面向约束及其误差的少自由度并联机构分析与构型综合
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
少自由度并联机构由支链内以及支链间运动副轴线的严格几何约束关系限制动平台非期望运动自由度,获得预期的少自由度运动特性。由于误差的不可避免性,运动副轴线间严格的几何约束条件通常难以得到精确满足,从而对机构的工作性能可能产生一系列不良影响。
     针对此问题,本论文首先应用螺旋理论及集合论原理,系统分析少自由度并联机构的力约束系统及其过约束特性,从而确定机构在动平台不可动自由度空间中的静定与超静定性质。在机构过约束分析基础上,从结构力学理论出发,应用拆开连架副方法,通过误差建模,定量分析运动副轴线间几何约束误差在少自由度并联机构中的传递与耦合规律,揭示了过约束结构对几何约束误差的敏感性及其对机构性能影响的机理。针对过约束少自由度并联机构对几何约束误差敏感的固有特点,为改善机构对此类误差的自适应性和提高机构的动力学性能,对无过约束构型设计方法进行了系统研究。本论文的主要工作如下:
     ①以螺旋理论和集合论为数学工具,系统总结并深入研究了运动副、串联开链机构、单回路机构的自由度和约束系统的分析方法。在此基础上,按支链并联和回路耦合两种结构组成观点,系统分析了少自由度并联机构的约束系统和过约束特性,得出了少自由度并联机构基于支链约束的构型条件及构型特征,和基于基本回路的过约束特征。提出了一种表示少自由度并联机构约束特征的符号方法,并给出一种机构总过约束数计算、过约束回路识别以及分析过约束在回路中的分布与协调的系统方法。提出了全回路过约束、多回路过约束以及单回路过约束的概念。为按约束特征及过约束特性进行并联机构构型设计与分析奠定了理论基础。
     ②应用运动螺旋的指数映射描述刚体运动和坐标变换,进行了串联开链机构几何约束误差建模方法的研究。将误差看成虚拟运动副运动的结果,应用螺旋理论分析运动副轴线位姿误差的螺旋表示,从而建立了串联开链机构含误差螺旋的运动学指数积模型。并将工具坐标系的位置和姿态误差看成虚拟移动副和虚拟转动副运动的结果,给出了相应运动螺旋参数的计算公式。在Matlab环境下开发了一套通用的螺旋计算软件包,对两种典型的串联开链机构进行了误差仿真分析,并使用Adams进行了对比仿真,验证了该建模方法的正确性和有效性。该误差建模方法具有良好的几何直观性,便于从整体上描述机构的误差,为按拆开连架副法分析运动副轴线几何约束误差对少自由度并联机构的影响提供了有效的方法与工具。
     ③在过约束分析基础上,采用拆开连架副法,通过基于螺旋理论的误差建模,系统分析了运动副轴线几何约束误差对少自由度并联机构的不良影响。提出了基于矩阵力法的误差影响分析方法和步骤,并以计算过约束回路强制装配力、机构运动副中的附加载荷、连杆弹性变形、动平台寄生运动和机构的应变能波动等一系列定量指标,评估过约束并联机构对运动副轴线间几何约束误差的敏感性。通过对一种过约束并联机构的分析与仿真,揭示了过约束回路对运动副轴线间几何约束误差的敏感性及其对机构性能影响的机理。同时分析了运动副轴线几何约束误差对一种完全解耦并联机构的影响。研究结果为少自由度并联机构的构型分析、构型优选以及评估其实用性提供了一种新的思路和方法。
     ④针对过约束少自由度并联机构对运动副轴线间几何约束误差敏感的固有缺点,提出采用无过约束构型来消除此类不良影响的主动设计方法。提出了少自由度并联机构无过约束构型设计的支链力约束条件和支链间力约束几何方位配置条件。基于直接约束设计的理念,归纳总结出了一种根据支链约束要求设计具体支链结构,并按支链间约束配置几何条件并联装配,综合无过约束少自由度并联机构的系统方法和一般步骤。详细讨论了只提供一个力约束以及只提供一个力偶约束的两类支链的结构设计,并简要讨论了几种含多个约束的支链设计问题。应用按约束要求设计的支链结构,利用与静平台以及与动平台直接连接的运动副轴线确定支链间约束的几何关系,根据相关的约束配置要求,综合出了一类新的完全对称结构的平面3自由度、球面3自由度以及空间3移动并联机构无过约束构型。并对无过约束构型和过约束构型进行了对比分析。为少自由度并联机构的创新设计及消除运动副轴线几何约束误差对过约束构型的不良影响提供了一种新的思路和解决途径。
     以上研究工作,解释了少自由度并联机构支链约束以及回路过约束的作用和耦合特点,揭示了过约束构型对运动副轴线间几何约束误差的敏感性及其对机构性能影响的机理,为过约束少自由度并联机构的分析提供了一种新的观点。无过约束构型设计方法为少自由度并联机构的构型综合提供了一种新的思路和创新方法,并为消除过约束的影响和提高机构的实用性提供了一条新的途径。本文的研究成果,对丰富和拓展少自由度并联机构的分析理论与方法,开拓无过约束构型的创新设计及应用领域,具有重要的理论意义和工程实用价值。
Lower-mobility parallel mechanisms rely on strictly geometrical constraints of axis of pairs in and between limbs to obtain the reduced number of DOF. In practice however these constraints will never been perfectly fulfilled due to the inevitability of errors, and hence produce series bad effects and problems.
