地转对海洋内波的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋内波是发生在密度层结海洋中一种常见的海洋波动现象,其最大振幅出现在海洋内部。研究海洋内波不仅对了解内波相关现象有着重要意义,而且还有助于了解内波在海洋内部质量、动量、能量等交换过程、海洋内部混合、环境和气候变化中的作用,加深对内波与其它多尺度海洋波动间的相互作用(例如:内波-表面波、内波-流、内波-涡等等)的理解。另外,研究海洋内波对海洋工程和海洋军事等也具有重要的指导意义。
     本文在非传统近似(即,包含地转水平分量在内的完整地转效应)条件下,用WKB方法得到了密度连续分层海洋内波的一组WKB近似解。为了检验所得到的WKB近似解的有效性,WKB解各垂向速度模态与直接数值计算结果进行了详细比对。结果表明,当浮频率N(z)是关于深度z的慢变函数时,文中得到的WKB近似解与数值结果符合良好。另外,讨论了在背景流场存在时地转效应对内波的影响。研究还表明:地转水平分量一般是不能忽略的。因此,在海洋内波理论研究中保留地转水平分量对研究内波的生成、演变及消衰是非常必要的。
     界面波是内波的一种特殊情况,界面波通常借助于由两层具有不同密度流体所构建的模型来进行研究。虽然现有的研究从各个不同方面阐述了两层流体界面波的特性,但他们均忽略了地转对其的影响。然而,当考虑表面波或内波对大尺度环流的影响时,地转的影响是不能忽略的。为此,本文将孙孚等(2003)在地转条件下导出的表面波解及其波生切应力推广到两层流体,研究了地转对两层流体界面波解及波生切应力的影响。
Ocean internal waves is a kind of waves occurred in continuous density- stratified ocean, the largest amplitude of the fluctuations occurred in the interior of the ocean. Investigation on them is very important not only on studying the phenomena related to themselves but also is helpful for us to understand the interactions of internal waves on the exchange process of mass, momentum, energy, environmental and climate change in the ocean. Furthermore, the understanding for internal waves’behaviours will increase the knowledge about the interactions between internal waves and many other multi-scale ocean processes (for example: internal waves-surface waves, internal waves–current, internal waves-eddy, etc, especially the contribution for large scale movements). In addition, it has great significance guidance to the marine engineering and marine military and so on.
     In this thesis, a kind of WKB approximate solutions is derived by using WKB method for the internal waves in continuous density-stratified ocean under the‘non-traditional approximation’that is to include a complete effect of the earth’rotation. The vertical velocity modes obtained from the WKB approximate solutions are compared with the numerical result in detail in order to test the validity of WKB approximate solutions. The study shows that the WKB approximate solutions proposed are consistent with the numerical results for the buoyancy frequency N(z) varies gradually with the ocean depth z. Furthermore, the effects of the earth’rotation on the internal waves are studied in the present of background current. The results indicate that the horizantal component of the earth’rotation can not be ignored generally. Therefore, it is very important to retain the horizantal component of the earth’rotation in the studying on internal wave about its generation, evolution and dissipation.
     The interface wave is a special case of internal wave, it is usually studied by using the model with two-layers fluid with different density. Although the existing investigations described the basic behaviours of the interfacial waves from different aspects, there appear to be no one taking into account of the influence of the earth rotation on the interfacial waves. However, this influence could not be neglected when we study the wave-induced stress and its driven effect on currents of the earth’s rotation, at least for surface waves. In this thesis, the results of Sun et al. (2003) for surface waves were extended to a more general case of two-layer fluid with a top free surface and a flat bottom, the solutions were deduced from the general form of linear fluid dynamic equations with the f-plane approximation for geostrophic small amplitude surface waves and interfacial waves, and wave-induced tangential stress were obtained based on the solutions presented. The results obtained here have potential important applications for understanding the behaviours of the interfacial waves, the interaction between the surface wave and the interfacial wave, ocean dynamics and in ocean engineering.
