相位差波前探测技术及其在拼接镜共相检测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了追求更高的观测分辨力,无论地基还是天基望远镜,一个共同的发展趋势就是不断增大望远镜的主镜口径。通光孔径的尺寸在一定程度上成为了反映天文望远镜观测能力的指标。然而,由于大气湍流的影响,大口径天文望远镜并不能发挥其应有的优势,其分辨能力与小口径望远镜相比并无明显改善。因此,需要借助自适应光学技术对大气湍流引起的波前误差进行校正,而有效地探测波前畸变则是实现有效校正的重要前提。另一方面,主镜尺寸的不断增大,给望远镜的设计、加工、制造、检测等技术带来了前所未有的挑战。拼接主镜概念的提出,虽然有效地降低了主镜的质量、成本、体积和制造周期,使得超大口径望远镜的设想能够实现,但也带来了许多问题,其中最为典型的就是各拼接子镜之间的共相误差难以测量和控制。随着大口径天文望远镜的发展,有必要开展相应的自适应光学系统波前探测技术的研究,并将其应用到大口径拼接型望远镜的共相误差检测之中。
     本文就是围绕以上课题背景,针对相位差波前探测器对连续像差和非连续像差的检测能力展开了全面深入的研究,并取得了一系列成果。
     第一,相位差波前探测器是一种基于像面光强分布复原相位信息的高精度波前测量器件,本文通过数值模拟和实验验证的手段深入分析了图像采集器件参数、图像信噪比、离焦量大小等因素对相位差波前探测器检测精度的影响,这一工作对理论研究和工程应用具有重要意义,分析结果能够为实际应用提供有利指导,并为其性能改善指明方向。
     第二,将相位差波前探测器用于降质图像的直接解卷积复原,并针对此应用展开了实验研究。实验结果表明:将相位差波前探测器对系统静态波前畸变的检测结果直接用于成像系统降质图像的恢复,复原图像的质量明显改善,且接近理想成像系统的成像质量。文中设计了一种基于组合棱镜的相位差波前探测器,降低了光路调整和器件加工的难度,实现了焦面和离焦面图像采集同步性和实时性的要求,解决了相位差波前探测器对动态波前畸变的检测问题。
     第三,设计了一种基于振幅型光栅分光原理的新型相位差波前探测器,降低了相位差波前探测器对成像探测器件信噪比和灵敏度的要求、改善了波前畸变的探测精度。这种新型的相位差波前探测器,巧妙地利用了不同衍射级次光斑的形状相同但强度不同这一特点,将0级和±1级衍射光斑图像拼接形成一个信噪比更高、光强分布信息更丰富的像面图像,从而实现提高波前检测精度的目标。数值仿真和实验验证的结果说明:振幅型光栅的引入为相位差波前探测器的高精度波前检测提供了一种可能。
     第四,围绕拼接型天文望远镜中主镜的共相误差检测问题,本文开展了大量研究工作验证相位差波前探测器用于非连续像差检测的可行性。数值仿真和实验验证的结果表明:相位差波前探测器可以准确测量拼接子镜之间的非连续像差,且不受子镜尺寸和形状的限制,其检测精度满足拼接型主镜共相精度的要求。本文针对连续像差和多种非连续像差所展开研究,在一定程度上将自适应光学系统波前探测和拼接镜共相误差检测统一起来。
     本文针对相位差波前探测器自身性能及其在大口径拼接型望远镜共相检测中的应用展开相关的仿真分析和实验研究,为相位差波前探测器的工程应用提供了有利指导,也为我国大口径拼接型望远镜所需的自适应光学系统和共相控制系统中波前畸变与共相误差的统一测量提供参考,从而简化了波前检测系统的复杂性,确保了波前检测数据一致性,同时拓展了相位差波前探测器的应用范围。
For better observing resolution, the developing trend of astronomical telescope isto enlarge the aperture size, whatever on the ground or space. In some certain, theobserving ability for one telescope is always defined according its aperture size.However, better observing results may not be obtained for a larger aperture sizetelescope, and it may not better than a small one due to the influence of atmospheredisturb. So adaptive optics technology must be introduced into telescope system tocorrecte the disturbed wavefront, and the important premise is to measure accuratelythis wavefont aberration. In other hand, the design, manufacturing, machining andtesting suffer unprecedented challenge with the enlarging of telescope aperture size. Theproposal of the segmented primary mirror decrease markedly the weight, cost, periodand volum of telecope, and a super large telescope could be come ture. However, somechallenges are concomitant, and one of the most classic challenges is measuring andcontrolling of the co-phasing error of the segmented primary mirror. With developmentof the larger aperture size telescope, some new wavefront sensing technique and itsapplication in co-phasing testing must be study deeply.
