit, et al. APhase DiversityExperiment to Measure Piston Misalignment on the Segmented Primary Mirror of theKeck II Telescope [J], SPIE,1998,3356:1190-1201.
    [55]吴元昊,王斌,赵金宇,等.利用相位差异技术回复宽带白光图像[J].光学精密工程,2010,18(8):1849-1854.
    [56]汪宗洋,王建立,王斌,等.基于相位差异的图像复原方法[J].光电工程,2010,37(12):25-29.
    [57]王斌,汪宗洋,王建立,等.双相机相位差异散斑成像技术[J].光学精密工程,2011,19(6):1384-1390.
    [58]王建立,汪宗洋,王斌,等.相位差异散斑法图像复原技术[J].光学精密工程,2011,19(5):1165-1170.
    [59] Yuanhao Wu, Bin Wang, Zongyang Wang, et al. Phase error estimation withbroadband white light by phase diversity [J], SPIE,2010,7544:75443.
    [60] Andrews J, Teare S, Restaino S, et al. Dynamic aberration control testbed for thecharacterization of multiple wavefront sensors [J], SPIE,2005,6018:60180R.
    [61] Dolne J. J, Tansey R. J, Black K. A, et al. Practical issues in wavefront sensingby use of phase diversity [J]. Applied Optics,2003,42(26):5284-5289.
    [62] Dolne J. J, Menicucci P, Miccolis D, et al. Real time phase diversity advancedimage processing and wavefront sensing [J]. SPIE,2007,6712:67120G.
    [63] Dolne J. J. Evaluation of the phase diversity algorithm for noise statistics errorand diversity function combination [J]. SPIE,2006,6307:630708.
    [64] Kendrick R. L, Acton D. S, Duncan A. L. Phase-diversity wavefront sensor forimaging systems [J]. Applied Optics,1994,33(27):6533-6546.
    [65] Kendrick R. L, Acton D. S, Duncan A. L. Experimental results from theLockheed phase diversity test facility [J]. SPIE,1994,2302:312-322.
    [66] Kendrick R. L, Bell R, Duncan A. L. Closed loop wavefront correction usingphase diversity [J]. SPIE,1998,3356:844-853.
    [67] Georges III J. A, Dorrance P, Gleichman K, et al. High-speed closed-loop dualdeformable-mirror phase-diversity testbed [J]. SPIE,2007,6711:671105.
    [68] Georges III J. A, Dorrance P, Gleichman K, et al. Automatic calibration of aphase-diversity wavefront sensing and control testbed [J]. SPIE,2007,6711:671106.
    [69] Mats G. Lofdahl. Multi-frame blind deconvolution with linear equalityconstraints [J]. SPIE,2002,4792:146-155.
    [70] Isreal A. W, Michael L, Alfred M. B. Distributed covering by ant-robots usingevaporating traces[J]. IEEE Trans on Robotics and Automation,1999,15(5):918-933.
    [71]吴庆军.解决复杂优化问题的仿真算法的研究[D]:[硕士学位论文].西安:西安电子科技大学,2001.
    [72]罗小平,韦巍.一种基于生物免疫遗传学的新优化方法[J].电子学报,2003,31(1):59-62.
    [73]胡小兵.蚁群优化原理、理论及其应用研究[D]:[博士学位论文].重庆:重庆大学,2004.
    [74]杨启文.计算只能及其工程应用[D]:[博士学位论文].杭州:浙江大学,2001.
    [75]张著洪.人工免疫系统中智能优化及免疫网络算法理论与应用研究[D]:[博士学位论文].重庆:重庆大学,2004.
    [76]明亮.遗传算法的模式理论及收敛理论[D]:[博士学位论文].西安:西安电子科技大学,2006.
    [77]魏静萱.解决全局优化问题的几种进化算法[D]:[硕士学位论文].西安:西安电子科技大学,2006.
    [78]邝溯琼.遗传算法参数自适应控制及收敛性研究[D]:[硕士学位论文].长沙:中南大学,2009.
    [79] Gunar E. Liepins, Michael D. Vose. Characterizing crossover in geneticalgorithm [J]. Annals of Mathematics and Artificial Intelligence,1992,5(1):27-34.
    [80] Nicholas J. Radcliffe. The algebra of genetic algorithms [J]. Annals ofMathematics and Artificial Intelligence,1994,10(4):339-384.
    [81]徐宗本,陈志平,章祥荪.遗传算法基础理论研究的新近发展[J].数学进展,2000,29(2):97-114.
    [82] Derek C. van Leijenhorst, Carlos B. Lucasius, Jos M. Thijssen. Optical designwith the aid of a genetic algorithm [J]. Biosystems,1996,37(3):177-187.
    [83] Patrick Siarry, Alain Petrowski, Mourad Bessaou. A multipopulation geneticalgorithm aimed at multimodal optimization [J]. Advances in Engineering Software,2002,33(4):207-213.