引文
1.陈小刚,N层密度分层流体界面波的研究,博士论文,中科院海洋研究所,2005
    2.杜涛,吴巍,方欣华,海洋内波的产生与分布[J],海洋科学,2001, 2(4):25-28
    3.方欣华,杜涛,海洋内波基础和中国海内波。青岛:中国海洋大学出版社2005:260-261
    4.冯士筰,李凤岐,李少菁.海洋科学导论.北京:高等教育出版社,1999:190-195
    5.蒋国荣,汪晓娇,张军,张韧.内波研究的国内外发展现状[J],海洋预报, 2005,S1:179-185
    6.李丙瑞.海洋中的内波及其演变、破碎和所致混合,博士论文,中国海洋大学,2006
    7.李家春.现代流体力学发展的回顾与展望.力学进展. 1995, 25(4): 442-450
    8.申辉,海洋内波的遥感与数值模拟研究.博士论文,中科院海洋研究所,2005
    9.文圣常,余宙文.海浪理论与计算原理.北京:科学出版社, 1984: 1-105,127-204
    10.王涛,李家春.波作用量守恒原理在波流相互作用中的应用。力学学报,1996,28(3):281-290
    11.王涛,李家春.波流相互作用研究进展.力学进展. 1999, 29(3): 331-343
    12.徐肇廷.海洋内波动力学.北京:科学出版社,1999:103-130
    13.徐肇廷,姚凤朝,隋红波,分层海洋中运动物体生成的内波,青岛海洋大学学报,2001,31(4):461-466
    14.杨殿荣,海洋学[M],北京:高等教育出版社,1986. 215-217
    15.杨树珍,我国内波研究取得新进展[J],海洋信息,1994,6:3-4
    16.袁业立,乔方立,戴德君.海洋内波控制方程组.海洋科学进展.2003,21(3):243-250
    17. Beckmann A. and Diebels S. Effects of the horizontal component of the earth’s rotation on wave propagation on an f-plane, Geophys. Astrophys. Fluid Dyn. 1994, 76: 95–119.
    18. Bell T. H. Topograpycally generated internal waves in the open ocean, 1975, J. Geophys. Res.,1975,320-327.
    19. Benjamin T. B. Internal waves of finite amplitude and permanent form. J. Fluid Mech. 1966, 25: 241-270
    20. Benjamin T. B. Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 1967, 29: 559-592
    21. Benjamin T. B. and Bridges T. J. Reappraisal of the Keilvin-Helmholz problem. Part 1. Hamiltonian structure. J. Fluid Mech. 1997,333: 301-325
    22. Benney D. J. Long nonlinear waves in fluid flows. J. Math. and Phys. 1966, 45: 52-63
    23. Benney D. J. and Ko D. R. S. The propagation of long, large amplitude internal waves. Studies in Appl. Math. 1978, 59: 187-199
    24. Berning M. and Rubenchik A. M. A weakly nonlinear theory for the dynamical Raleigh-Taylor instability. Physics of Fluids. 1998, 10(7): 1565-1587
    25. Blumenthal M. B. and Briscoe M. G. Distinguishing propagating waves and standing modes: an internal wave model. J. Phys. Oceanogr.,1995, 25: 1095-1115.
    26. Borgman L. E. and Chappelear J. E. The use of the Stokes-Struik approximation for waves of finite height. Proc. 6th Coast. Eng. Conf. 1958, 252-280.
    27. Boussinesq J. Théorie de l’intumescence liquide appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire. Acad. Sci. Paris Comptes Rengus. 1871, 72: 755-759
    28. Boussinesq J. Théorie des ondes et des ramous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au foud. J. Math. Pures Appl. Ser.2, 1872,17:55-108
    29. Brandt P. A. Rubing and W. Alpers et al., Internal waves in the Strait of Messina studied by a numerical model and synthetic aperture radar images from the ERS 1/2 satellites J. Phys. Oceanogr.,1997,27:48-663.
    30. Brant P.,W. Alpers.J.O.Backhaus et al.Study of the generation and propagation fo internal waves in the Strait of Gibraltar using a numerical model and synthetic aperture radar iamges of thd European ERS-satelite.J. Geophys. Res.,1996,101(C6):14237-14252.
    31. Brevik I and Aas B. Flume experiment on waves and currents I: rippled bed. Coastal Eng. 1980, 3: 149-177.
    32. Brevik I and Luftkrigsskolen. Flume experiment on waves and currents II: smooth bed. Coastal Eng. 1980, 4: 89-110
    33. Brisco, M. G. Preliminary results from the trimoored internal wave experiment (IWEX). J. Geophys. Res., 1975, 80(C27): 3872-3884.