     Based on above description, we introduce briefly the basic principle and thecorresponding wavefront reconstruction algorithm of phase diversity (PD) wavefrontsensor (WFS). A set of experimental study is also done for continuous anddiscontinuous surface wavefront aberration, and some innovative results have beenachieved as follows:
     Firstly, some influence factors such as the parameter of image recorder,signal-to-noise ratio (SNR) and defocus distance between the focus plane and defocusplane, which may degrade the measurement accuracy of PD WFS, are analyzed deeply.The analysis results are important for theoretical study and engineering application, andit can direct how to apply in practice and to improve performance.
     Secondly, we apply the PD WFS for image deconvolution, and the accordingexperimental study is also done. The experimental results show that the wavefront dataof PD WFS can be used to reconstruct the image with wavefront aberration and thereconstructing results have good quality near by the image with diffraction limit. Inaddition, a new structure for PD WFS is proposed based on combinatorial prism, and itcan be applied for the measurement of dynamic wavefront.
     Thirdly, a modified PD WFS based on the beam splitting principle of a diffractiongrating is proposed to improve the capability of wavefront sensing, such as higher SNR,higher sensitivity and higher measurement capability for high spatial wavefron undertest. Higher measurement accuracy could be achieved for this new PD WFS. Thenumeric and experiment results show that the measurement ability of G-PD WFS is improved obviously, especially for the wavefront aberration with larger amplitude. Thisnew PD WFS may be a better choice for higher accuracy wavefront measurement.
     Finally, numeric and experimental validation have been done for discontinuouswavefront measurement, such as pistion error and tip-tilt error. Numeric andexperimental results show that the co-phasing errors could be exactly measured by thePD WFS, especially for the co-phasing errors of several segmented mirrors could bemeasured exactly and simultaneously. So that the PD WFS can be used as a co-phasingsensor for the segmented primary mirror.
     In total, these results and innovations can guide for engineering application, and itcan be used as a unificate wavefront sensor for wavefront sensing in adaptive opticssystem and co-phasing sensing in a common segmented primary mirror telescope. If so,the wavefront sensing system in this segmented telescope can be simplified, and thedata consistency can be assured.
引文
[1] Hardy J W. The possibility of compensating astronomical sening [M]. NewYork: Oxford University Press,1998
    [2] Kolmogorov A N. The local structure of Turbulence in IncompressibleViscous Fluid for Very large Reynold’s Numbers [J]. Dokl Akad Naud SSSR,1941,30:301-305
    [3] Tatarski V L. Wave Propagation in a Turbulent Medium [M]. New York:Dover Publication,1961
    [4] Fried D L. Statistics of a geometric representation of wavefront distortion[J]. J. Opt. Soc. Am. A.,1965,55(11):1426-1435
    [5]周仁忠,自适应光学[M].北京,国防工业出版社,1996
    [6] Babcock H W. The possibility of compensating astronomical seeing [J].Publ. Astron Soc. Pac.,1953,65:229-236