     In this paper,the constraint system and overconstraint characteristics of lower mobility parallel mechanisms were analysed systematically based on screw theory and set theory.And then the statically determinate and statically indeterminate nature of the mechanisms in the reduced DOF space were obtained.Using structural mechanics theory,effects of geometrical constraints errors on lower-mobility parallel mechanisms were studied via virtual open kinematic chain method.The results revealed the sensitivity with respect to geometrical conditions of overconstrainted mobility,and provided an insight into the effects of constraint errors and overconstraints on parallel mechanisms.Due to the inherent shortcomings of overconstraint mechanisms,the design method of non-overconstrained structure were presented systematically in order to improve the self-adaptive and dynamic performance.
     The main work and achievement of this paper is as follows:
     ①Using screw theory and set theory as mathematical tools,the DOF and constraint system of pairs,open kinematic chains,single loop mechanisms,were systematically summarized and in-depth studied.The constraint and overconstraint characteristics of lower-mobility parallel mechanisms were studied via the union of limb constraints and the coupling of loop overconstraint.A symbol method to describe the constraint mode were built.The quantity relationship of overconstraints between basic loops and whole mechanism had been obtained.A system approach for overconstraint quatity calculation,overconstrained loop identification,overconstraint distribution in loop,have been established.The concepts of all-loop overconstraint,multi loop overconstraint, and single-loop overconstraint ,have been provided.This builds a concrete basis for analysis and design of lower-mobility parallel mechanisms.
     ②Based upon the exponential matrix and exponential products of modern screw theory for the rigid body transformation,the pose error of kinematic pair axis were treated as the result of equivalent screw motion,and an error model of open kinematic chain was built by using the products of exponentials formula.Meanwhile,the position and orientation errors of tool tip were represented as virtual prismatic and revolute pair’s screw motion respectivly,and its calculation formula is presented.A software package for screw calculation was developed under Matlab enviroment.Using this package,the error simulation of two typical open kinematic mechanisms were performed via Matlab programming.Furthermore,Adams’s simulation were used in verifying the established model.The results indicate that the simulation method is effective and correct,the modeling process is simple and intuitive.
     ③Based on overconstraint analysis, and using the virtual open kinematic chain mehod of loop,the effects of geometric constraint erros of pairs’axis on lower-mobiliy parallel mechanism, were studied.Using matrix force method,the internal force and deformations of links were caculated,and parasitic motions of moving platform were analysised.Moreover,the strain energy fluctuations were investigated.Simulation results provide an insight into the effects of constraint errors and overconstraints on parallel mechanisms.
     ④Based upon wrench system and set theory, the structural conditions of non-overconstrained lower-mobility parallel mechanisms and its synthesis method were proposed.The detailed synthesis procedure of 3-DOF parallel mechanisms were discussed and a series novel symmetrical structures had been found.Finally, the difference between overconstrained and non-overconstrained structure was compared. This provides a new point of view and approach for the structural synthesis of lower-mobility parallel robots and a new way to eliminate the sensitivity of overconstraint with respect to geometrical erros of the kinematic pairs.