    34. Briscoe M. G. Internal waves in the ocean. Rev. Geophys. and Space Phys., 1975a, 13: 591–598.
    35. Briscoe M. G. Preliminary results from the trimoored internal wave experiment (IWEX). J. Geophys. Res., 1975b, 80: 3872–3884.
    36. Briscoe M. G. and R. A. Weller. Preliminary results from the long-term upper-ocean study (LOTUS). Dyn. Atmos. Oceans., 1984, 8: 243–265.
    37. Choi W. and Camassa R. Weakly nonlinear internal waves in a two-fluid system. J. Fluid Mech. 1996a, 313: 83-103.
    38. Choi W. and Camassa R. Long internal waves of finite amplitude. Phys. Rev. Lett. 1996b, 77: 1759-1762.
    39. Choi W. and Camassa R., Exact evolution Equations for surface waves. Journal of Engineering Mechanics, 1999a, 7:756-760.
    40. Choi W. and Camassa R. Fully nonlinear internal waves in a two-fluid system. J. Fluid Mech., 1999b, 396: 1-36Choi Y.V. Lvov, and S. Nazarenko. Probability densities and Preservation of randomness in wave turbulence. Phys. Lett., 2004, 332: 230 - 238.
    41. Choi W. and Camassa R. Fully nonlinear internal waves in a two-fluid system. J. Fluid Mech., 1999, 396: 1-36.
    42. Cox, C. S. et al.al.Oceanic fone structure and internal waves. 1969, Bull.Japan Soc. Fish Oceanogr.,spec.number.
    43. Could, W。J. et al. Priliminary field results for a Mid-Ocean dynamics experiment (MODE-0). Deep-sea Res.,1974,21:911-932.
    44. Craig W. and Groves M. D. Normal forms for wave motion in fluid interfaces. Wave motion. 2000, 31: 21-41.
    45. Davis R. E. and Acrivos A. Solitary internal waves in deep water. J. Fluid Mech. 1967, 29: 593-607.
    46. D.Asaro E. A., and M. D. Morehead. Internal waves and velocity finestructure in the Arctic Ocean, J. Geophys. Res., 1991,96: 12725–12738.
    47. D'Asaro E. A. and H. Perkins. A Near-inertial internal wave spectrum for the sargasso sea in late summer. J. Phys Oceanogr.,1984, 14(3): 489-505.
    48. Dauxois T. and Young W. R. Near-critical reflection of internal waves, J. Fluid Mech., 1999, 390: 271– 295.
    49. Defant A. Physical Oceanography, Vol. II. Pergamon, Tarrytown, N. Y. 1961.
    50. Desaubies Y. J. F. A linear theory of internal wave spectra and coherences near the V?is?l? frequency. J. Geophys. Res., 1975, 80: 895–899.
    51. Desaubies Y. J. F. Analytic representation of internal wave spectra, J. Phys. Oceanogr., 1976, 6: 976-981.
    52. Desaubies Y. J. F. Internal waves near the turning point. Geophys. Fluid Dyn., 1973, 5: 143–154.
    53. Dong G. H. and Li Y. C. Wave transformation and breaking in diagonal opposing current. In: Proc. Special Offshore Symp China. Beijing: ISOPE, 1994. 633-640
    54. Dottenko S. F. The effect of the earth's rotation on internal waves in the wake of a moving pressure area, J. Phys. Oceanogr., 1991, 2: 411-420.
    55. Dotsenko S. F. Generation of long internal waves in the ocean by a moving pressure area. Morsk.Gidrofiz. Zh. 1990, 3: 3-9.
    56. Dotsenko S. F. Generation of unstabilized internal and inertial waves in continuously stratified flows. Surface and Internal Waves. Sevastopol: 1981, 70--77.
    57. Dyachenko A. I., Kuznetsov E. A., Spector M. D. and Zakharov V. E. Analytical description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping). Phys. Lett. A. 1996a, 221:73-79.
    58. Dyachenko A. I., Zakharov V. E. and Kuznetsov E. A. Nonlinear dynamics of the free surface of an ideal fluid. Plasma Phys. Rep. 1996b, 22: 829-840.