    [7] Hardy J W. Lefebvre J E and Koliopoulos C L. Real-time astmosphericcompensation [J]. J. Opt. Soc. Am.,1977,67(3):360:369
    [8]姜文汉,高分辨率自适应望远镜——国家高技术计划信息领域信息获取与处理技术十周年汇报——自适应光学望远镜技术[M],1996
    [9] Merkle F and Hubin N, Adaptive optics for the European very largetelescope [C]. Proc. SPIE,1991,1542:283-292
    [10] Genetron E., et al. Come-On-Plus project: an upgrade of the Come-Onadaptive optics prototype system[C]. Proc. SPIE1991,1542:296-307
    [11] Wizinowich P L, Nelson J E, and Mast T S. W. M. Keck observatoryadaptive optics program [C], Proc. SPIE,1994,2201:22~33
    [12] Takami H, Takata N and Obsubo M et al. Adaptive optics system forGassegrain focus of SUBARU8.2-m telescope [C]. Proc. SPIE3353:500~507,1998
    [13] Aresenault R, Donaldson R, Dupuy C, et al. MACAO-VLTI adaptiveoptics systems performance [C]. Proc. SPIE,2004,5490:47~58
    [14] Greenwood D P, Primmerman C A. Adaptive optics research at LincolnLaboratory [J]. The Lincoln Laboratory Journal,1992,5(1):3~24
    [15] Salmon J T. Real time wavefront correction system using a zonaldeformable mirror and a Hartmann sensor [C]. Proc. SPIE,1991,1542:2~17
    [16] Fried D L. Least squares fitting a wavefront distortion estimate to an arrayof phase-difference measurements [J]. J. Opt. Soc. Am. A.,1977,67(3):370-375
    [17] Takami H, Colley S and Dinkin M, et al. Status of Subaru laser guide starAO system [C]. Proc. SPIE,2006,6272:62720C
    [18] Arsernult R, Donaldson R and Dupu C, et al. MACAO-VLTI adaptiveoptics systems performance [C]. Proc. SPIE,2004,5490:47~58
    [19] Eisenhauer F, Abuter R and Bickert K, et al, SIFONI-Integral fieldspectroscopy at50milli-arcsecond resolusiton with the ESO VLT [C]. Proc. SPIE,2003,4841:1548~1561
    [20] Bonnet H, Abuter R Baker A, et al. First Light of SINFONI at the VLT [J].The Messenger,2004,117:17~24
    [21] Johns M, Angel J, Shectman S, Bernstein R, Fabricant D, McCarthy P, andPhillips M. Status of the Giant Magellan Telescope (GMT) project [C]. Ground-basedTelescopes, Proc. SPIE, J. M. Oschmann, ed.2004,5489:441~453
    [22] Chanan G, Nelson J, Ohara C, Sirko E. Design Issues for the ActiveControl System of the California Extremely Large Telescope (CELT)[C]. Pro. SPIE,2000,4004
    [24] Dekany R G, Nelson J E. Bauman B, Design considerations for CELTAdaptive Optics[C]. Pro. SPIE,2000,4003
    [25] Gilmozzi R and Spyromilio J. The European Extremely Large Telescope(EELT)[C]. The Message,2007,127:11-19
    [26] Hardy J W. Adaptive optics: a progress review [C]. Proc. SPIE1991,1542:2
    [27] Salmon J T, et al. Real time wavefront correction system using a zonaldeformable mirror and a Hartmann sensor [C]. Proc. SPIE,1991,1542:459
    [28] Merkle F. and N. Hubin. Adaptive optics for the European very largetelescope [C]. Proc. SPIE,1991,1542:283-292
    [29] Tyson R K. Adaptive optics and ground-to-space laser communication [J].Appl. Opt.,1996,35(19):3640~3646
    [30] Weyrouch T and Vorontsov M A. Atmospheric compensation with aspeckle beacon in strong scintillation conditions: directed energy and lasercommunication applications [J]. Appl. Opt.,2005,44(30):6388~6401
    [31] Liang J, Williams D R and Miller D T. Spernormal vision andhigh-resolution retinal imaging through adaptive optics[J]. J. Opt. Soc. Am. A.,1997,14(11):2884~2892
    [32]姜文汉.光电技术研究所的自适应光学技术[J].光电工程,1995,22(1):1-13