     The above research results provided an insight into the principal of interaction between limb constraint,and overconstraint coupling in different loops.Furthermore it revealed the sensitivity with respect to the geometrical conditions of overconstrained lower-mobility parallel mechanisms and its impact on the performance of the mechanism.This provided a new idea for mechanism analysis.The systematic design procedure of non-overconstrained structure provided a comprehensive new way and innovative approaches to eliminate the effects of overconstraint and geometrical conditions erros.The achievement of this paper enriched the analysis theory and methods of lower-mobility parallel mechanisms.It also given a new way and opened up a new field for the applications of non-overconstrained mechanisms.The results have important theoretical and practical engineering value.
引文
[1] J P Merlet.Parallel Robot[M].Dordrecht:Springer, 2006.
    [2] J. P. Merlet.Still a long way to go on the road for parallel mechanisms[C].A keynote speech to be presented at the ASME 2002 DETC Conference, Montréal.
    [3] Pollard, W.L.G..Spray painting machine[P].US Patent No. 2,213,108, August 26, 1940.
    [4] Gough, V.E,Whitehall, S.G.Universal tyre test machine[C].Proceedings of the FISITA Ninth International Technical Congress,May, 1962,117-137.
    [5] Stewart, D.A platform with six degrees of freedom[C].Proceedings of the IMechE, 1965,180(15):371-385.
    [6] K.H. hunt.Kinematic Geometry of Mechanisms[M].Oxford:Clardon Press,1978.
    [7] E.F.Fichter.A Stewart platform-based manipulator:general theory and practice construction[J]. The International Journal of Robotics Research,1986,59(20):157-182.
    [8] HervéJ M.Group mathematics and parallel link mechanisms[C].IMACS/SICE Int. Symp. on Robotics, Mechatronics, and Manufacturing Systems, Kobe,16-20 Septembre 1992,459-464.
    [9] HervéJ M.Group mathematics and parallel link mechanisms[C].9th IFToMM World Congress on the Theory of Machines and Mechanisms,Milan,30 Ao?t-2 Septembre, 1995,2079-2082.
    [10] .HervéJ. M.The Lie group of rigid body displacements, a fundamentaltool for mechanism design[J].Mechanism and Machine Theory,1999,34(5):719–730.
    [11] Huang, Z,Li,Q.C . On the Type Synthesis of Lower Mobility Parallel Mechanisms [C].Proceedings of Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators,Quebec City,October 3–4,2002,272–283.
    [12] Huang Z,Li Q.C.General methodology for type synthesis of symmetrical lower-mobility parallel manipulators and several novel manipulators[J].The International Journal of Robotics Research,2002,21(2):131-145.
    [13] Huang Z.,Li Q.C.Type synthesis of symmetrical lower mobility parallel mechanisms using the constraint synthesis method[J] . The International Journal of Robotics Research,2003,22(1): 59-79.
    [14] Yuefa Fang,Lung-Wen Tsai.Structure Synthesis of a Class of 4-DOF and 5-DOF parallel Manipulators with Identical Limb Structures[J].The International Journal of Robotics Research,2002,21(9):799-810.
    [15] Kong Xianwen,Gosselin C M.Type Synthesis of Three-Degree-of-Freedom Spherical Parallel Manipulators[J].The International Journal of Robotics Research,2004,23(3):237-245.
    [16] Kong, X,Gosselin, C.M.Type synthesis of 3T-1R 4-DOF parallel manipulators based on screw theory[J].IEEE Transactions on Robotics and Automation,2004,20(2):181-190.
    [17]杨廷力.机器人机构拓朴结构学[M].北京:机械工业出版社,2004.
    [18]汪劲松,关立文等.并联机器人机构构型创新设计研究[J].机械工程学报,2004,11(40):7-12.
    [19] Rasim Alizade,Cagdas Bayram.Structural synthesis of parallel manipulators[J].Mechanism and Machine Theory,2004,39:857-870.
    [20] Gao F.New kinematic structures for 2-,3-,4-and 5-dof parallel manipulator designs [J].Mechanism and Machine Theory,2002,37(11):1395-1411.
    [21] Innocenti C,Parenti-Castelli V.Direct position analysis of the Stewart platform mechanism [J].Mechanism and Machine Theory,1990,25(6):611-621.