    59. Eckart C. Internal waves in the ocean. Phys. Fluids, 1961,4: 791-799.
    60. Eriksen C. C. Some characteristics of internal gravity waves in the equatorial Pacific. J. Geophys. Res., 1985, 90, 7243–7255.
    61. Eriksen C. C. Implications of ocean bottom reflection for internal wave spectra and mixing. J. Phys Oceanogr., 1985, 15(9): 1145-1156.
    62. Eriksen C. C. Internal wave reflection and mixing at Fieberling Guyot, J. Geophys. Res., 1998,103: 2977– 2994.
    63. Eriksen C. C. Evidence for a continuous spectrum of equatorial waves in the Indian Ocean. J. Geophys. Res., 1980,85: 3285–3303.
    64. Fan Z.S,and Fang X.H. The effect of horizonta1 component of rotation vector on ocean intern al waves.Acta Oceanologica Sinica,1998a, 20(3):129-132.
    65. Fan Z.S.and Fang X.H. An asymptotic solution of equations for oceanic interna1 waves under considering horizonta1 component of rotation vector. Acta Oceanologica Sinica, 1998b.20(4):1-8.
    66. Fan Z . S . and Fang X . H . A possible mechanism ofocean fine-structure.Part I:energy and coherence.Journal of Ocean University of Qingdao, 1999a,29(2):207-241.
    67. Fu L. L. and B. Holt. Internal waves in the Gulf of California: Observations from a space borneradar.J. Geophys. Res., 1984, 89(C2):2053-2060.
    68. Furuichi N. Hibiya T. and Niwa Y. Model-predicted distribution of wind-induced internal wave energy in the world's oceans. J. Geophys. Res., 2008, 113: C9C09034.
    69. Fukue R. Energy transfer within the small-scale oceanic internal wave spectrum. J. Phys. Oceanogr., 2003, 33(1): 267-282.
    70. Garrett C. "What is the "near-inertial" band and why is it different from the rest of the internal wave spectrum?". J. Phys. Oceanogr., 2001, 31(4): 962-971.
    71. Garrett C and Munk. W. Space-timescales of internal waves. Geophys. Fluid. Dynamics., 1972, 2: 225–264.
    72. Garrett C. and Munk. W.Space-timescales of internal waves. A progress report. J. Geophys. Res., 1975, 80: 291–297.
    73. Garrett C. and W. Munk. Internal waves in the ocean. Ann. Rev. Fluid Mech., 1979, 11: 339–369.
    74. Garrett C. and Laurent L. St. Aspects of deep ocean mixing. J. Oceanogr., 2002, 58: 11– 24.
    75. Garrett C. Internal Tides and Ocean Mixing. Science. 2003,301(5641):1858 - 1859
    76. Gerkema T. A unified model for the generation and fission of internal tides in a rotating ocean. J. Mar. Res. 1996, 54 (3): 421-450.
    77. Gerkema T. and Shrira. V. I. Near-inertial waves in the ocean: beyond the‘traditional approximation’. J. Fluid Mech., 2005, 529: 195-219.
    78. Gerkema T. and Shrira V. I. Non-traditional reflection of internal waves from a sloping bottom, and the likelihood of critical reflection. Geophys. Res. Lett., 2006, 33: L06611.
    79. Gill A.E. Atmosphere-ocean dynamics.International Geophysical Series.Vol.30,San Diego,Academic Press,622
    80. Grimshaw R. and Pullin D. Extreme interfacial waves. Phys. Fluids, 1986,29: 2802-2087.
    81. Grue, J., Jensen, A., Rusas, P.O., and Sveen, J. K. Properties of large amplitude internal waves. J. Fluid Mech. 1999,380: 257-278.
    82. Hasselmann, K. Wave-driven inertial oscillations, Geophys. Fluid Dyn., 1970, 1: 463-502.
    83. Hedges T. S., Anastasiou K. and Gabriel D. Interaction of random waves and currents. J. Waterway Port Coastal and Ocean Eng.-ASCE. 1985, 111(2): 275-288.
    84. Helal M. A. and Molines J. M. Nonlinear internal waves in shallow water-A theoretical and experimental study. Tellus. 1981, 33: 488-504.