    [33] Jiang W H, et al. Adaptive optical image compensation experiments onstellar objects [J]. Opt. Eng.,1995,34(1):7
    [34] Jiang W H, et al. A37element adaptive optics system with H-S wavefrontsensor [C]. ICO-16Satellite Conf. On Active and Adaptive Optics, Proc ESO.1993,48:127
    [35] Jiang W H, Ling N, et al.61-element adaptive optical system for1.2mtelescope of Yunnan Observatory [C]. Proc. SPIE1998,3353:695-703
    [36] Tang G M, Rao C H, et al. Performance and test results of a61-elementadaptive optics system on the1.2m telescope of Yunan Observatory [C]. Proc. SPIE2002,4926:13-19
    [37]张雨东,姜文汉等,自适应光学的眼科学应用[J],中国科学,2007,37(S1):68-74
    [38] Wei K, Zhang X J, Xian H, Ma W L, Zhang A, Zhou L C, Guan C L, Li M,Chen D H, Chen S Q, Liao Z, Rao C H, and Zhang Y D. First light on the126-elementadaptive optical system for1.8-m telescope [J]. CHINESE OPTICS LETTERS,2010,8(11):1019~1021
    [39] Rao C H, Wei K, Zhang X J, Zhang A, Zhang Y D, Xian H, Zhou L C,Guan C L, Li M, Chen D H, Chen S Q, Tian Y, and Liao Z. First observation on the126-element adaptive optical system for1.8m telescope [C]. Proc. SPIE,2010,7654:76541H
    [40]程景全,天文光学望远镜原理和设计[M],北京,中国科学技术出版社
    [41] Nelson J E and Gillingham P R. Overview of the perfor-mance of the W.M. Keck Observatory [C]. inAdvanced Technol-ogy Optical Telescopes V, L. M. Stepp,ed., Proc. SPIE,1994,2199:82–93
    [42] Chanan G A, Nelson J, Mast T, Wizinowich P, and Schaefer B. The W. M.Keck telescope phasing camera system [C]. in Instru-mentation in Astronomy VIII, D.L. Crawford and E. R. Craine, eds., Proc. SPIE,1994,2198:1139–1150
    [43] Ramsey L, Adams M, Barnes T, Booth J, Cornell M, Fowler J, Gaffney N,Glaspey J, Good J and Hill G. Early performance and present status of Hobby EberlyTelescopy [C]. in Advanced Technology Optical/IR Telescopes VI, Proc. SPIE, L. M.Stepp. ed.1998,3352, p.34
    [44] Stobie R, Meriing J, and Buckley D. Design of the Southern African LargeTelescope(SALT)[C]. in Optical Design, Materials, Fabrication, and Maintenance, Proc.SPIE, P. Dierickx, ed.2000,4003, p.355
    [45] Redding D, Basinger S, Andrew E, et al. Wavefront sensing and controlfor a next telescope [C]. Proc. SPIE,1998,3356:758~772
    [46] Chanan G A, Troy M, et al. Phasing the mirror segments of the KeckTelescopes: the broadband phasing algorithm [J]. Appl. Opt.1998,37,140~155
    [47] Nelson J, and Gillingham P. Overview of the performance of the W. M.Keck Observatory [C]. Proc. SPIE,1994,2199:92~93
    [48] Feenix Y P, James H B, Rene Z, and Yanqui Wang. Fabrication andalignment issues for segmented mirror telescopes [J]. Appl. Opt.,2004,43(13):2632~2642
    [49] Yaitskova N and Dohlen K. Tip–tilt error for extremely large segmentedtelescopes: detailed theoretical point-spread-function analysis and numerical simulationresults [J]. J. Opt. Soc. Am. A,2002,19(7):1274~1285
    [50] Chanan G A, and Troy M. Strehl ratio and modulation transfer function forsegmented mirror telescopes as functions of segment phase error [J]. Appl. Opt.,1999,38(31):6642~6647
    [51] Weiyao Zou. New phasing algorithm for large segmented telescopemirrors[J]. Opt. Eng,2002,41(9),2338~2344
    [52]赵伟瑞,曹根瑞等。分块镜共相误差的电学检测方法[J]。激光与红外工程,2010,39(1):146-150
    [53]林旭东,陈涛等。拼接镜的主动光学面形控制[J]。光学精密工程,2009,17(1):98-10