    [22] Dasgupta B,Mruthyunjaya T.S.A constructive predictor-corrector algorithm for the direct position kinematic problem for a general 6-6 Stewart platform[J].Mechanism and Machine Theory,1996,31(6):799-811.
    [23] Raghavan M.The Stewart platform of general geometry has 40 configurations[C].In ASME Design and Automation Conf,Chicago,22-25 Septembre 1991, volume2,397-402.
    [24]刘安心,杨廷力.空间并联机构位置分析的连续法[J].机械科学与技术,1994(3):19-25.
    [25]梁崇高,艾辉.一种Stewart平台型机械位移正解[J].机械工程学报,1991,27(2):26-30.
    [26] Wampler C.W.Forward displacement analysis of general six-in-parallel (Stewart) platform manipulators using soma coordinates[R].Rapport de Recherche 8179, GM, Mai 1994.
    [27]刘惠林,张同庄,丁洪生.3-RRR平面并联机构正解的吴方法[J] .北京理工大学学报,2000(5):555-559.
    [28] Huang Z.Kinematic principle and geometrical condition of general-linear-complex special configuration of parallel manipulators[J].Mechanism and Machine Theory,1999,34(8): 1171-1186.
    [29]黄真,王洪波.六自由度并联多回路机器人动力分析的影响系数法[J] .机械科学与技术,1989(3):41-44.
    [30] Cleary K,Arai T.A prototype parallel manipulator kinematics construction,software, workspace results and singularity analysis[C].IEEE Int. Conf. on Robotics and Automation,Sacramento, 11-14 April 1991,566-571.
    [31] Merlet J-P.Determination of the orientation workspace of parallel manipulators[J].Journal of Intelligent and Robotic Systems,1995,13:143-160.
    [32] Gosselin C.Determination of the workspace of 6-dof parallel manipulators[J].ASME J. of Mechanical Design,1990,112(3):331-336.
    [33]李保坤,曹毅,黄真,等.基于单位四元数的Stewart机构姿态工作空间研究[J].机器人,2008,30(4):353-357.
    [34] Huang Tian,Wang Jinsong,D.J.Whitehouse.Theory and methodology for kinematic design of Gough-Steward platforms[J] .Science in China(Series E),1999,42(4):425-436.
    [35] Feng G.A physical model of the solution space and the atlas of the reachable workspace for 2-dof parallel planar manipulators[J].Mechanism and Machine Theory, 1996,31(2): 173-184.
    [36] Hunt K.H.Structural kinematics of in parallel actuated robot arms[J].J. of Mechanisms, Transmissions and Automation in Design,1983,105:705-712.
    [37] Fichter E.F.Kinematics of a parallel connection manipulator[C].ASME Design Engineering Technology Conf.,Cambridge (MA),7-12 Octobre 1984,1-8.
    [38]黄真,曲义远.空间并联多环机构的特殊位形分析[C] .全国第五届机构学学术会议,庐山,1987.
    [39] Gosselin C,Angeles J.Singularity analysis of closed-loop kinematic chains[J].IEEE Trans. on Robotics and Automation,1990,6(3):281-290.
    [40] Zlatanov D,Fenton R.G., Benhabib B.Identification and classification of the singular configurations of mechanisms[J].Mechanism and Machine Theory,1998,33(6):743-760.
    [41] Merlet J-P.Singular configurations of parallel manipulators and Grassmann geometry[J].Int. J. of Robotics Research,1989,8(5):45-56.
    [42] Merlet J-P.Singular configurations of parallel manipulators and Grassmann geometry[A].In Boissonnat J-D. et J-P.Laumond , editors, Geometry and Robotics, volume LNCS 391, pages 194-212. Springer-Verlag, 1989.
    [43] Hao F,McCarthy J.M . Conditions for line-based singularities in spatial platform manipulators[J].J. of Robotic Systems,1998,15(1):43-55.
    [44] Basu D,GhosalA.Singularity analysis of platform-type multi-loop spatial mechanisms [J].Mechanism and Machine Theory,1997,32(3):375-389.
    [45]沈辉,吴学忠,刘冠峰等.并联机构中奇异位形的分类与判定[J].机械工程学报,2004,40(4):26-31.
    [46] Geng Z, Haynes L.S.On the dynamic model and kinematic analysis of a class of Stewartplatforms[J].Robotics and Autonomous Systems,1992,9:237-254.