    85. Hibiya T. and Y. Niwa. Direct numerical simulation of the roll-off internal wave shear spectra in the ocean. J. Geophys. Res.,101(C6):14123-14129.
    86. Holbrook W. S. and I. Fer. Ocean internal wave spectra inferred from seismic reflection transects. Geophys. Res. Lett., 2005, 32: 1–4.
    87. Holloway P. E,. E. Pelinovshy and T. Talipova et al. Anonlinear model of internal tide transformation on the Australian North West Shelf. J.phys.Oceanogr.,1997,27:871-896.
    88. Holt, S.E., Koseff, J.R. and Ferziger, J.H. A numerical study of the evolution and structure of homogeneous stably stratified sheared turbulence. J. Fluid Mech., 1992, 237: 499-539.
    89. Hsu, M.K., Liu, A.K. and Liu, C. A study of internal waves in the China Seas and Yellow Sea using SAR. Continental Shelf Res., 2000, 20: 389-410.
    90. Huang R. X. and Chou R. L. Parameter sensitivity study of the saline circulation. Climate Dyn., 1994, 9: 391–409.
    91. Hughes B. A. and Stewart R. W. Interaction between gravity waves and a shear flow. J. Fluid Mech. 1961, 10: 385-402.
    92. Hughes, B.A. The effect of internal waves on surface wind waves, 2, Theoretical analysis, J. Geophys. Res., 1978, 83: 455-465.
    93. Justin S.and J. Martin The generation of non-linear internal waves in the Gulf of Oman.Continental Shelf Res.,2002,22:1153-1182
    94. Kasahara A. Initial-value approach to study the inertio-gravity waves without the‘traditional approximation’. J. Comput. Phys., 2007, 225(2): 2175-2197.
    95. Kasahara A. The roles of the horizontal component of the earth's angular velocity in nonhydrostatic linear models. J. Atmos. Sci., 2003, 60(8): 1085-1095.
    96. Keulegan M. J. Characteristics of internal solitary waves. J. Res. Natl. Bur. Stand., 1953, 51: 133-140.
    97. Kundu, P. K. On internal waves generated by traveling wind. J. Fluid Mech., 1993, 254: 529-559.
    98. Lamb H. Hydrodynamics. New York: Cambridge University Press. 1932.
    99. Laitone E. V. The second approximation to cnoidal and solitary waves.J. Fluid Mech. 1960, 9: 430-444
    100. Lee C. Y. and Beardsley R. C. The generation of long, nonlinear internal waves in a weakly stratified shear flow. J. Geophys. Res. 1974, 79: 453-462.
    101. Leone C., Segur H. and Hammack J. L. Viscous decay of long internal solitary waves. Phys. Fluids. 1982, 25: 942-944.
    102. Levine M. D. A modification of the Garrett-Munk internal wave spectrum. J. Phys. Oceanogr., 2002, 32(11): 3166-3181.
    103. Levine M. D. Observing oceanic internal waves: What have we learned? What can we learn? The Dynamics of Oceanic Internal Waves: Proc.‘Aha Huliko’a Hawaiian Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 1991,467–480.
    104. Kakutani T. Effect of an uneven bottom on gravity waves. J. Phys. Soc. Japan. 1971, 30(1): 272-276
    105. Kakutani T. and Yamasaki N. Solitary waves on a two-layer fluid. J. Phys. Soc. Japan. 1978, 45: 674-679
    106. Koop C. G. and Butler G. An investigation of internal solitary waves in a two-fluid system. J. Fluid Mech., 1981,112: 225-251.
    107. Kubota T., Ko D. R. S. and Dobbs L. D. Propagation of weakly nonlinear internal waves in a stratified fluid of finite depth. AIAA Journal of Hydronautics, 1978, 12: 157-165
    108. Levine M. D. and Morison J. H. Internal waves in the Arctic Ocean: comparison with lower-latitude observations. J. Phys. Oceanogr., 1985, 15: 800–809.
    109. Lin C. C. and Clark A. Jr. On the theory of shallow water waves. Tsing Hua J. of Chinese Studies Special, 1959, 1: 54-62;also in Selected Papers of C.C. Lin, 1987, 352-360. Spingapor: world Scientific.