    [84] Gonzalez R. C, Woods R. E. Digital image processing, second version [M].北京:电子工业出版社,2002.
    [85] Kenneth R. Castleman著.朱志刚等译. Digital Image Processing [M].北京:电子工业出版社,2004.
    [86]张韵农.盲图像恢复方法研究[D]:[博士学位论文].南京:东南大学,2002.
    [87]杨彦.图像复原算法研究[D]:[硕士学位论文].成都:四川大学,2004.
    [88]洪汉玉.成像探测系统图像复原算法研究[D]:[博士学位论文].武汉:华中科技大学,2004.
    [89]曲秀娟.噪声模糊图像的盲复原及振铃的清楚[D]:[硕士学位论文].大连:大连理工大学,2008.
    [90] M. Sonka, V. Hlavac, R. Boyle. Image Processing, Analysis and Machine Vision,Second edition. Thomson Asia Pte Ltd, United States of America,1998.
    [91]张航,罗大庸.图像盲复原算法研究现状及展望[J].中国图像图形学报,2004,9(10):1145-1152.
    [92][英]Maria Petrou [希]Panagiota Bosdogianni著,赖剑煌,冯国灿等译.数字图像处理疑难解析[M].北京:机械工业出版社,2005.
    [93]刘克,杨靖宇,权军等.离焦图像模糊辨识及复原方法研究[J].自动化学报,1994,20(1):58.
    [94] Ozkam M. K, Erdem A. T, Sezan M I. Efficient multiframe Wiener restoration ofblurred and noisy image sequences [J]. IEEE Transactions on Image Processing,1992,1(4):453-478.
    [95] T Sun, Y Neuvo. Detail-preserving median based filters in image processing [J].Pattern Recognition Letters,1994(15):341-347.
    [96]郑楚君,李榕,常鸿森.离焦模糊数学图像的Wiener滤波频域复原[J].激光杂志,2004,25(5):57-58.
    [97]薛良峰,齐欢.图像复原的逆滤波器技术探讨[J].兵工自动化,2002,21(5):46-48.
    [98]张旭明,徐滨士,董世运.用于图像处理的自适应中值滤波[J].计算机辅助设计与图形学学报,2005,17(2):295-298.
    [99] S. J. Ko, Y. H. Lee. Center weighted median filters and their applications toimage enhancement [J]. IEEE Trans. On Circuits System,1991,38:984-993.
    [100] B. Girod. What’s wrong with mean-squared error [J]. Digital Images andHuman Vision, A. B. Watson, Ed. Cambridge, MA: MIT Press,1993,207-220.
    [101] P. C. Teo, D. J. Heeger. Perceptual image distortion [J]. SPIE,1994,2179:127-141.
    [102] A. M. Eskicioglu, P. S. Fisher. Image quality measures and their performance[J]. IEEE Trans. Commun,1995,43:2959-2965.
    [103] M. P. Eckert, A. P. Bradley. Perceptual quality metrics applied to still imagecompression [J]. Signal Processing,1998,70:177-200.
    [104] S. Winkler. A perceptual distortion metric for digital color video [J]. SPIE,1999,3644:175-184.
    [105] Z. Wang. Rate scalable Foveated image and video communications [D]:[Ph.D. dissertation]. Austin: Univ. Texas at Austin,2001.
    [106] Z. Wang, A. C. Bovik. A universal image quality index [J]. IEEE SignalProcessing Letters,2002,9:81-84.
    [107] Zhou Wang, Alan Conrad Bovik, Hamid Rahim Sheikh, et al. Image QualityAssessment: From Error Visibility to Structural Similarity [J]. IEEE Transcations onImage Processing,13(4):600-612.
    [108] Qiang Cheng, Fazhi Li, Xiaoping Tao, et al. Wavefront Error Sensing basedon Phase Diversity Technology and Image Restoration [J]. SPIE,2012,8417:84170R.
    [109]康辉.映像光学[M].天津:南开大学出版社,1996.
    [110] S. Dandy, J. F. Sauvage, T. Fusco, er al. A simple and efficient model forpolychromatic focal plane wave-front sensor [J]. SPIE,7736:773629.
    [111] Matthew R. Bolcar, James R. Fienup. Phase Diversity with BroadbandIllumination [J]. Applied Optics,2007, JTuA6.
    [112] J. H. Seldin, R. G. Paxman, V. G. Zarifis, et al. Closed-loop wavefrontsensing for a sparse-aperture, multiple-telescope array using broad-band phasediversity [J]. SPIE,2000,4091:48-63.
    [113]程强,闫锋,薛栋林,等.利用相位差异技术检测离轴三反光学系统的波前误差[J].中国激光,2012,39(10):1008001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700