    [47] Ji Z.Dynamic decomposition for Stewart platforms[J].ASME J. of Mechanical Design, 1994,116(1):67-69.
    [48] Dasgupta B,Choudhury P.A general strategy based on the Newton-Euler approach for the dynamic formulation of parallel manipulators[J] . Mechanism and Machine Theory, 1999,34(6):801-824.
    [49] Gosselin C.Parallel computational algorithms for the kinematics and dynamics of planar and spatial parallel manipulators[J].ASME J of Dynamic Systems, Measurement and Control, 1996,118(1):22-28.
    [50] Gosselin C.Stiffness mapping for parallel manipulators[J].IEEE Trans. on Robotics and Automation,1990,6(3):377-382.
    [51] C.M. Gosselin, D. Zhang.Stiffness analysis of parallel mechanisms using a lumped model[J].International Journal of Robotics and Automation,2002,17(1):17–27.
    [52] F. Majou, C. Gosselin.Parametric stiffness analysis of the Orthoglide[J].Mechanism and Machine Theory,2007,42:296–311.
    [53] D. Zhang, F. Xi, C.M. Mechefske, S.Y.T. Lang.Analysis of parallel kinematic machine with kinetostatic modeling method[J].Robotics and Computer-Integrated Manufacturing, 2004, 20(2):151–165.
    [54] G Piras,W L Cleghorn,J K Mills.Dynamic finite-element analysis of a planar high-speed, high-precision parallel manipulator with flexible links[J].Mechanism and Machine Theory, 2005,40(7):849-862.
    [55] B C Bouzgarrou,J C Fauroux,G. Gogu,Y Heerah.Rigidity analysis of T3R1 parallel robot uncoupled kinematics[C] . Proceedings of the 35th International Symposium on Robotics,Paris, March 2004.
    [56] C S Long,J A. Snyman,A Groenwold.Optimal structural design of a planar parallel platform for machining[J].Applied Mathematical Modelling,2003,27(8):581-609.
    [57] B.S. El-Khasawneh,P M Ferreira.Computation of stiffness and stiffness bounds for parallel link manipulators[J] . International Journal of Machine Tools and Manufacture,1999,39(2):321-342.
    [58] C Corradini,J C Fauroux S Krut,O Company.Evaluation of a 4-degree-of-freedom parallel manipulator stiffness[C].Proceedings of 11th IFToMM World Congress in Mechanism and Machine Science, Tianjin, China. 2004,1857-1861.
    [59] R izk,C auroux,M umteanu,G. Gogu.A comparative stiffness analysis of a reconfigurable parallel machine with three or four degrees of mobility[J].Journal of Machine Engineering,2006,6(2):45-55.
    [60] C M Clinton,G. Zhang,A J Wavering.Stiffness modeling of a Stewart-platform-based milling machine[J].Transaction of the North America Manufacturing Research Institution of SME, vol. XXV, 1997,335--340.
    [61] Y W Li,J S Wang,L P Wang.Stiffness analysis of a Stewart platform-based parallel kinematic machine[C].Proceedings of IEEE International Conference on Robotics and Automation (ICRA),Washington,US,May 11–15,2002,vol 4:3672-3677.
    [62] T Huang,X Zhao,D J Whitehouse.Stiffness estimation of a tripod-based parallel kinematic machine[J].IEEE Transaction on Robotics and Automation,2002,18(1):50-58.
    [63] D. Deblaise,X. Hernot,P. Maurine .Systematic analytical method for PKM stiffness matrix calculation[C].IEEE International Conference on Robotics and Automation (ICRA),Orlando, Florida, May 2006, 4213-4219.
    [64] Kiyoshi Nagai1,Zhengyong Liu.A systematic approach to stiffness analysis of parallel mechanisms and its comparison with FEM[C],SICE Annual Conference,,Sept,17-20, 2007, Kagawa University,Japan,1087-1094.
    [65]张曙,U.Heisel.并联运动机床[M] .北京:机械工业出版社,2003.
    [66] Herve J M, Karoutia M.The Novel 3-RUU wrist with no idle pair[C].Proceedings of the WORKSHOP on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators,October 3–4, 2002,Quebec City, Quebec, Canada,284-286.
    [67] Qiong Jin, Tingli Yang.Overconstraint analysis of spatial 6-link loops[J].Mechanism and Machine Theory,2002,37:267-278.