    110. Long, R. R. Solitary waves in one- and two-fluid systems. Tellus, 1956, 8: 460-471.
    111. Love, A. E. G. Wave notion in a heterogeneous heave liquids. Proc.Lond.Math.Soc.1891, 22:307-316.
    112. Lozovatsky I. D., E. G. Morozov, et al. Spatial decay of energy density of tidal internal waves. J. Geophys. Res., 2003, 108: 3201 - 3216.
    113. Lvov Y. V. and Tabak. E. G. Hamiltonian formalism and the Garrett-Munk spectrum of internal waves in the ocean. Phys. Rev. Lett., 2001, 87(16): 168501.
    114. Lvov Y. V., K. L. Polzin, et al. Energy spectra of the ocean’s internal wave field: theory and observations. Phys. Rev. Lett., 2004, 92(12): 128501.
    115. Lvov Y. V., K. L. Polzin, et al. Scale invariant spectra of the oceanic internal wave field. Arxiv preprint math-ph/0505050.
    116. Magaard, L. On the generation of internal gravity waves by a fluctuating bouyancy flux at the sea surface. Geophys. and Astrophys. Fluid Dyn.1973, 5(1):101-111.
    117. Matsuno Y. A unified theory of nonlinear wave propagation in two-layer fluid system. J. Phys. Soc. Japan, 1993, 62: 1902-1916.
    118. Matsuno Y. Nonlinear evolution of surface gravity waves over an uneven bottom. J. Fluid Mech. 1993b, 249, 121-133.
    119. Matsuno Y. 1993c. A unified theory of nonlinear wave propagation in two-layer fluid system. J. Phys. Soc. Japan. 62, 1902-1916.
    120. Matsuno Y. High-order nonlinear evolution equation for interfacial waves in a two-layer fluid system. Phys. Rev. E. 1994, 49(3): 2091-2095.
    121. McComas, C. H.and Müller P. Timescales of resonant interactions among oceanic internal waves. J. Phys. Oceanogr., 1981a, 11, 139–147.
    122. McComas C. H. and Müller. P. The dynamic balance of internal waves. J. Phys. Oceanogr., 1981, 11(7): 970-986.
    123. Meyer R. E., Waves on Fluid Interface. Academic, New York, 1983.
    124. Müller P., D. J. Olbers, et al. The Iwex spectrum. J. Geophys. Res., 1978, 83(C1): 479-500.
    125. Müller P. and Siedler G. Consistency relations for internal waves. Deep-Sea Res., 1976, 23: 613–628.
    126. Munk W. H. Internal wave spectra at the buoyant and inertial frequencies." J. Phys. Oceanogr., 1980, 10(11): 1718-1728.
    127. New A. L. and J. C. Dasilva. Remote-sensing evidence for the local generation of internal soliton packets in the central Bay of Biscay. Deep-Sea Res.,2002, I, 49:915-934.
    128. Ono H. Algebraic solitary waves in stratified fluids. J. Phys. Soc. Japan, 1975, 39: 1082-1091
    129. Peters, H. The kinematics of a stochastic field of internal waves modified by a mean shear current. Deep-Sea Res.,1983, 30: 119–148.
    130. Phillips O.M. On spectra measured in an undulating layered medium.J. Phys. Oceanogr., 1971, 1: 1–6.
    131. Phillips, O. M., 1977. The Dynamics of the Upper Ocean. Cambridge University Press, Second Edition
    132. Pollard R. T. and Millard, R. C. Comparison between observed and simulated wind-generated inertial oscillations. Deep-Sea Res.,1970, 17: 813–821.
    133. Rayleigh J. W. S.and Lord. The form of standing waves on the surface of running water. Proc. London Math. Soc. 1883, 15: 69-78
    134. Rayleigh, J. W. S.and Lord. On waves. Phil. Mag. 1876, 1: 257-279; Reprinted in Scientific papers, vol. 1, 251-271.
    135. Rayleigh, L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc.Lond.Math.Soc.,1883, 14:170-178.
    136. Riley J. J. and M. P. Lelong. Fluid motions in the presence of strongstable stratification. Ann. Rev. Fluid Mech., 2000, 32(1): 613-657.
    137. Sandstrom H. and N. S. Oakey. Dissipation in internal tides and solitary waves.J.Phys.Oceangr.,1995, 25:604-614.
    138. Sharma J. N. and Dean R. G. Development and evaluation of a procedure for simulating a random directional second order sea surface and associated wave forces. Ocean Engineering, 1979, Rep.20, University of Delaware.