    [54]杨德华,戚永军等。光学拼接镜面微位移主动调节机构的设计和实测[J]。光学精密工程,2005,13(2):191-197
    [55]龙尾军,杨治乐等。光学综合孔径望远镜成像分析及计算机仿真[J]。光学学报,2004,24(8):1009-1014
    [56] G. Vasisht. A. Booth, Performance and verification of Keck fringedetection and tracking system [J].2003, Proc. SPIE,4838
    [57] Creath K. Step height measurement using two wavelength phase shiftinginterferometry [J].1987, Appl. Opt.26:2810~2816
    [58] Pizarro C, Arasa J, Laguarta F, Tomas N, Pintó A. Design of aninterferometric system for the measurement of phasing errors in segmented mirrors[J].Appl. Opt.,2002,22:4562~4570
    [59] Pintó A, Laguarta F, Artigas R, Cadevall C. Testing and applicability ofthe UPC-ZEBRA interferometer as a phasing system in segmented-mirror telescopes [J].Appl. Opt.,2004,2:1091~1096
    [60] Martinez L and Yaitskova N. Mach-Zehnder wavefront sensor for phasingof segmented telescopes [C]. Proc. SPIE,2003,4840:564~573
    [61] Yaitskova N and Dohlen K. Mach–Zehnder interferometer for piston andtip–tilt sensing in segmented telescopes: theory and analytical treatment [J]. J. Opt. Soc.Am. A.,2005,22(6):1093~1105
    [62] Chanan G A. Design of the Keck Observatory alignment camera [C]. Proc.SPIE,1988,1036:59~69
    [63] Chanan G A, Ohara C, et al. Phasing the mirror segments of the Kecktelescopes II: the narrow-band phasing algorithm [J]. Appl. Opt.,2000,39(25),4705~4714
    [64] Roddier F. Curvature Sensing and Compensation: a New Concept inAdaptive Optics [J]. Appl. Opt.,1988,1223~1225
    [65] Roddier F. Wavefront Sensing and the Irradiance Transport Equation [J].Appl. Opt.,1990,1402~1403
    [66] Chanan G A, Troy M, and Sirko E. Phase discontinuity sensing: a methodfor phasing segmented mirrors in the infrared [J]. Appl. Opt.,1999,38:704~713
    [67] Chanan G A, and Pintó A. Wavefront curvature sensing on highlysegmented telescopes [J]. Appl. Opt.,2004,16:3279~3286
    [68] Kendrick R L, Acton D S, and Duncan A L. Phase diversity wave-frontsensor for imaging systems [J]. Appl. Opt.,1994,33:6533~6546
    [69] L fdahl M G, Harwit A, Mitchell K E, Duncan A L, Seldin J H, Paxman RG, Acton D S. A phase diversity experiment to measure piston misalignment of thesegmented primary mirror of the Keck II telescope [C]. in Space Telescopes andInstruments V, P. Y. Belyand J. B. Breckinridge, Proc. SPIE,1998,3356:190-201
    [70] Esposito S, and Pinna E. Co-phasing of segmented mirrors using thepyramid sensor [C]. Proc. SPIE,2003,5169:72~78
    [71] Esposito S, and Pinna E. Pyramid sensor for segmented mirror alignment[J]. Opt. Lett.,2005,30:2572~2574
    [72] Surdej I, Yaitskova N, Gonte F. On-sky performance of the Zernike phasecontrast sensor for the phasing of segmented telescopes [J]. Appl. Opt.,2010,21:4052~4062
    [73] Gonsalves R, and Chidlaw R. Wavefront sensing by phase retrieval [C]. inApplications of Digital Image Processing III, Proc. SPIE,1979,207
    [74] Gonsalves R. Phase retrieval and diversity in adaptive optics [J]. Opt. Eng.1982,2:829-832
    [75] Paxman P G, and Fienup J R. Optical misalignment sensing and imagereconstruction using phase diversity [J]. J. Opt. Soc. Am. A.,1988,5(6):914~923
    [76] Kendrick R L, Acton D S, and Duncan A L. Experimental results from theLockheed Phase Diversity test facility [C]. Proc. SPIE,1994,3201:312~322