    [68] J.P.Merlet.Parallel robot:Open problems[C].Proc. 9th Int Symp.Robotics Research, Snowbird, UT,Oct. 1999,9–12.
    [69]马履中,郭宗和.三平移弱耦合并联机器人机构机型及位置精度分析[J].中国机械工程,2006,17(15):1541-1545.
    [70] Parenti-Castelli V,Di Gregorio R.Influence of manufacturing errors on the kinematic performance of the 3-UPU parallel mechanisms[C].2nd Chemnitzer Parallel kinematik Seminar, 2000,85-99.
    [71] Di Gregorio R.,Parenti-Castelli V.Geometric error effects on the performances of a parallel wrist[C].3rd Chemnitzer Parallelkinematik Seminar,Chemnitz,23-25 April 2002,1011-1024.
    [72] Hongliang Cui,Zhenqi Zhu.Kinematic analysis and error modeling of TAU parallel robot[J].Robotics and Computer-Integrated Manufacturing,2005,21(6):497-505.
    [73] Han C,Jin wook Kim . Kinematic sensitivity analysis of the 3-UPU parallel manipulator[J].Mechanism and Machine Theory,2002,37(8):787-798.
    [74] Parenti-Castelli V, S.Venanzi.Clearance influence analysis on mechanisms.Mechanism and Machine Theory,2005,40:1316–1329.
    [75] Frisoli A.,Solazzi M,Bergamasco M.A new method for the estimation of position accuracy in parallel manipulators with joint clearances by screw theory[C].IEEE Int. Conf. on Robotics and Automation, Pasadena, 19-23 Mai 2008,837-844.
    [76] J. Meng, Z. Li.A general approach for accuracy analysis of parallel manipulators with joint clearance[C]. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems,Edmonton, Alberta,Canada, 2–6 August 2005,790–795.
    [77] Jin Y,Chen I-M.Effects of constraint errors on parallel manipulators with decoupled motion[J].Mechanism and Machine Theory,2006,41:912–928.
    [78]安培文,黄茂林.平面曲柄摇杆机构自调结构的分析与设计[J].机械工程学报,2004,40(5):11-16.
    [79]安培文,黄茂林.平面连杆机构的自调及其允差的分析研究[J].中国机械工程,2002,(23):2040-2044.
    [80]安培文.平面连杆机构的过约束及自调结构的分析与设计研究[D].重庆:重庆大学,2003.
    [81]黄勇刚,黄茂林,杜力等.平面3-RRR并联机构过约束分析及自调结构设计[J].中国机械工程,2006,17(3):303-306.
    [82] Di Gregorio R.A new parallel wrist using only revolute pairs: the 3-RUU wrist[J].Robotica, 2001,19(3):305-309.
    [83] Di Gregorio R.A new parallel wrist using only revolute pairs: the 3-RUU wrist[J].Robotica, 2001,19(3):305-309.
    [84]秦伟,黄茂林,伍驭美.制造误差对过约束机构性能影响的研究[J].中国机械工程,2002,13(15):1327-1331.
    [85] Y. Nakamura,A Murai.Constraints and deformations analysis for machining accuracy assessment of closed kinematic chains[C].Proceedings of the 2004 IEEE International Conference on Robotics & Automation. New Orieans, USA, April 2004, 1706-1712.
    [86] Qingsong Xu,Yangmin Li.Influences of constraint errors on the mobility of a 3-DOF translational parallel manipulator[C].12th IFToMM World Congress, Besanc, June 18-21, 2007.
    [87]张启先.空间机构的分析与综合(上册)[M].北京:机械工业出版社,1984.
    [88] Volmer J著.石则昌译.连杆机构[M].北京:机械工业出版社,1989.
    [89]РешетовЛН.Самаустанавливющиесямеханиэмы[M].Мос-ква:Машиностроение,1985.
    [90]秦伟.基于约束的自调机械结构理论与工程设计研究[D].重庆:重庆大学,1999.
    [91] Xianwen Kong, Clement M. Gosselin.Type synthesis of Three-degree-of-freedom sphericalparallel manipulators[J] . The International Journal of Robotics Research,2004,23(3): 237-245
    [92] Karouia M,Herve J M.Asymmetrical 3-dof spherical parallel mechanisms[J].European Journal of Mechanics A/Solids,2005,24:47–57.