    139. Sherwin T. J., V. I. Vlasenko and N. Stashchuk et al. Along-slope generation as and explanation for some unusually large internal tides. Deep-Sea Res.,2002, 49:1787-1799.
    140. Skjelbreia L. Gravity waves, Stokes third order approximation, tables of functions. Council on Wave Research, Eng. Foundation, Univ. of California, Berkeley. 1959.
    141. Skjelbreia L. and Hendrickson J. A. Fifth order gravity wave theory. Proc. 7th Conf. Coast. Eng. 1961: 184-196.
    142. Song Jinbao. Second-order random wave solutions for internal waves in a two-layer fluid, Geophys. Res. Lett., 2004,31 (15), L15302.
    143. Song Jinbao. Second-order solutions for random interfacial waves under steady uniform currents, China Ocean Engineering, 2005, 19(2): 333-338.
    144. Song Jinbao and Sun Qun. Second-order random interfacial wave solutions for two-layer fluid with a free surface,Acta Oceanologica Sinica, 2006,25(1): 15-20.
    145. Stokes G. G. On the theory of oscillatory waves. Trans. Camb. Phil. Soc., 1847, 8:441-455.
    146. Struick D. J. Determination rigoureuse des ondes irrotationelles periodiques dan un canal a profoudeur finie. Math. Ann. 1926, 95: 595-634
    147. Sun Fu, Gao Shan, Wang Wei and Qian Chengchun. Wave-induced stressand estimation of its driven effect on currents, Science in China, Ser. D, 2004,47(12): 1147-1154.
    148. Thorpe S. A. On the shape of progressive internal waves. Phil. Trans. Roy. Soc., 1968, 263A: 563-614.
    149. Thorpe, S. A. The excitation, dissipation, and interac tion of internal waves in the deep ocean. J. Geophys, Res., 1975, 80: 328-338.
    150. Tsuji Y. and Nagata Y. Stokes' expansion of internal deep water waves to the fifth order. J. Ocean. Soc. Japan. 1973, 29: 61-69.
    151. Tung C. C. and Pajouhi K. Covariance function and spectra of a random wave field. J. Phys. Oceanogr.,1975, 6:104-107.
    152. Umeyama Motohiko 1998. Second-order internal wave theory by a perturbation method. Memoirs Tokyo Met Univ., 48:137-145.
    153. Umeyama Motohiko 2000. Third-order internal wave theory for a density-stratified two-layer fluid. Memoirs Tokyo Met Univ., 50:120-136.
    154. Umeyama, M. Experimental and theoretical analyses of internal waves of finite amplitude. J. Waterway Port Coastal Ocean Eng., 2002,128(3), 133-141.
    155. V. Haren H. Some observations of nonlinearly modified internal wave spectra. J. Geophys. Res., 2004, 109.
    156. V. Haren H. Internal waves near the buoyancy frequency in a narrow wave-guide. J. Sea Res., 2005, 53(3): 121-129.
    157. van Haren H. Properties of vertical current shear across stratification in the North Sea. J. Mar. Res., 2000, 58: 465–491.
    158. Winters K. B. asaro E A D’. Direct simulation of internal wave energy transfer. J.Phys. Oceanogr., 1997,27: 1937-1946.
    159. Whitham G. B. Mass, momentum and energy flux in water waves. J. fluid Mech. 1962,12: 135-147.
    160. Wunsch C. Deep ocean internal waves: What do we really know? J.Geophys. Res., 1975: 80: 339–343.
    161. Wunsch C. Geographical variability of the internal wave field: A search for sources and sinks. J. Phys. Oceanogr., ,1976, 6: 471–485.
    162. Wunsch, C. and S. Webb, The climatology of deep ocean internal waves. J. Phys. Oceanogr., 1979, 9, 235–243.
    163. Yang T. C. and K. Yoo. Internal wave spectrum in shallow water: measurement and comparisonwith the Garrett-Munk model. Oceanic Engineering, IEEE ., 1999, 24(3): 333-345.
    164. Zhao Z.X.,V.Klemas and Q.A.Zheng et al.Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea.Geophys.Res.Lett.2004,31(6).l06302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700