    [77] L fdahl M G, and Scharmer G. Wavefront sensing and image restorationfrom focused and defocused solar images [C]. in A&A supplement series,1994,243
    [78] L fdahl M G, Berger T E, and Seldin J H. Twodual-wavelength sequencesof high-resolution solar photospheric images captured over several hours and restoredby use of phase diversity [J]. Astronomy&Astrophysics manuscript,2001
    [79] L fdahl M G, and Scharmer G. Phase diverse speckle inversion applied todata from the Swedish1-meter solar telescope [C]. in novative Telescopes andInstrumentation for Solar Astrophysics, Keil&Avakyan, eds., Waikoloa, Hawaii, USA,August2002
    [80] Lee D J, Roggemann M C, Welsh B M, Crosby E R. Evaluation ofleast-squares phase-diversity technique for space telescope wave-front sensing [J]. Appl.Opt.,1997,36:9185-9197
    [81] Lee D J, Welsh B M, and Roggemann M C. Diagnosing unknownaberrations in an adaptive optics system by use of phase diversity [J]. Opt.Lett.1997,22(13):952~954
    [82] Blanc A, Fusco T, Hartung M, Mugnier L M, and Rousset G. Calibrationof NAOS and CONICA s tatic a berrations Application of the phase diversity technique[J]. Astronomy&Astrophysics,2003,399:373~383
    [83] Bolcar M R and Fienup J R. Method of phase diversity in multi-aperturesystems utilizing individual sub-aperture control [C]. in Unconventional Imaging, Proc.SPIE,2005,5896(14):126~133
    [84] Mugnier L M, Sauvage J F, Fusco T, Cornia A and Dandy S. On-linelong-exposure phase diversity a powerful tool for sensing quasi-static aberrations ofextreme adaptive optics imaging systems [J]. Opt. Exp.2008,22:18406~18416
    [85]李强,基于相位差法的高分辨率成像和望远镜像差检测技术[D]。成都:中国科学院光电技术研究所博士学位论文,2007
    [86]杨磊,刘忠,金振宇等,离焦量误差对相位差法波前重构的影响[J]。天文研究与技术,2009,6(1):43~49
    [87]吴元昊,王斌,赵金宇等,利用相位差异技术恢复宽带白光图像[J]。光学精密工程,2010,18(8):1849~1854
    [88]王欣,赵达尊,毛珩等,相位变更方法发展简述[J]。光学技术,2009,35(3):454~460
    [89]曹芳,吴桢,朱永田,基于相位差法的光学综合孔径望远镜失调检测技术[J],天文研究与技术,2008,5(3):288~293
    [90]李斐,饶长辉,相位差法波前传感器系统自身误差的分析与消除方法[J]。强激光与粒子束,2011,23(3):599~605
    [91]毛珩,基于相位恢复的自适应光学波前传感方法研究[D]。北京:北京理工大学博士学位论文,2008
    [92] Merkle F and Hubin N. Adaptive optics for the European very largetelescope [C]. Proc. SPIE,1991,1542:283~292
    [93] Bai Fuzhong and Rao Changhui. Experimental validation of closed-loopadaptive optics based on a self-referencing interferomete wavefront sensor and aliquid-crystal spatial light modulator [J]. Opt. Comm.,2010,283:2782
    [94] Malacara D. Optical shop testing [M]. John Wiley&Sons,Inc., New York,1978, pp:105
    [95]李大海,激光光束波前畸变的径向剪切干涉诊断及其控制新方法研究[D]。成都:四川大学博士学位论文,2002
    [96] Schwartz C, Ribak E, and Lipson S. G. Bimorph adaptive mirrors andcurvature sensing [J]. J. Opt. Soc. Am. A,1994,11(2):895~902
    [97] M.Milman, D.Redding, L.Needel, Analysis of curvature sensing forlarge aperture adaptive optics systems[J], J. Opt. Soc. Am. A,1996,13(6):1226~1238
    [98] Ragazzoni R, A practical algorithm for the determination of phase fromimage and diffraction plan pictures [J]. Journal of Modern Optics,1996,43:289~356
    [99] M Born, E Wolf著。光学原理(第七版)[M]。北京,电子工业出版社,2005
    [100] J W Goodman著,秦克诚等译。傅里叶光学导论(第三版)[M]。北京,电子工业出版社,2011
    [101] Paxman R G, Schulz T J, and Fienup J R Joint estimation of object andaberrations by using phase diversity [J], J. Opt. Soc. Am. A.,1992,9(7):1072~1085
    [102] Vogel C R, Chan T F, Plemmons R J, Fast phase diversity based bilndedeconvolution [C], Proc. SPIE,1998:3353:994~1005