    [93] Karouia M,.Herve J M.Non-overconstrained 3-dof spherical parallel manipulators of type: 3-RCC, 3-CCR, 3-CRC[J].Robotica 2006 ,24:85–94.
    [94]郭盛,方跃法,房海蓉.非过约束五自由度并联机构存在性问题的解析判定[J].中国机械工程,2007,22(18):2647-2651.
    [95]郭盛,方跃法.可实现空间取放作业的4自由度并联机器人机构综合[J].机器人,2007,5(29):417-422.
    [96]黄田,李曚,吴孟丽等.可重构PKM模块的选型原则—-理论与实践[J].机械工程学报,2005,8(41):36-41.
    [97]黄真,赵永生,赵铁石.高等空间机构学[M].北京:高等教育出版社,2006.
    [98] Sumigomo K, Duffy J.Application of linear algebra to screw systems[J].Mechanism and Machine Theory,1982,17(1):73-83.
    [99] Dai J,Jones J R.A linear algebra procedure in obtaining reciprocal screw systems[J].Journal of robotic systems,2003,20(7):401-412.
    [100] Konkar.Ranjit Ravindra . Incrementalkinematic analysis and sybolic synthesis of mechanisms[D].Stanford:Stanford University,1993.
    [101] Jing-Shan Zhao,Kai Zhou,Zhi-Jing Feng . A theory of degrees of freedom for mechanisms[J].Mechanism and Machine Theory,2004(39):621-643.
    [102] (俄)奥佐尔著,唐炜柏,黄茂林,王鸿恩译.机械原理教程[M].重庆大学出版社,1992.
    [103] Xianwen Kong,Clément M. Gosselin.Kinematics and singularity analysis of a novel type of 3-CRR 3-DOF translational parallel manipulator[J].The International Journal of Robotics Research ,Vol.21 No.9 September 2002,pp:791-798.
    [104]阎华,刘桂雄,郑时雄.机器人位姿误差建模方法综述.机床与液压,2000(1):3-5.
    [105]徐卫良.机器人机构误差建模的摄动法[J].机器人,1989,3(6):39-44.
    [106] K. Sugimoto and T. Okada.Compensation of positioning errors caused by geometric deviation in robot system[C]. Hideo Hanafusa and Hirochika Inoue. Robotics Research: The second international Symposium, Cambridge , MIT Press 1985:231-236.
    [107] Saeed .B. Niku.机器人学导论--分析、系统及应用[M].孙富春,朱纪洪,刘国栋等译.北京:电子工业出版社,2004.
    [108]理查德·摩雷,李泽湘,夏恩卡·萨思特里著,徐卫良,钱瑞明译.机器人操作的数学导论[M].北京:机械工业出版社,1998.
    [109]张付祥,付宜利,王树国.闭链级联式机器人基于旋量理论的运动学分析方法[J].机械工程学报,2006.42(4):112-117.
    [110]荆学东,浦耿强,王成焘.应用基于运动螺旋的机器人正解映射求解FANUC机器人的逆运动学问题[J].机械科学与技术,2003.22(3):402-405.
    [111]谭月胜,孙汉旭,贾庆轩等.旋量理论在机械臂末端执行器运动精度分析中的应用研究[J].机械科学与技术,2006.25(5):534-538.
    [112] Sang-Ku Moon,Yong-Mo Moon,Sridhar Kota.Screw theory based metrology for design and error compensation of machine tools[C].Proceedings of DETC’01:Pittsburgh, Pennsylvania, September 9-12, 2001.
    [113] Sang-Ku Moon.Erro prediction and compensation of reconfigurable machine tool using screw kinematics[D].Mchigan:The university of Mchigan,2002.
    [114]杨仲侯,胡维俊,吕泰仁.结构力学.北京:高等教育出版社,1992.
    [115] Xin-Jun Liu,JinSong Wang,Hao-Jun Zheng.Optimum design of the 5R symmetrical parallel manipulator with asurrounded and good condition workspace[J].Robotics and Autonomous Systems,2006,54:221–233.
    [116]贺镇.多回路及自适应机构自调结构设计的研究与工程实践[D].重庆:重庆大学,2006.
    [117]杜力.可调双输出函数发生机构及其自调结构设计研究[D].重庆:重庆大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700