    [103] Gilles L, Vogel C R, Bardsley J, Computational methods for a large scaleinverse problem arising in atmospheric optics [J] Inverse Problems,2002,18:237~252
    [104] Thelen B J, Carrara D A, Paxman R G, Fine-resolution imagery ofextended objects observed through volume turbulence using phase diversity speckle [C],Proc. SPIE,1999:102~111
    [105] Thelen B J, Carrara D A, Paxman R G, Pre-and post-detection correctionof turbulence-induced space-variated blur [C], Proc. SPIE,2000,4125:131~139
    [106] L fdahl M G, Multi-frame blind deconvolution with linear equalityconstraints [C], Proc. SPIE,2002,4792:146~155
    [107] Georges J A, Dorrance P, Gleichman K, Jonik J, Liskow D, Lapprich H,Naik V, Parker S, Paxman R, Warmuth M, Wilson A, and Zaugg T. High-speedclosed-loop dual deformable-mirror phase-diversity testbed [C], in AdvancedWavefront Control: Methods, Device, and Application V, Proc. SPIE,2007,6711:05~11
    [108] Smith J S, Dean B H, Haghnni S, Distributed computating architecuturefor image-based wavefront sensing and2D FFTs [C], in Advanced Software andControl for Astronomy, Proc. SPIE,2006,6274:21
    [109] Gerchberg R W and Saxton W O, Phase determination from image anddiffraction plane pictures in the electron microscope [J], Optik,1971,34(3):275~248
    [110] Gerchberg R W and Saxton W O, A practical algorithm for thedetermination of phase from image and diffiraction plane pictures [J], Opitk,1972,35(2):237~246
    [111] Misell D L, A method for the solution of the phase problem in electronmicroscopy [J], J. Phys. D: Appl. Phys.,1973,6:L6~L9
    [112] Yang G, Gu B, and Dong B, Theory of the amplitude-phase retrieval in anany linear transform system and its applications [C], Proc. SPIE,1992,1767:457~478
    [113]袁亚湘著,非线性优化计算方法[M],北京:科学出版社,2007
    [114]谢政,李建平,陈挚编著,非线性最优化理论与方法[M],北京:高等教育出版社,2009
    [115]邹谋炎著,反卷积和信号复原[M],北京:国防工业出版社,2001
    [116]蔡冬梅,液晶空间光相位调制器特性研究及在自适应光学中的应用[D]。成都:中国科学院光电技术研究所博士论文,2008
    [117]白福忠,基于自参考干涉波前传感器和液晶空间光调制器的自适应光学系统[D]。成都:中国科学院光电技术研究所博士论文,2010
    [118]陈怀新,隋展,等,液晶电视(LCTV)的光学调制特性及其应用[J],中国激光,2000,27(8):741-745
    [119] Dou R S, Giles M K, Closed-loop adaptive optics system with a liquidcrystal television as a phase retarder[J], Opt. Lett.1995,20(14):1583-1585
    [120]李大海,陈怀新,陈祯培,利用液晶电视的位相调制特性补偿畸变波前[J],中国激光,2003,30(7):615-618
    [121]葛爱明,隋展,徐克寿,反射型LCOS器件纯相位调制特性的研究[J],物理学报,2003,52(10):2481-2485
    [122]王治华,俞信,液晶空间光调制器相位调制测量及波前校正[J],光学技术,2005,31(2):195-201
    [123]张洪鑫,张健,吴丽莹,泰曼-格林干涉仪测量液晶空间光调制器的相位调制特性[J],中国激光,2008,35(9):1360-1364
    [124] Fienup J R, Thelen B J, Paxman R G, and Carrara D A. Comparison ofPhase Diversity and Curvature Wavefront Sensing [C]. Proc. SPIE,1998,3353:930~940
    [125] Lee D J, Roggemann M C, and Welsh B M. Cramer-Rao analysis of phasediverse wavefront sensing [J]. J. Opt. Soc. Am. A,6,16(5):1005~1015
    [126] Dean B H, and Bowers C W, Diversity selection for phase-diverse phaseretrieval [J]. J. Opt. Soc. Am. A,2003,10(8):1490~1540
    [127] Primot J, Rousset G, and Fontanella, Deconvolution for wavefront sensing:a new technique for compensating turbulence-degraded images[J], J. Opt. Soc. Am. A,1990,7:1598~1608
    [128] Gonzalez R C, Woods R E著,阮秋琦,阮宇智等译,数字图像处理(第二版)[M],北京:电子工业出版社,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700